

EPCOR Water Services Inc. Edmonton, Alberta

2022 Annual Wastewater System Report

Submitted to:

The Province of Alberta

Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

February 2023

Executive Summary

The following report contains two parts, Part I: Wastewater Treatment Plant and Part II: Wastewater Collection System, in order to meet the requirements of Approval to Operate No. 639-03-07.

The 2022 Annual Wastewater Treatment Plant Report is separated into an Annual Wastewater Treatment Report, an Annual Air Pollution Control System Report, an Annual Ambient Air Report, and a summary of contraventions reported, as outlined in the Approval to Operate.

The 2022 Annual Wastewater Collection System Report includes a summary of completed projects and planned major rehabilitation projects, the interconnection control strategy, and storm and CSO volumes and loadings in addition to other requirements outlined in the Approval to Operate.

Part I: Wastewater Treatment Plant Report

EPCOR Water Services Inc. Gold Bar Wastewater Treatment Plant Edmonton, Alberta

2022 Annual Wastewater Treatment Plant Report

Submitted to:

The Province of Alberta

Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

Table of Contents

Section	Approval No. 639-03-07 Requirement	Page
2022 Overview	N/A	4
2022 Annual Wastewater Treatment Report	6.3.3 (a) (i)	5
Gold Bar WWTP Performance	6.3.3 (a) (i) (A) and (B) and Operations Plan – Sections 9 and 10	5
Assessment of Annual Monitoring Results	6.3.3 (a) (i) (C)	10
Chemical Added to the Wastewater Treatment Process	6.3.3 (a) (i) (D)	11
Names of Supervising Operators	6.3.3 (a) (i) (E)	12
Uncommitted Hydraulic Reserve Capacity	6.3.3 (a) (i) (F)	13
Wet Weather Summary	6.3.3 (a) (i) (G)	13
Summary of Operational Issues	6.3.3 (a) (i) (H)	13
2022 Annual Air Pollution Control System Report	6.3.3 (a) (ii)	14
Summary of Air Pollution Control System Monitoring	6.3.3 (a) (ii) (A)	16
Assessment of Monitoring Results	6.3.3 (a) (ii) (B)	17
Chemicals Consumed by Scrubbers	6.3.3 (a) (ii) (C)	17
Summary of Air Pollution Control System Operational Issues	6.3.3 (a) (ii) (D)	18
2022 Annual Ambient Air Report	6.3.3 (a) (iii)	20
Summary of Ambient Air Monitoring	6.3.3 (a) (iii) (A)	20
Assessment of Monitoring Results	6.3.3 (a) (iii) (B)	23
Summary of Public Odour Complaints	6.3.3 (a) (iii) (C)	24
2022 Summary of Contraventions and Notifications to AEPA	6.3.3 (a) (iv) and Operations Plan – Section 1	25
2022 Biosolids Program Summary	Operations Plan – Section 5	28
Appendix A – Monthly Plant Performance Reports		
Appendix B – WWTP Chemicals		
Appendix C – Operations Monthly Reports		
Appendix D – Air Pollution Control System Data		
Appendix E – Scrubber Chemicals		
Appendix F – Fence Line H₂S Readings		
Appendix G – Odour Complaints		
Appendix H – Nutri-Gold Summary		
Appendix I – Third Party Agricultural Summary		
Appendix J – Non-Ag Biosolids Management Report		

Tables

Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)	5
Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)	
Table 3: 2022 Gold Bar WWTP Performance	7
Table 4: 2022 Reclaimed Water Quality	8
Table 5: 2022 Effluent Toxicity	9
Table 6: 2022 Summary of Gold Bar Wastewater Proficiency Testing	9
Table 7: List of Certified Wastewater Treatment Operators (as of December 2022)	12
Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)	14
Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approva	al to
Operate Table 6-2)	14
Table 10: Air Pollution Control System Report - Part I	16
Table 11: Air Pollution Control System Report - Part II	17
Table 12: Summary of Scrubber Operational Issues	18
Table 13: Summary of Ambient Air Monitoring Results – Low Range H ₂ S Analyzer	20
Table 14: Summary of Ambient Air Monitoring Results – Ambient Air Monitoring Station	22
Table 15: Assessment of Results of Ambient Air Monitoring	23
Table 16: Summary of Gold Bar WWTP Odour Complaints	24
Table 17: Summary of Contraventions	
Table 18: Summary of Notifications to AEPA	25
Table 19: Summary of Biosolids Program	28
Figures	
Figure 1: 2022 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP)	
Index	10
Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index) 2005-202	
Figure 3: Location of H ₂ S Monitoring	

Acronyms

ACRWC Alberta Capital Region Wastewater Commission

AEPA Alberta Environment and Protected Areas

CALA Canadian Association for Laboratory Accreditation

CBBRF Clover Bar Biosolids Recycling Facility

CBOD Carbonaceous Biological Oxygen Demand

CSO Combined Sewer Overflow EPE Enhanced Primary Effluent

EPEPS Enhanced Primary Effluent Pumping Station

EPT Enhanced Primary Treatment

FE Final Effluent

FEC Final Effluent Combined

GBWWTP Gold Bar Wastewater Treatment Plant

H₂S Hydrogen Sulfide

HSE Health, Safety, and Environment

ISO International Organization for Standardization

ML Megalitres

MLD Megalitres per Day

MLSS Mixed Liquor Suspended Solids

NH₃-N Ammonia-Nitrogen

NSR North Saskatchewan River
ORP Oxidation-Reduction Potential

PE Primary Effluent

SOP Standard Operating Procedure

TKN Total Kjeldahl Nitrogen
TP Total Phosphorus

TSS Total Suspended Solids

UV Ultraviolet

WELP Wastewater Effluent Limit Performance

WWT Wastewater Treatment

WWTP Wastewater Treatment Plant

2022 Overview

The Gold Bar Wastewater Treatment Plant (WWTP) located on the banks of the North Saskatchewan River in Edmonton, Alberta maintains the ISO 14001:2015 (Environmental Management System) and the ISO 45001:2018 (Occupational Health and Safety Management System) certificates for its Integrated Management System.

Notable events in 2022 include completion of the Ambient Air Quality Monitoring Station, Diversion Structure structural rehabilitation, Secondary 3 structural and mechanical rehabilitation, the Plant Wide Monitoring System, and UV transformer. There was also ongoing construction of Secondary 2 inDENSE, Scrubber 5 and 6, Maintenance Hygiene Facility, and Operations Centre.

The true dry weather flow in 2022 was 266 MLD. 2022 hosted a larger number of significant wet weather events (14) compared to the previous year (6) which resulted in an increased number of secondary bypasses (63). The plant performed very well with a Wastewater Effluent Limit Performance (WELP) index of 16.7%.

Gold Bar WWTP Performance

The Gold Bar WWTP final effluent discharge limits of Approval to Operate 639-03-07 are listed in Table 1 and the monitoring requirements are outlined in Table 2.

Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)

Parameter	Limit
CBOD₅	≤ 20 mg/L monthly arithmetic mean of daily composite samples
TSS	≤ 20 mg/L monthly arithmetic mean of daily composite samples
Total Phosphorus	≤ 1.0 mg/L monthly arithmetic mean of daily composite samples
Total Ammonia-nitrogen (December 1 to May 31)	≤ 10 mg/L monthly arithmetic mean of daily composite samples
Total Ammonia-nitrogen (June 1 to November 30)	≤ 5 mg/L monthly arithmetic mean of daily composite samples
E. Coli	≤ 126 per 100 mL/monthly geometric mean
рН	6.5-8.5

Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)

Parameter	Frequency (Minimum)	Sample Type	Sampling Location
	UNTRÉATED	WASTEWATER	·
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Once per day	Composite	Untreated wastewater entering the wastewater treatment plant
Volume of Flow	Continuous, recorded daily	Calculated	Untreated wastewater entering the wastewater treatment plant
	TREATED W	VASTEWATER	
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Once per day	Composite	Wastewater treated plant effluent prior to release to the North Saskatchewan River
E. Coli	Once per day	Grab	After ultraviolet (UV) disinfection
Acute Toxicity	Monthly	Grab	Wastewater treatment plant effluent prior to release to the North Saskatchewan River
Chronic Toxicity	Quarterly	Grab	Wastewater treatment plant effluent prior to release to the North Saskatchewan River
Volume	Continuous, recorded daily	Calculated	Wastewater treatment plant effluent prior to release to the North Saskatchewan River
Volume	Continuous, recorded daily	Calculated	Reuse water transmission main

	WASTEWATER TREAT	MENT PLANT BYPASS	
Release Volume	Continuous during bypass event, recorded daily	Calculated	Primary and secondary treatment bypass of
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Any bypass event lasting > 2 hours	Composite	wastewater at the wastewater treatment plant
E. Coli	Any bypass event lasting > 2 hours	Grab	
	SLUDGE I	DISPOSAL	
Sludge Volume	Total volume	Estimated	Prior to leaving the wastewater treatment plant
Sludge Mass	Total mass	Estimated	Amount of sludge being disposed of as per the Biosolids Management Plan
	CSO OUTFALLS AND UN	IAUTHORIZED RELEASE	
Release Volume	Total volume during each discharge event	Continuous during discharge event	Rat Creek CSO outfall; Hardisty-Capilano CSO outfall; Highlands CSO outfall; Cromdale CSO outfall; Strathearn CSO outfall; and unauthorized release point
pH BOD₅ TSS Total Phosphorus	Each discharge event	Composite	Rat Creek CSO outfall
Total Ammonia-nitrogen E. Coli		Grab	Unauthorized release point
The amount of any substance other than wastewater or storm water that is spilled or discharged accidentally or intentionally into the wastewater collection system	Each event	Estimated volume or mass	Unauthorized release point

Table 3 summarizes the monthly minimum, mean, and maximum values for parameters in Table 1 from January 1 to December 31, 2022. All analytical data in the table were developed on 24-hour composite samples collected using autosamplers at the sampling location specified in Table 2. The discrete samples for *Escherichia coli* (*E. coli*) determinations were collected at random times each day. Appendix A contains the monthly Plant Performance Reports.

Table 3: 2022 Gold Bar WWTP Performance

				F	lows					ьH					TS	S				BOD₅			CBOD ₅	TP						NH ₃				ΓKN			NO ₂ +NO ₃	3		CI	loride			E. coli		Tota		
					(ML)					Pii					(mg/	L)				mg/L)			(mg/L)			(mg l	P/L)				(m	ng N/L)			(m	g N/L)			(mg N/L))		(ng/L)		Co	ounts/100 n	AL	Digest Sludg
	Month	Raw Ou	tfall 30 N	IPW Ou	tfall 20 EF		Outfall 1		Raw Ou	utfall 30			Raw	Outfall 30	Outfall 20	EPEPS	utfall 10		Outfall	30 Outfall	120 EPEI		Outfall 10		Outfall 30	Outfall 20		Outfal	K	Raw Ou	utfall 30 Outfall 2	20 EPEPS			Raw Outfall 3	0 Outfall 20	Outfall 10	Raw C	Outfall 30 Out		rtfall 10 Raw	Outfall 3	0 Outfall 20		aw Outfa	all 30 Outfa	all 20 Outfa	I 10 (ML)
							FEC			1		FEC	1				FE		1				FEC FE				_	FEC					FEC				FEC				FEC	10.00	F		10 ⁶ X1	0 ⁶ X1	10	-
January	Avg/Geomean Min	258.4 240.6		11.4			243.6 2 229.6 2	243.6 229.6	7.4	7.5		7.6	297	122		4.8						_	3 3	7.8							34.4				59.6 44.3		5.32	< 0.01			6.10 156	_				_	4	
January	Min							281.5	7.3	7.4		7.4	224 384	192		2.9			146			_	2 2	5.7		-		0.20			26.3		2.00 5.63	2.00 5.63	43.4 34.3 89.2 53.4	-	3.40 7.90	< 0.01	< 0.01 0.18		4.20 67.3 11.0 411			76.2 1 353 2	.8 2	.0	1	
	Avg/Geomean					_		245.4		7.5		7.5	320	83		3.5			132				2 2	7.6		-		0.49		39.2	32.3		3.89	3.89	58.6 41.8		5.49	0.01	0.18	_	9.74 173			163 2		4 -		+-
February	Min							231.7	7.3	7.0		7.3	164	46		2.6		185	105				2 2	4.9				0.18	0.23	22.7	23.3		1.86	1.86	34.8 29.9		3.30	< 0.02	0.13		5.80 86.8			94.9 1	7 0	7 -	_ 1	57.5
	Max				0.0			290.3	7.5	8.0		7.6	536	128		5.1		394	164				4 4	9.89				0.30		45.5	43.8		7.78	7.78	69.1 57.6		9.70	0.04	0.26		11.5 417			334 2	2.5 3	.7	- 11	-
	Avg/Geomean	310.8	43.0 1	1.6	0.0	0.0	256.1 2	256.1	7.3	7.4		7.3	325	80		4.6	4.6	280	99				3 3	6.3	4.42			0.26	0.26	31.8	29.5		2.65	2.65	49.5 37.8		4.18	0.01	0.64	_	10.45 148	210		155 1.	.6 1	.2	3	\neg
March	Min		0.0 1	10.8	0.0	0.0	228.1 2	228.1	7.2	7.3		7.1	76	54		2.0	2.0	156	46	-		<	2 2	4.3	3.14			0.14	0.14	22.7	20.5		1.05	1.05	36.3 28.5		2.10	< 0.01	0.01		7.53 96.0	124		110 1.	.1 0	.1	- 1	67.0
	Max	453.2 1	52.7 1	13.3	0.0	0.0	293.6 2	293.6	7.5	7.6		7.6	536	102		10.	10.	561	139				5 5	9.4	5.90			0.48	0.48	42.1	35.8		4.39	4.39	83.7 45.9	-	6.60	0.02	2.68	-	12.7 290	443	:	240 2	2.3 1	.8	- 7	
	Avg/Geomean							262.4	7.4	7.4		7.5	371	151		5.2			95				3 3	7.18				0.29		35.1	27.5		3.36	3.36	57.1 39.7		5.29	0.02	0.91		7.85 93	124			.3 1	.2	3	
April	Min			8.5	0.0	0.0	241.9 2	241.9	7.2	7.3		7.4	186	93		2.7		116	59			<	2 2	2.6	2.23			0.16		16.5	20.8		0.83	0.83	19.6 27.5		2.30	< 0.01	0.15		4.55 73.5	88.6		18.3	.2 0	.9	- 1	68.3
	Max		82.6	12.5	0.0	0.0	324.3 3	324.3	7.5	7.4		7.6	520	234		11.			114				5 5	19.3	5.24			0.54	0.54	40.2	31.0		5.64	5.64	126 47.6		8.00	0.02	1.83		12.1 154	144		139 1	.4 2	.3		$+\!-\!$
Mav	Avg/Geomean Min	277.3 254.1			0.0			257.8 242.6	1.10	7.6		7.5	419 332	120		3.4		0.0	112			_	3 3	7.0				0.25	0.00		28.5		1.36	1.36	58.7 34.2	-	3.28	< 0.01	0.79		9.35 85.8	0.110		95.5 2	2.2 0	.7	- 3	
way	Min							292.8	1.74	7.4		7.4	736	262		2.6		211 406	188				2 2	5.9i				0.20		16.1 40.0	19.3		2.85	0.32 2.85	70.9 59.4		2.20 5.20	< 0.01	0.22 2.24		6.19 62.0 11.8 98.0			79.4 2	2.0 0	3 -	- 1	- 69.4
	Avg/Geomean					_		291.0		7.6		7.6	331	74		3.6			84				3 3	5.2				0.70			24.4		0.50	0.50	45.6 33.5		2.02	0.03	0.90		8.77 77.3					.0		+-
June	Min							245.3		7.0		7.0	212	48		2.2		01	30				2 2	2.0				0.20	0.20	0.21	11.7		< 0.03	0.30	16.7 19.3		1.10	c 0.03	0.90		3.53 33.7				0.5 0	2 -		64.5
	Max				0.0			337.9	1.74	7.8		7.8	592	134		8.8		338	157		-		6 6	6.8				0.13		40.6	39.8		1.51	1.51	59.7 52.5		3 10	0.01	3.98		11 4 94 6			103 2	2 2	6 -	- 12	
	Avg/Geomean	327.6	26.4 1	10.6	0.0	0.0	290.6 2	290.6	7.6	7.6		7.6	337	70		2.8		253	76	-			2 2	5.6				0.19		25.8	24.5		0.40	0.40	46.6 32.4		1.92	< 0.01	0.51		8.50 85.5	78.2	9	94.3 1	.8 0	.9	4	\neg
July	Min	265.4	0.0	9.3	0.0	0.0	254.6 2	254.6	7.3	7.3		7.4	226	38		1.5	1.5	148	44	-		. <	2 2	2.8	1.46			0.06	0.06	11.7	15.8		0.11	0.11	27.3 21.5		1.40	< 0.01	0.25		5.93 44.8	54.8	- :	71.0 1.	.4 0	.4	- 1	74.5
	Max		58.3	11.3	0.0	0.0	347.8 3	347.8	7.8	7.7		7.8	568	109		5.4		335	140				3 3	7.4				0.70	0.70	50.3	40.6		1.60	1.60	59.1 52.5		3.80	< 0.01	1.00		9.91 102	104		109 2	2.2 1	.6	- 1/	
	Avg/Geomean	281.1	5.2	11.2	0.0	0.0		264.7	7.6	7.5		7.6	328	54		3.6		287	79	-			2 2	6.5				0.22		29.3	23.5		0.50	0.50	49.4 32.3		1.95	< 0.01	0.49		9.35 83.8			39.4	1.9	.4	6	
August	Min	261.0		0.3	0.0	0.0		249.7	7.3	7.3		7.5	238	33		1.8			48				2 2	4.2				0.10			9.05		0.12	0.12	28.7 19.2		1.00	< 0.01	0.03		7.10 37.5			71.8 3	1.2 0	.9	- 1	68.9
	Max		39.3	2.0	0.3	0.0	331.3	001.0	7.8	7.7		1.1	440	81		11.		010	130				3 3	7.8	0.00			0.41	0.41	33.1	39.3		1.94		57.4 50.3		4.00	< 0.01	0.96	-	11.1 104			97.0 4	.8 2	4 -	- 22	
Santamba	Avg/Geomean Min			11.5	0.0			252.0 239.3	7.6	7.0		7.6	379 287	82		4.6		295 216	119			_	3 3	7.5 6.1				0.40		30.7 21.6	19.8		0.26	0.26	51.4 36.7 45.4 22.6		2.00	< 0.01	0.66		10.99 79.1 7.55 62.1			33.7 3 33.0 2	0.5	.4	4	67
Septembe	Max	330.0	87.9 1	12.3	0.0		282.7 2	282.7	7.7	7.4		7.7	893	135		6.0		403	197				4 4	8.9				1.00	1.00	34.3	29.3		5.95	5.95	45.4 22.0 57.9 49.1		8.00	< 0.01	1.66		15.0 92.1			98.8 4	5 3	4 -	- 1	.—
	Avg/Geomean	0.00.0	0.0 1	10.0	0.0	0.0	251.0 2	251.0	7.5			7.6	323			3.9						\neg	3 3	7.5				0.30	1.00	39.2			0.93	0.93	56.9		2.46	< 0.01		_	10.58 74.9			30.2 3	1.9		5	+
October	Min	251.9			0.0			242.4	7.3			7.5	272			2.8		242	1 -	-			2 2	6.5				0.23		32.0			0.37	0.37	44.5	-	1.10	< 0.01			8.39 69.0			72.6 3	3.0	- -	- 1	73.0
	Max	309.1	0.0 1	12.5	0.0		299.3 2	299.3	7.7			7.7	432			6.2		372					4 4	8.6				0.41		48.4			1.88	1.88	69.8		3.80	< 0.01			13.1 81.7			36.1 4	.8	- -	12	\Box
	Avg/Geomean	266.7	0.0 1	12.4	0.0	0.0	254.4 2	254.4	7.5	-		7.6	390			3.5	3.5	328					3 3	7.5	5			0.25	0.25	35.7			0.91	0.91	59.6		2.46	0.24			8.96 105			112 3	3.4	-	4	\perp
November	Min	257.4	0.0	13.9	0.0	0.0	245.3 2	245.3	7.3	-		7.5	283 625			2.2	2.2	229 436					2 2	9.2				0.20	0.20	31.1 42.2			2.38	2.38	43.7		1.50 4.40	0.01			6.97 81.7 11.4 179			36.2 2 179 4	2.6	- -	- 1	68.9
	Max Avg/Geomean	270.0							7.5	-	-	7.6		_		4.9				_		-	4 4							37.1			1.49	1.49	10.0	-		< 0.03								- -	7	+-
December	Min	250.3						256.0 239.0	7.5			7.5	325 260			3.4		336 248					2 2	7.33 6.44				0.25					0.84	0.84	51.3		3.19 2.20	< 0.03			9.22 104 6.31 75.4			113 2 33.9 2			3	- 66 /
	Max							264.0	7.6	= +		7.8	416			5.4	5.4	394	+=				4 4	8 1	·			0.20	0.30	41.6			4.12	4.12	70.3		5.60	< 0.01		= +	11.7 150			173 2	2.7		- 6	- 00.5
Annu	I Volume (ML)		913.00 4	,103	0.00			95,077					-			, , ,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 - 2 - 2				'		, , , , , ,				1		- 1							1											818.5
2022	Avg	288	16.3 1	112	0.00	00	260	260	7.5	7.5	1	7.5	345	93	[39	3.9	298	108				3 3	6.95	3.70	1		0.26	0.26 3	33.6	27.2	T	1.73	1.73	54.5 36.9	T T	3.39	0.03	0.56		9 16 105	175	I I 1	11				
2021	Avg	264	8.1 1	10.6	0.00	.00	246	246	7.5		7.0	7.5	312	107	965	4.6	4.6	299	132	138	3		3 3	7.26	4.27	2.88		0.29	0.29 3	35.0	24.2 11.0	-	1.68	1.68	55.8 40.0	13.9	3.44	0.03			9.47 90		30 9					
																	1	,																														

PBP – Plant Bypass | FEC – Final Effluent, Combined | TSS – Total Suspended Solids | MPW – Membrane Product Water | TS – Total Phosphorus | TS – Total

EPE - Enhanced Primary Effluent EPT - Enhanced Primary Treatment

Outfall 10 - Combined, UV-disinfected (FEC + EPE) Outfall 20 - Combined Bypass (RAW + PE + EPE) Outfall 30 - Combined Bypass (RAW + Screened + PE + EPE)

CBOD₅ – 5-day Inhibited BOD

Table 4 summarizes the reclaimed water quality sample data from January 1 to December 31, 2022. All parameters except *E. coli* were developed on daily 24-hour composite samples of the reclaimed water. The *E. coli* testing was conducted on discrete samples collected on a daily basis.

Table 4: 2022 Reclaimed Water Quality

Mon	th	Flow (ML)	Total Alkalinity (mg CaCO3/L)	Ammonia (mg N/L)	Biochemical Oxygen Demand (mg/L)	Chemical Oxygen Demand (mg/L)	Chloride (mg Cl/L)	Conductivity (mS/cm)	E. coli (Counts/100 mL)	рН	Total Suspended Solids (mg/L)	Total Organic Carbon (mg/L)	Total Phosphorus (mg P/L)	Total Dissolved Solids (mg/L)	Turbidity (NTU)
	Avg	11.4	170	1.68	<2	32	163	1117	<1	8.0	<1.0	9.0	0.10	636	0.20
January	Min	10.7	156	0.21	<2	20	78.6	844	<1	7.9	<1.0	7.2	0.07	497	0.12
	Max	12.3	179	4.24	<2	46	355	1,660	<1	8.1	<1.0	10.0	0.14	915	0.32
	Avg	11.5	155	0.99	<2	26	167	1,092	<1	7.9	<1.0	8.4	0.10	629	0.16
February	Min	9.8	150	0.10	<2	20	97.9	874	<1	7.7	<1.0	6.9	0.07	513	0.12
	Max	12.5	164	3.38	<2	32	328	1,550	<1	8.0	<1.0	9.3	0.14	864	0.28
	Avg	11.6	139	0.33	<2	27	157	1,058	<1	7.7	<1.0	8.5	8.51	616	0.15
March	Min	10.8	120	0.07	<2	20	114.0	885	<1	7.5	<1.0	7.7	7.70	519	0.11
	Max	13.3	154	1.01	<2	36	247	1,340	<1	8.0	<1.0	9.4	9.40	761	0.20
	Avg	10.4	142	0.45	<2	27	105.1	968	<1	7.9	<1.0	9.5	0.09	599	0.24
April	Min	8.5	136	0.05	<2	20	87.3	872	<1	7.8	<1.0	8.2	0.04	554	0.16
	Max	12.5	151	1.60	<2	36	140	1,040	<1	8.1	<1.0	13.4	0.15	643	0.35
	Avg	10.4	179	0.59	<2	32	98.1	10 19	<1	8.0	<1.0	10.0	0.09	633	0.34
May	Min	8.3	174	0.10	<2	22	85.5	865	<1	7.8	<1.0	9.1	0.06	534	0.23
	Max	11.7	188	1.51	<2	43	109.0	1,090	<1	8.1	<1.0	11.0	0.13	675	0.44
	Avg	11.8	168	0.30	<2	31	91.2	1,065	<1	8.0	<1.0	9.9	0.07	679	0.36
June	Min Max	10.2	117	0.03	<2	21	53.6	679	<1	7.9	<1.0	7.4	0.04	407	0.21
	IVIdX	12.7	225	1.90	<2	47	103.0	1,250	<1	8.9	<1.0	11.7	0.12	850	0.46
	Avg	10.6	177	0.09	<2	27	96.0	1,138	<1	8.0	1	10.0	0.08	737	0.24
July	Min Max	9.3	165	0.05	<2	20	70.6	984	<1	7.9	<1.0	8.6	0.03	627	0.13
	Wax	11.3	194	0.22	<2	36	110.0	1,260	<1	8.2	1.6	12.4	0.11	854	0.63
	Avg	11.2	178	0.15	<2	28	92.9	954	<1	8.0	<1.0	9.1	0.09	596	0.22
August	Min Max	10.3	152	0.04	<2	20	70.0	820	<1	7.8	<1.0	8.5	0.05	498	0.11
		12.0	199	1.30	<2	45	102.0	1,040	<1	8.1	<1.0	10.3	0.16	691	0.34
	Avg	11.5	136	0.23	<2	27	87.4	889	<1	8.0	<1.0	9.1	0.19	544	0.18
September	Min Max	11.1	130	0.05	<2	21	62.5	794	<1	7.9	<1.0	8.5	0.09	490	0.13
		12.3	141	3.38	<2	36	100.0	977	<1	8.0	<1.0	10.0	1.34	612	0.28
	Avg	10.0	136	0.11	<2	27	85.3	857	<1	7.9	<1.0	8.9	0.14	526	0.21
October	Min Max	6.0	129	0.05	<2	21	77.1	809	<1	7.8	<1.0	7.8	0.10	494	0.12
		12.5	143	0.31	4	34	93	901	<1	8.0	<1.0	10.0	0.63	554	0.33
	Avg	12.4	143	0.24	<2	26	116	959	<1	8.0	<1.0	8.6	0.10	561	0.20
November	Min Max	10.5	134	0.03	<2	20	86.8	842	<1	7.9	<1.0	7.6	0.08	523	0.14
		13.9	160	1.31	4	35	187	1,200	<1	8.1	1.4	9.8	0.13	685	0.30
	Avg Min	12.0	145	0.67	<2	28	117	945	<1	7.9	<1.0	8.6	0.10	564	0.17
December	Max	11.0	143	0.07	<2	20	87.4	822	<1	7.8	<1.0	8.1	0.06	475	0.13
		12.7	146	3.10	<2	41	180	1,180	<1	8.0	<1.0	9.1	0.13	697	0.30
Annual	Avg	11.2	156	0.49	<2	28	115	1005	<1	7.9	<1	9.1	0.81	610	0.22
Summary	Min Max	6.0	117	0.03	<2	20	54	679	<1	7.5	<1	6.9	0.03	407	0.11
		13.9 Ne phe lome tric turb id	225	4.24	4	47	355	1660	<1	8.9	2	13.4	9.40	915	0.63

Note s:

- NIU Nephelometric turbidity units.
 Counts/100mL Counts per 100 mL of sample.
- 3) ML Me ga liters (1,000,000 liters)

Table 5 summarizes the effluent chronic and acute toxicity testing. Both acute and chronic toxicity tests were carried out by contract laboratories in accordance with the Environment Canada Biological Test Methods (Environment Canada 1990 and 1992). The acute testing included 48-hour Rainbow Trout static toxicity, 48-hour static toxicity using Daphnia magna and 15-minute Microtox tests using luminescence bacteria. Seven-day Ceriodaphnia dubia. Fathead minnows and three-day P. Subcapitata survival and reproductive impairment tests were used to determine chronic toxicity. No effluent toxic events were observed in 2022.

	I	able	5:	2022	Effluent	I	oxicity
--	---	------	----	------	----------	---	---------

		Microtox	Daphnia Magna	Rainbow Trout	Ceriodaphia Dubia	Fathead Minnows	ws Pseudokirchneriella				
Dates	Quarter				Survival	Survival					
		% of Control	LC ₅₀ (% vol/vol) ¹	LC ₅₀ (% vol/vol)	LC ₅₀ (% vol/vol)	LC ₅₀ (% vol/vol)	IC ₂₅ (% vol/vol) ²	NOEL(%) ³	LOEL(%) ⁴	TOEL (%) ⁵	Toxic Units(TU) ⁶
1/19/2022		>82	>100	>100							
2/9/2022	1	>82	>100	>100	>100	>100*	>90.91	1.42	2.841	2.009	70.42
3/10/2022		>82	>100	>100					-		
4/7/2022		>82	>100	>100							
5/10/2022	2	>82	>100	>100	>100	>100	>90.91	1.42	2.841	2.009	70.4
6/8/2022		>82	>100	>100							
7/7/2022		>82	>100	>100							
8/10/2022	3	>82	>100	>100	>100	>100	>90.90	<1.42	1.42	NR	70.4
9/8/2022		>82	>100	>100							
10/13/2022		>82	>100	>100							
11/2/2022	4	>82	>100	>100	>100	>100	>90.90	<1.42	1.42	NR	>70.4
12/8/2022		>82	>100	>100							
*sampled on	*sampled on 2022/02/28										
NR = no resu	lt										

Table 6 summarizes the proficiency testing of the Gold Bar WWTP Laboratory. It includes the Laboratory z-scores achieved from analyzing proficiency testing (PT) samples for constituents required by the Approval to Operate. The 2022 PT samples were provided by the Canadian Association for Laboratory Accreditation (CALA). A PT scores greater than or equal to 70 or zscores less than or equal to 3.000 are considered acceptable for CALA PT.

Table 6: 2022 Summary of Gold Bar Wastewater Proficiency Testing

		р	pH		DD	C-B	OD	TS	SS	NH	3-N	Т	P	E.coli		
Study	Date	PT Score	Avg. z-score													
PTC	Mar-22	87	0.85	98	0.00	97	-0.06	96	0.29	98	0.14	98	0.10	96	-0.22	
PTC	Oct-22	95	-0.10	94	-0.48	93	-0.41	93	0.47	91	0.60	96	0.01	94	-0.11	

pH by manual meter; NH3-N by AA3; TP by AA3, E.coli by MF

In 2022, a total of 105,095 million litres (ML) of wastewater was conveyed to the plant. Secondary treatment and UV disinfection was provided to 95,076 ML (90.5%) of the total raw influent flow with 4,103 ML (3.9%) of reclaimed water provided to industrial customers.

¹LC50 - % effluent concentration at which there is a 50% mortality of test organisms; 21C25 - % effluent concentration at which there is a 25% reduction in growth or reproduction of test organisms; 3NOEL - the concentration at which there was no observed effect level; 4LOEL - the concentration at which you start seeing the lowest observable effect; ⁵TOEL = NOEL/LOEL; ⁶TU - the ratio of the concentration observed divided by the concentration for 50% inhibition.

Assessment of Annual Monitoring Results

The Gold Bar WWTP Effluent Limit Performance (WELP) index for 2022 was 16.7% (Figure 1). The 2022 index was lower than the five-year average of 21.3% due to having more process tanks/equipment available than in previous years and good performance of Ostara Nutrient Recovery Facility for supernatant treatment. Figure 2 shows the annual WELP from 2005 to 2022, including the five-year average.

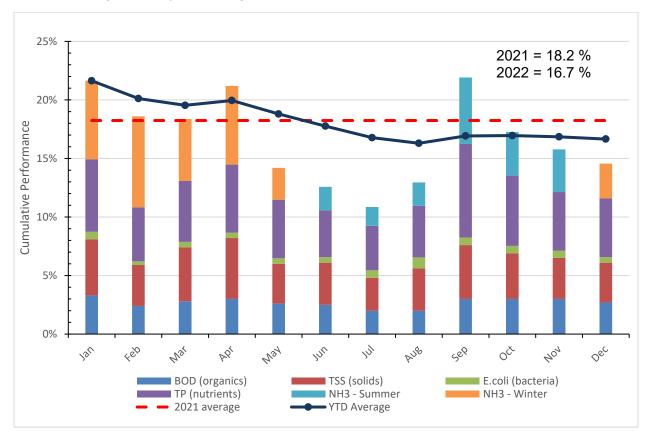


Figure 1: 2022 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP) Index

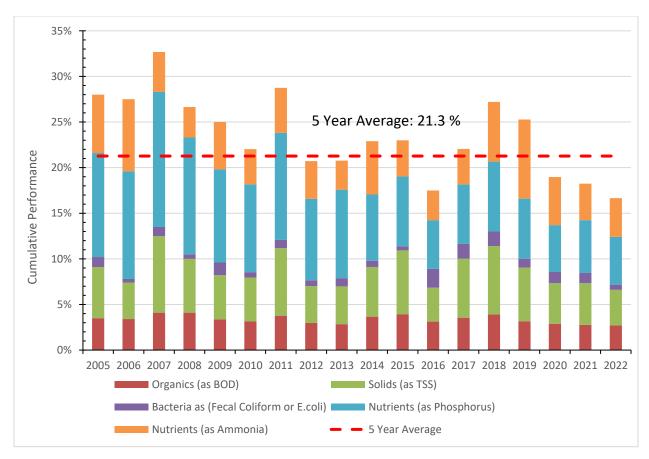


Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index) 2005-2022

For 2022, all of the monthly limits for Approval to Operate discharge parameters (Table 1) were met.

Chemicals Added to the Wastewater Treatment Process

As per Section 6 of the Operations Plan, the following chemicals are used in the wastewater treatment process:

- Secondary Alum
- EPT Alum
- EPT Polymer
- DAF Polymer
- Membrane Bleach
- Ostara Magnesium Chloride
- Ostara Caustic

Daily and monthly consumption of these chemicals is summarized in Appendix B.

Names of Supervising Operators

Table 7 lists all certified wastewater treatment operators, their level of certification, and their positions at Gold Bar WWTP as of December 2022. Supervising operators are also listed in the Operations Monthly Summaries in Appendix C.

Table 7: List of Certified Wastewater Treatment Operators (as of December 2022)

Name	Title	WWT Certification Level
Grossell, Ken M	Manager, Operations	IV
Schneider, Brian P	WWTP Operator Foreman	IV
Jones, Kira I	WWTP HEI Coordinator	IV
Kwan, Tom	WWTP Operator Foreman	IV
Espinosa, Diego F	WWTP Operator Foreman	IV
Lekamwasam, Janaka	WWTP Operator Foreman	IV
Nunes, Michael	WWTP Operator Foreman	IV
Penner, Jody	WWTP Lead Operator	IV
Sanche, Dagny	WWTP Training Coordinator	IV
Sandouga, Sam	WWTP Lead Operator	IV
Baker, Cole	WWTP Operator Foreman	IV
Nieuwenhuis, Andrew	WWTP Lead Operator	IV
Kelly, Adam	WWTP Operator	IV
Barrett, Jeremy L	Manager, Process Risk & Integration	III
Li, Bing (Frank)	WWTP Operator	III
Jama, Yusuf	WWTP Operator	III
Budden, Curt	WWTP Operator Foreman	III
Rindero, Billy	WWTP Operator Foreman	III
Hetherington, Clarke	WWTP Operator	III
Hahn, Kevin	WWTP Operator Foreman	III
Holden, Derek	WWTP Operator	III
Jordan, Bradley	WWTP Lead Operator	III
Vogelgesang, Ryan	WWTP Operator	III
Diletzoy, Kyle	WWTP Lead Operator	III
Rees, Emma	WWTP Operator	III
Downey, Anthony	WWTP Operator	III
Paglicauan, Jermine	WWTP Operator	III
Omeragic, Armen	WWTP Operator	III
Ozimko, Michael	WWTP Operator	II
Price, Jeremy	WWTP Operator	II
Furber, Brandyn	WWTP Operator	I
Cassell, Blake	WWTP Operator	I

Uncommitted Hydraulic Reserve Capacity

In 2022, Gold Bar WWTP received a total dry weather volume of 99,179 ML. This volume is the sum total of Outfall 10 effluent (95,076 ML) and membrane reclaimed water (4,103 ML). Outfall 10 effluent also includes wet weather flow that did not result in secondary bypass and any additional wet weather flow that had secondary treatment during secondary bypass events.

The average dry weather flow in 2022 was 272 million litres per day (MLD). However, the true dry weather flow was lower than 272 MLD and was approximately 266 MLD. The true dry weather average flow excludes additional flow to the plant during snow melt or rainfall, but includes inflow and infiltration (I&I). The total true dry weather volume was approximately 97,248 ML.

Based on 310 MLD of average secondary treatment capacity and a true dry weather average flow of 266 MLD, the uncommitted hydraulic reserve capacity for secondary treatment in 2022 was 44 MLD.

Wet Weather Summary

In 2022, Gold Bar WWTP had 78 days with secondary and primary plant bypasses. The total volume of secondary bypass was 5,913 ML. In addition, the total primary bypass volume was 123 ML.

There were 14 significant wet weather events with inflows to the plant greater than 1,200 MLD. The plant received a peak flow rate of approximately 2,298 MLD on June 28, 2022.

Summary of Operational Issues

Key operational activities, issues, and remedial actions are outlined in the Operations Monthly Summaries in Appendix C.

2022 Annual Air Pollution Control System Report

Table 8 and Table 9 describe the air pollution control system and ambient air monitoring limits and monitoring requirements. Note scrubber 5 and scrubber 6 were excluded from the report as they were not yet operational in 2022.

Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)

Air Pollution Control System	Monitoring Location	Parameter	Limit
East scrubber-scrubber 1; West scrubber-scrubber 2;	Blowdown recirculation line before chemical	рН	≥ 8.0
EPT scrubber-scrubber 3; Fermenter scrubber- scrubber 4	makeup of each wet scrubber	ORP	≥ 300 mV
N/A	Ambient air monitoring station	H ₂ S, NO ₂ , and SO ₂	After ambient air monitoring station commissioned: Meet the latest Alberta Ambient Air Quality Objectives

Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approval to Operate Table 6-2)

Source	Parameter	Frequency	Method of Monitoring	Sample Location
Carbon scrubber for grit recovery facility, during operation	Temperature	Continuous	Online temperature transmitter, record daily average	Influent air stream
seasons	Differential air pressure	Continuous	Online differential air pressure gauge, record daily average	Influent and effluent air stream
Carbon scrubber for grit recovery facility, during operation	H ₂ S	Continuous	Online H ₂ S sensor, record daily average	Effluent air stream of each carbon scrubber
seasons; Carbon scrubber for screening building 2/3; Carbon scrubber for grit building 2	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of each carbon scrubber
Carbon scrubber for Clover Bar biosolids dewatering building	H ₂ S	Weekly	Portable low range H ₂ S analyzer, as per the manufacturer's specifications, grab sample	Effluent air stream of the carbon scrubber
	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of the carbon scrubber
East scrubber-scrubber 1;	pH	Continuous	Online pH sensor, record daily average	Recirculation blowdown line,
West scrubber- scrubber 2; EPT scrubber-scrubber 3; Fermenter scrubber- scrubber 4	ORP	Continuous	Online ORP sensor, record daily average	before addition of chemical makeup of each wet scrubber

East scrubber-scrubber 1; West scrubber-	H ₂ S	Continuous	Online H ₂ S sensor, record daily average	Influent air stream of each wet scrubber
scrubber 2; EPT scrubber-scrubber 3;	H ₂ S	Continuous	Online H ₂ S sensor, record daily average	Effluent air stream of each wet scrubber
Fermenter scrubber- scrubber 4	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of each wet scrubber
Ambient air	H ₂ S	Before ambient air monitoring station commissioned: Daily, when ambient air temperature > 0 °C	Portable low range H ₂ S analyzer, as per the manufacturer's specifications, grab sample	Fence line of Gold Bar Wastewater Treatment Plant
	H ₂ S, NO ₂ , and SO ₂ Temperature Wind speed Wind direction	After ambient air monitoring station commissioned: Continuous	Air Monitoring Directives, as amended, record 1- hour average and 24-hour average	Ambient air monitoring station
Public odour complaints	N/A	When occurring	Document when Gold Bar Wastewater Treatment Plant is alleged and confirmed to be odour source	N/A

Summary of Air Pollution Control System Monitoring

Table 10 and Table 11 contain a monthly summary of the air pollution control system monitoring data. The data is split into two tables for ease of viewing. Note there is no H₂S Out value for the Dewatering Facility Scrubber for December as the facility was not in operation. Appendix D contains the daily air pollution control system data.

Table 10: Air Pollution Control System Report - Part I

			East S	Scrubber	•	F	ermen	ter Scru	bber		West	Scrubbe	er		EPT	Scrubbe	er
Month	1	рН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	рН	ORP (mV)	H₂S In (ppm)	H₂S Out (ppb)	рН	ORP (mV)	H₂S In (ppm)	H₂S Out (ppb)
January	Avg	9.8	670.1	0.3	0.0	9.8	670.0	12.7	30.4	9.8	667.0	4.9	0.0	9.8	680.6	4.1	336.1
February	Avg	9.8	671.2	0.1	0.0	9.8	670.1	7.5	18.9	9.8	667.6	3.8	0.0	9.8	679.8	2.8	126.7
March	Avg	9.8	663.4	0.1	163.8	9.8	669.9	5.4	292.1	9.8	669.7	1.2	86.8	9.9	683.7	1.2	902.9
April	Avg	9.8	667.7	0.0	0.0	9.8	665.2	11.6	71.8	9.8	669.0	1.4	0.0	9.8	687.1	0.2	1758.1
May	Avg	9.8	669.8	0.1	5.9	9.8	670.4	20.4	196.3	9.8	667.6	2.1	0.0	9.8	679.9	3.2	638.4
June	Avg	9.8	671.3	0.1	1.2	9.8	670.3	11.7	41.4	9.8	667.5	3.1	2.0	9.8	680.2	2.9	357.7
July	Avg	9.8	671.2	0.2	8.5	9.8	670.0	15.4	39.6	9.8	664.7	5.6	0.1	9.8	674.4	4.1	1224.2
August	Avg	9.8	670.8	0.1	4.3	9.8	669.7	29.8	765.6	9.8	660.0	9.6	2.6	9.8	679.5	5.4	2047.5
September	Avg	9.8	670.1	0.1	3.3	9.8	670.0	42.5	3328.8	9.8	666.3	9.3	4.1	9.8	682.4	5.3	1918.7
October	Avg	9.8	670.3	0.0	8.4	9.8	662.4	27.0	1881.3	9.8	666.1	14.6	0.0	9.8	679.5	6.0	1534.9
November	Avg	9.8	668.7	0.1	29.6	9.8	667.0	25.0	2682.5	9.8	666.1	7.9	14.6	9.8	680.5	4.4	1091.8
December	Avg	9.8	676.7	0.0	50.2	9.8	670.0	14.6	2923.6	9.8	668.7	4.3	2.2	9.8	678.7	2.7	444.2

Table 11: Air Pollution Control System Report - Part II

Month	1	Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
		H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
January	Avg	0.0	64.7	20.0
February	Avg	0.0	17.3	8.3
March	Avg	3.5	235.3	18.5
April	Avg	26.2	34.9	32.6
May	Avg	0.1	36.0	102.3
June	Avg	1.2	3.8	6.5
July	Avg	0.0	1.4	17.5
August	Avg	0.0	4.6	30.4
September	Avg	4.1	56.7	28.6
October	Avg	8.8	148.0	15.5
November	Avg	3.2	589.8	11.3
December	Avg	2.3	580.3	N/A

The annual manual stack survey was submitted to AEPA on September 29, 2022.

Assessment of Monitoring Results

For each scrubber, the daily average ORP and pH was maintained above 300 mV and 8, respectively, throughout the year. Refer to Table 12, Summary of Scrubber Operational Issues for more information.

Chemicals Consumed by Scrubbers

As per Section 6 of the Operations Plan, sodium hypochlorite (bleach) and caustic soda are used in the scrubbers for oxidization of H_2S and pH control, respectively. Daily and monthly consumption of these chemicals is summarized in Appendix E.

Summary of Air Pollution Control System Operational Issues

Table 12 is a summary of operational issues encountered by each air pollution control system, and the remedial actions taken to resolve the issues.

Table 12: Summary of Scrubber Operational Issues

Scrubber Name	Date/Time of Shutdown	Date/Time Returned to Service	Total Time Shutdown (hr)	Fence Line H2S Readings Taken?	Operational Issue	Actions Taken
East	2/16/2022 7:00	2/16/2022 14:27	7.5	No - temperature too low	Shutdown for media replacement.	Not complete, back in service.
West	2/26/2022 21:34	2/27/2022 1:30	3.9	Yes	Blower tripped out and unable to reset due to motor overload fault.	E&I was called in and emergency WR 42037 entered; currently no read back to DeltaV from blower so operator will need to watch blower to ensure status.
EPT	3/8/2022 6:55	3/8/2022 14:00	7.1	Yes	Blower offline due to maintenance/repairs.	Blower back online after maintenance work completion.
East	3/29/2022 6:00	3/29/2022 21:05	15.1	Yes	Shutdown for acid cleaning.	Scrubber back online after acid cleaning.
Fermenter	4/17/2022 4:30	4/17/2022 7:52	3.4	Yes	Both bleach pumps (PDP 65314 and 65313) developed tube failure and the scrubber was shutdown.	Entered a WR and Mech will be notified to come in for corrective maintenance.
East	5/10/2022 6:30	5/11/2022 15:35	33.1	Yes	Shut down East Scrubber for media replacement.	Back online at 3:35 pm. Blower GEF 47150, Recirc Pump PCP 28529 and Bleach Transfer Pump PDP 15166 can only be ran in hand locally. Alarms and interlocks are still active but can only start and stop locally. DeltaV configuration will be finished tomorrow.
West	6/28/2022 7:12	6/28/2022 13:31	6.3	Yes	Planned power outage and recirculation pump failure.	Recirculation pump replacement was planned for June 29, but did not restart after planned power outage.
West	6/28/2022 14:03	6/28/2022 14:12	0.1	No - shutdown <2 hours	Continued work on recirculation pump.	Continued work on recirculation pump.
EPT, West	6/29/2022 20:00	6/29/2022 20:18	0.3	No - shutdown <2 hours	Appears to have been low makeup water flow, but could not confirm via Logbook.	Makeup water flow restarted.
West	7/30/2022 11:35	7/30/2022 11:53	0.3	No - shutdown <2 hours	Plugging on recirc pump discharge to stilling well causing loss of ORP readings.	WR entered, line unplugged. Request to add routine check/unplugging to probe calibration PM.
West, EPT	8/2/2022 10:08	8/2/2022 11:07	1.0	No - shutdown <2 hours	Planned maintenance. Drilling vibration ports.	N/A

West	8/16/2022 2:40	8/16/2022 5:15	2.6	Yes	Bleach pump tube failure on both bleach pumps.	Shut off scrubber until repaired. Called in Maintenance.
West, EPT	8/17/2022 6:55	8/17/2022 7:17	0.4	No - shutdown <2 hours	Planned preventative maintenance. Caustic pump PM.	N/A
EPT	9/12/2022 6:09	9/13/2022 13:06	30.9	Yes	Low recirculation flow.	Planned shutdown for nozzle replacement and other maintenance.
Grit 6/7	9/20/2022 23:47	9/21/2022 0:10	0.4	No - shutdown <2 hours	Tripped on air temperature	Running in hand.
EPT	9/21/2022 8:35	9/21/2022 13:06	4.5	Yes	Decreasing H2S removal efficiency.	Replaced spray bars, feed line, and recirculation pump.
West	N/A	12-Oct-22	0	No shutdown	Ongoing water softener issues.	New water softener installed on Oct 12, 2022.
Fermenter	10/18/2022 7:00	10/22/2022 11:21	100.4	Yes	Decreasing H2S removal efficiency. Additional issues with media support base failure.	Acid clean media. After base failure, removed media, repaired base and replaced with new media.
Fermenter	11/3/2022 10:33	11/3/2022 16:41	6.1	Yes	Low recirculation flow.	Clean pump/lines after media replacement
West	11/8/2022 6:58	11/8/2022 15:35	8.6	No - temperature too low	Preparation for acid clean and other maintenance repairs.	Repair isolation valve to ORP well, replace ORP drain, replace recirculation pump, replace drain on fan housing.
East	11/20/2022 6:13	11/20/2022 8:00	1.8	No - shutdown <2 hours	Foaming in scrubber tower.	Drained and flushed scrubber.
East	12/7/2022 7:18	12/7/2022 8:52	1.6	No - shutdown <2 hours	Foaming in scrubber tower.	Drained and flushed scrubber.
East	12/20/2022 7:50	12/20/2022 8:29	0.7	No - shutdown <2 hours	Ice build up on fan.	Cleared ice build-up.
East	12/25/2022 1:28	12/25/2022 2:17	0.8	No - shutdown <2 hours	Foaming in scrubber tower.	Drained and flushed scrubber.
East	12/25/2022 6:43	12/25/2022 7:44	1.0	No - shutdown <2 hours	Foaming in scrubber tower.	Drained and flushed scrubber.
Fermenter	12/29/2022 12:56	12/29/2022 13:51	0.9	No - shutdown <2 hours	Recirculation pump motor tripping.	Recirculation pump motor calibration.

2022 Annual Ambient Air Report

The ambient air quality monitoring station was commissioned as of June 30, 2022. Prior to the commissioning of the ambient air monitoring station, ambient air monitoring was completed using a portable low range H_2S analyzer and no assessment of results was included as per Section 6.3.3 (a) (iii) (B) of the Approval to Operate for this data. Ambient air monitoring for July to December was completed using the ambient air quality monitoring station.

Summary of Ambient Air Monitoring

Table 13 shows a summary of the ambient air monitoring results prior to commissioning of the ambient air monitoring station (January to June). The grab samples were taken daily when the ambient air temperature was > 0°C using a portable, low-range H_2S analyzer along the fence line of the Gold Bar Wastewater Treatment Plant. Figure 3 depicts the monitoring locations. Appendix F contains the daily ambient air monitoring data.

Table 13: Summary of Ambient Air Monitoring Results – Low Range H_2S Analyzer

Month					H₂S (p	pb)			
WiOnth		1	2	3	4	5	6	7	8
	Avg	4.38	3.76	2.18	2.36	2.71	5.40	5.89	1.57
January	Min	0	0	0	0	0	0	0	0
	Max	21.54	13.41	6.31	7.72	8.86	21.05	25.63	5.11
	Avg	2.48	1.25	1.67	1.28	0.54	1.27	2.91	0.81
February	Min	0	0	0	0	0	0	0	0
	Max	9.99	4.74	9.18	7.86	4.63	7.47	26.95	4.33
	Avg	7.17	2.44	1.93	2.19	1.74	1.12	1.93	1.85
March	Min	0	0	0	0	0	0	0	0
	Max	28.54	12.08	10.69	11.51	7.93	8.32	13.78	9.59
	Avg	5.96	1.81	1.58	1.38	1.06	1.09	3.11	2.16
April	Min	0	0	0	0	0	0	0	0
	Max	40	10	10	10	10	10	20	20
	Avg	4.76	4.70	2.59	3.77	1.74	1.72	2.08	1.04
May	Min	0	0	0	0	0	0	0	0
	Max	22.05	30.76	11.45	14.02	9.44	11.12	8.73	15.27
	Avg	4.49	3.37	1.85	3.18	0.50	1.10	1.23	1.85
June	Min	0	0	0	0	0	0	0	0
	Max	36.74	24.37	10.69	11.56	7.44	6.53	5.08	12.44



Figure 3: Location of H₂S Monitoring

Table 14 shows the monthly summary of results from the ambient air monitoring station including H_2S , NO_2 , SO_2 , temperature, wind speed, and wind direction. The table shows the results of the 1-hour average data from July to December.

Table 14: Summary of Ambient Air Monitoring Results – Ambient Air Monitoring Station

Month	Parameter	Min	Avg	Max
	SO ₂ (ppbv)	0.0	1.4	36.9
	NO ₂ (ppbv)	0.0	4.3	17.7
linke	H ₂ S (ppbv)	0.0	0.7	10.9
July	Wind Speed (m/s)	0.0	1.3	4.3
	Wind Direction (°)	-	194.0	-
	Temperature (°C)	7.2	19.5	31.9
	SO ₂ (ppbv)	0.0	1.5	54.6
	NO ₂ (ppbv)	0.7	6.2	26.3
A	H ₂ S (ppbv)	0.0	2.0	29.1
August	Wind Speed (m/s)	0.0	1.4	5.7
	Wind Direction (°)	-	205.3	-
	Temperature (°C)	8.0	20.3	32.5
	SO ₂ (ppbv)	0.0	1.4	37.0
	NO ₂ (ppbv)	0.7	7.6	29.6
0 1 1	H ₂ S (ppbv)	0.0	2.5	61.5
September	Wind Speed (m/s)	0.0	1.3	5.3
	Wind Direction (°)	-	217.4	-
	Temperature (°C)	2.5	14.9	33.7
	SO ₂ (ppbv)	0.0	1.5	47.0
	NO ₂ (ppbv)	1.0	10.3	37.6
0.1.1	H ₂ S (ppbv)	0.0	1.8	59.8
October	Wind Speed (m/s)	0.0	1.4	5.8
	Wind Direction (°)	-	223.2	-
	Temperature (°C)	-3.7	8.8	25.0
	SO ₂ (ppbv)	0.0	2.8	34.5
	NO ₂ (ppbv)	1.2	15.9	49.0
	H ₂ S (ppbv)	0.2	1.9	21.1
November	Wind Speed (m/s)	0.0	1.6	4.6
	Wind Direction (°)	-	229.5	-
	Temperature (°C)	-20.7	-5.6	7.6
	SO ₂ (ppbv)	0.1	2.8	37.5
	NO ₂ (ppbv)	2.4	19.5	46.1
Dagarahar	H ₂ S (ppbv)	0.0	1.1	8.3
December	Wind Speed (m/s)	0.0	1.3	4.4
	Wind Direction (°)	-	216.6	-
	Temperature (°C)	-33.5	-15.1	-1.1

Assessment of Monitoring Results

Table 15 shows an assessment of the monthly results from the ambient air monitoring station for H_2S , NO_2 , and SO_2 as compared to the *Alberta Ambient Air Quality Objectives* (AAAQO). In 2022 (June 30 to December 31), there were a total of 158 1-hour H_2S exceedances and 28 24-hour H_2S exceedances of the AAAQO. There were no exceedances of the 1-hour or 24-hour AAAQO for NO_2 or SO_2 .

Table 15: Assessment of Results of Ambient Air Monitoring

Month	Parameter	1-hour	# of 1-hour	24-hour	# of 24-hour
WOTH	1 di dillictoi	AAAQO	Exceedances	AAAQO	Exceedances
	H ₂ S (ppbv)	10	3	3	0
July	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	41	3	5
August	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	61	3	11
September	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	36	3	8
October	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	17	3	4
November	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	0	3	0
December	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
	H ₂ S (ppbv)	10	158	3	28
Total	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0

There were also no exceedances of the 30-day objective for SO₂ (11 ppbv). The annual objectives of 24 ppbv for NO₂ and 8.0 ppbv for SO₂ will be assessed once a full year of data is collected.

Summary of Public Odour Complaints

Table 16 shows the number of odour complaints received within the Gold Bar WWTP Odour Response Boundaries and number of complaints where Gold Bar WWTP is the confirmed source of odour based on wind direction, scrubber operation, corroboration with odour model software, ambient H_2S monitoring results, and plant operations/maintenance.

Table 16: Summary of Gold Bar WWTP Odour Complaints

Month	Number of Odour Complaints	Number of Complaints where Gold Bar WWTP is the Confirmed Source of Odour
January	0	0
February	0	0
March	2	1
April	0	0
May	0	0
June	0	0
July	0	0
August	0	0
September	4	2
October	3	1
November	2	0
December	0	0
Total	11	4

Appendix G contains a detailed list of odour complaints including the steps taken to identify the odour sources and remedial actions taken to resolve the odour issues.

2022 Summary of Contraventions and Notifications to AEPA

Table 17 summarized the contraventions to Approval to Operate 639-03-07. There was one contravention in 2022.

Table 17: Summary of Contraventions

Date	Summary of Contravention	AEPA Reference Number
7/13/2022 11:00 am	A hose leaked during a liquid transfer between cells at Clover Bar lagoons. An estimated 0.5 cubic meters of supernatant liquid drained down the berm road into the City of Edmonton Cure site area. There was little to no liquid pooling and no drainage to any catch basins or water body. The incident was reported to AEP on July 13, 2022 at 11:00 hours.	401317

Table 18 summarizes the notifications to AEPA under Approval to Operate 639-03-07 as per the 2022 Operations Plan. There were seventeen notifications in 2022.

Table 18: Summary of Notifications to AEPA

Date	Summary of Notifications	AEPA Reference Number
2/15/2022 10:05 am AEP Operator: Taryn	AEP was notified via the 24-hour hotline of a planned outage of the East Odour Scrubber to take place starting at 7am on 2/16/2022 for equipment maintenance. The scrubber outage is planned to be less than 48 hours in duration.	387913
3/28/2022	AEP was notified via the 24-hour hotline of a planned outage of the East	
10:15 am AEP Operator: Raymond	Odour Scrubber to take place starting at 600hrs until approximately 2100 hrs on 3/29/2022 for equipment maintenance. The scrubber outage is planned to be less than 48 hours in duration. Additional odour monitoring is completing throughout the outage, as well as the use of a potable odour scrubber.	389036
3/28/2022	AEP 24-hour hotline was also notified of a planned UV outage from 6am	
10:15 am	to 9am on March 30, 2022 for planned maintenance on the electrical system. It was noted that EPCOR purposely plans the shutdowns to take place	389036
AEP Operator: Raymond	when wastewater flows are low, and impact to the river is minimized.	
3/29/2022 4:00 pm	AEP 24-hour hotline was notified that the previously planned UV outage for March 30, 2022 600 hrs to 900 hrs has been canceled. It will be rescheduled for a later date, and EPCOR will notify AEP in advance.	389036
AEP Operator: Raymond		
3/30/2022 12:49 pm	AEP 24 hour hotline was notified that the previously planned UV outage associated with this reference number has been rescheduled to March 31, 2022 600 hrs to 900 hrs.	389036
AEP Operator: Raymond		
5/9/2022 12:05 pm	AEP was notified via the 24-hour hotline of a planned outage of the East Odour Scrubber to take place starting at 630 am on 5/10/2022 for	390352
AEP Operator: Natasha	equipment maintenance. The scrubber outage is planned to be less than 48 hours in duration.	000002

30 minutes starting at 7am June 28 - 30, 2022 for planned power feed switching to support maintenance on the electrical system. The power will switch back to the primary feeder on June 29th at 7 am and will result in a second UV outage that is expected to last less than 30 minutes. It was noted that EPCOR purposely plans the shutdowns to take place when wastewater flows are low, and impact to the river is minimized. AEP was notified via the 24-hour hotline of a planned outage of the EPT Odour Scrubber to take place starting at 700 hrs for less than 6 hrs on 6/29/2022 for equipment maintenance. Additional odour monitoring is completing throughout the outage of the EPT Odour Scrubber to take place starting at 600 hrs for less than 48 hrs on 9/12/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. AEP Operator: Darren 9/19/2022 AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 600 hrs for 12 hours on 9/12/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. 404073 AEP Operator: Steven 9/20/2022 AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 600 hrs for 12 hours on 9/21/20/22 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. AEP Operator: Nancy AEP was notified via the 24-hour hotline to update ref#404556 that now the EPT Odour Scrubber (to the West Scrubber to algour the scrubber outage. AEP was notified via the 24-hour hotline to a planned outage of the Fermenter Odour Scrubber to take place starting at 600 hrs for less than 12 hours on 9/21/20/22 for equipment maintenance. The scrubber is planned to be back online by 40 pm on 10/18/20/22 for equipment maintenance. The scrubber is planned to be back online by 40 pm on 10/18/20/22 for equipment maintenance. The scrubber is planned to be be employed and additional fence lin			
AEP was notified via the 24-hour hotline of a planned outage of the EPT Odour Scrubber to take place starting at 700 hrs for less than 6 hrs on 6/29/2022 for equipment maintenance. Additional odour monitoring is completing throughout the outage 9/8/2022 AEP was notified via the 24-hour hotline of a planned outage of the EPT Odour Scrubber to take place starting at 700 hrs for less than 48 hrs on 9/12/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. AEP Operator: Darren 9/19/2022 AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 600 hrs for 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. AEP Operator: Steven 9/20/2022 AEP was notified via the 24-hour hotline to update refi#404556 that now the EPT Odour Scrubber for the West Scrubber as previously notified) has a planned outage to take place starting at 600 hrs for less than 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. 10/11/2022 AEP was notified via the 24-hour hotline to update refi#404556 that now the EPT Odour Scrubber to take place starting at 600 hrs for less than 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. AEP Operator: Park with a place during the outage of the Fermenter Odour Scrubber to take place starting at 600 am on 10/18/2022 for equipment maintenance. The scrubber is planned to be back online by 6pm on October 19, 2022. A temporary odour scrubber will be employed and additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline that the planned outage of the Fermenter Odour Scrubber that began at 6:00 am on 10/18/2022 for equipment maintenance. The scrubber is planned to be employed and additional fence line monitoring for Odour / H	2:05 pm	switching to support maintenance on the electrical system. The power will switch back to the primary feeder on June 29 th at 7 am and will result in a second UV outage that is expected to last less than 30 minutes. It was noted that EPCOR purposely plans the shutdowns to take place	400719
Odour Scrubber to take place starting at 600 hrs for less than 48 hrs on 9/12/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. 404073	2:05 pm	AEP was notified via the 24-hour hotline of a planned outage of the EPT Odour Scrubber to take place starting at 700 hrs for less than 6 hrs on 6/29/2022 for equipment maintenance. Additional odour monitoring is	400720
1pm Odour Scrubber to take place starting at 600 hrs for 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. 404556 9/20/2022	10am	Odour Scrubber to take place starting at 600 hrs for less than 48 hrs on 9/12/2022 for equipment maintenance. Additional odour monitoring is	404073
the EPT Odour Scrubber (not the West Scrubber as previously notified) has a planned outage to take place starting at 600 hrs for less than 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is completed throughout the scrubber outage. 10/17/2022 AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 6:00 am on 10/18/2022 for equipment maintenance. The scrubber is planned to be back online by 6pm on October 19, 2022. A temporary odour scrubber will be employed and additional fence line monitoring for Odour / H2S will take place during the outage. AEP Operator: Erin AEP was notified via the 24-hour hotline that the planned outage of the Fermenter Odour Scrubber that began at 6:00 am on 10/18/2022 for equipment maintenance has been extended. EPCOR estimates that the work will be complete and the scrubber back in operation by 9am on Monday October 24, 2022. A temporary odour scrubber will continue to be employed and additional fence line monitoring for Odour / H2S will take place during the outage. 10/22/2022 AEP was notified with the 24-hour reporting line that the fermenter scrubber was back in full service by 11:30 am on October 22, 2022, ahead of schedule. 11/03/2022 AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will	1pm	Odour Scrubber to take place starting at 600 hrs for 12 hours on 9/21/2022 for equipment maintenance. Additional odour monitoring is	404556
Fermenter Odour Scrubber to take place starting at 6:00 am on 10/18/2022 for equipment maintenance. The scrubber is planned to be back online by 6pm on October 19, 2022. A temporary odour scrubber will be employed and additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline that the planned outage of the Fermenter Odour Scrubber that began at 6:00 am on 10/18/2022 for equipment maintenance has been extended. EPCOR estimates that the work will be complete and the scrubber back in operation by 9am on Monday October 24, 2022. A temporary odour scrubber will continue to be employed and additional fence line monitoring for Odour / H2S will take place during the outage. 10/22/2022 AEP was notified with the 24-hour reporting line that the fermenter scrubber was back in full service by 11:30 am on October 22, 2022, ahead of schedule. AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline of a planned outage of the Vest Odour / H2S will take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/08/2022. Additional fence line monitoring for Odour / H2S will take place during the outage.	10:35am	the EPT Odour Scrubber (not the West Scrubber as previously notified) has a planned outage to take place starting at 600 hrs for less than 12 hours on 9/21/2022 for equipment maintenance. Additional odour	404556
Fermenter Odour Scrubber that began at 6:00 am on 10/18/2022 for equipment maintenance has been extended. EPCOR estimates that the work will be complete and the scrubber back in operation by 9am on Monday October 24, 2022. A temporary odour scrubber will continue to be employed and additional fence line monitoring for Odour / H2S will take place during the outage. 10/22/2022 AEP was notified with the 24-hour reporting line that the fermenter scrubber was back in full service by 11:30 am on October 22, 2022, ahead of schedule. 11/03/2022 AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/08/2022. Additional fence line monitoring for Odour / H2S will	10:28 am	Fermenter Odour Scrubber to take place starting at 6:00 am on 10/18/2022 for equipment maintenance. The scrubber is planned to be back online by 6pm on October 19, 2022. A temporary odour scrubber will be employed and additional fence line monitoring for Odour / H2S	405685
2:29 pm scrubber was back in full service by 11:30 am on October 22, 2022, ahead of schedule. AEP was notified via the 24-hour hotline of a planned outage of the Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/08/2022. Additional fence line monitoring for Odour / H2S will		Fermenter Odour Scrubber that began at 6:00 am on 10/18/2022 for equipment maintenance has been extended. EPCOR estimates that the work will be complete and the scrubber back in operation by 9am on Monday October 24, 2022. A temporary odour scrubber will continue to be employed and additional fence line monitoring for Odour / H2S will	405685
Termenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for Odour / H2S will take place during the outage. AEP was notified via the 24-hour hotline of a planned outage of the West Odour Scrubber to take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/08/2022. Additional fence line monitoring for Odour / H2S will		scrubber was back in full service by 11:30 am on October 22, 2022,	405685
Odour Scrubber to take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/08/2022. Additional fence line monitoring for Odour / H2S will	10:46 am	Fermenter Odour Scrubber to take place starting at 11:00 am on 11/03/2022 for equipment maintenance. The scrubber is planned to be back online by 4pm on 11/03/2022. Additional fence line monitoring for	406419
take place during the eddage.	3:36 pm	Odour Scrubber to take place starting at 8:00 am on 11/08/2022 for equipment maintenance. The scrubber is planned to be back online by	406546

12/13/2022	AEP was notified via the 24-hour hotline of a planned power outage of	
13:46 AEP Operator: Darren	the UV during a switch from the backup power feed to the main power feed at approximately 14:00 today. 7-day letter is not required as per Operations Plan.	407691
		I.

2022 Biosolids Program Summary

In 2022, the biosolids management program was able to remove 19,785 dry tonnes (DT) of biosolids from the Clover Bar Lagoons for beneficial reuse. Biosolids production from Gold Bar and ACRWC was 25,446 DT, which increased the storage inventory by 5,661 DT.

Table 19: Summary of Biosolids Program

Beneficial Application Use Method	Application Weight (dry tonnes)	Application Volume (m³)
Nutri-Gold (dewatered material)	2,675 (908 in stockpile)	11,481
Nutri-Gold (thickened material)	5,007	85,170
Agricultural Land Application (3rd party)	7,797	131,229
Non-Agricultural Land Application	4,305	17,500
Total	19,785	245,380

Appendices H, I, and J contain summaries of the Nutri-Gold, third party agricultural, and non-agricultural land application programs, respectively.

Appendix A - Monthly Plant Performance Reports

Gold Bar Wastewater Treatment Plant
Plant Performance Report
January 2022

																							Liquid 9	tream Qualit														•
				Volume	of Flow (ML	.)																	Liquid St	tream Qualit	У			-										
		E																																				
		ě			Efflu																																	
	1	ī			EIIO																																	
			_	Non UV Disi	nfected	UV	Disinfected		pH@25°C				SS (mg/L)				BOD ₂ /cBOD	(mg/L)			TP	(mg/L)			NI	13-N (mg/L)		.	TKN (m	g/L)		NO ₂ +NO ₂ (mg/L)		Chloride (mg/L)		E. coli (Co	unts/100 mL)
														_					널																			
							OUTFALL 10			1 7				1 7		8	1 20		Ę٤				Ę				7			1 7			7			7	130	L 10
				8 8					8 8	FAL		8 8		TA.		TA.	FAL	S	ಕ	8	8		¥		8 8		T.A.		8	FAL 20		8 8	FAL		8 8	FAL	Y FAL	FAL
	Peak			걸 걸		90			불	5		7 7	60	5	RAW	5	5	E FEC	FE	Į,	뒿	60	5		뒿		5		귛	# E		걸 걸	5		# #	5	P. P	5 5
	Flow			5 5		PEP.	FEC FE		5 5			5 5	FE							5	1 5	9			5 5	<u> </u>			5	5		5 5			5 5			
DATE	(MLD)	INFS	240.6	0 0	MPW 11.0	ū		RAW	0 0	FEC	RAW	0 0	ū	FEC	FE BODs	BOD	BOD ₅	BOD ₅ cBOD	s cBOD _s	RAW O	0	ū	FEC FI	E RAW	0 0	ū	FEC FE	RAW	0	O FEC	RAW	0 0	FEC	RAW	0 0	FEC :	X10^6 X10^6	X10^6 FEC
Sat-01 Sun-02	353.2 356.4	0.0		0.0	12.0		229.6 229.6			7.5	272			4.8	4.8 304			3	3	8.73			0.30	0.30 46.6			2.18 2.	18 59.6		3.70			8.85	74.4		82.8		2
Mon-03	364.3	0.0		0.0			239.2 243.4 243.4			7.4	308			4.5	4.5 296			3	3	9.09 8.69				0.25 44.0			3.13 3.	13 58.7		3.90			11.0	86.0		79.7 88.0		1
Tue-04	350.1	0.0		0.0	11.1		243.4 243.4 242.2 242.2			7.6	282 308			5.5 4.6	5.5 329 4.6 328			4	3	8.89				0.31 42.4			3.14 3. 3.15 3.	15 62.3		5.70			10.5 9.27	88.8 96.4		91.7		4
Wed-05	349.8	0.0		0.0	11.2		242.2 242.2 242.1			7.6	290			5.7	5.7 354			4	9	9.26				0.33 44.2			3.15 3.	15 62.3 39 67.3		5.10	e 0.01		8.90	96.4 89.0		91.7		
Thu-06	355.2	0.0		0.0	11.4		242.1 242.1			7.6	300			5.8	5.8 389	1		3	4	9.52			0.32	0.38 46.0			3.49 3.	19 66.9		5.10	× 0.01		7.61	89.0		91.0		1 4
Fri-07	344.9	0.0		0.0	11.1		241.5 241.5			7.5	272			4.5	4.5 328			3	3	8.85			0.35	0.25 43.0			3.11 3.	11 62.8		3.90			7.33	89.0		89.3		4
Sat-08	362.2	0.0	250.3	0.0	11.9		238.4 238.4			7.7	296			4.5	4.5 338			3	3	12.6			0.35	0.35 34.8			4.47 4	7 89.2		6.00			7.69	69.5		86.1		2
Sun-09	374.3	0.0	253.7	0.0	11.1		242.6 242.6			7.6	280			5.4	5.4 344			4	4	9.10				0.38 35.4			3.63 3/	33 64.7		7.00			8.28	67.3		77.9		3
Mon-10	358.0	0.0	265.0	0.0	11.7		253.3 253.3	7.4		7.5	280			6.2	6.2 336			4	4	7.80			0.41	0.41 41.4			5.63 5.	61.9		7.90			7.03	88.4		76.2		6
Tue-11	359.8	0.0	250.3	0.0	10.7	0.0	239.6 239.6	7.3		7.6	372			7.4	7.4 319			3	3	9.03			0.40	0.40 35.3			2.84 2	68.2		4.90			4.76	134		103		4
Wed-12	379.7	0.0	257.9	0.0	12.0	0.0	245.9 245.9	7.5		7.6	312			6.6	6.6 331			5	5	8.92			0.49	0.49 45.5			4.37 4.	87 62.3		6.70	0.01		5.23	170		143		3
Thu-13	414.7	0.0		0.0	11.7		253.7 253.7	7.4		7.7	300			7.6	7.6 305			4	4	7.18			0.46	0.46 39.1			5.13 5.	13 51.7		7.20			5.14	256		180	2.4	4
Fri-14	377.5	0.0		0.0	11.1		242.8 242.8			7.5	312			5.1	5.1 309			4	4	6.54				0.37 35.3			3.25 3.			5.00			4.44	148		265		6
Sat-15	456.7 420.1	0.0		0.0	10.7		241.3 241.3			7.5	280			4.6	4.6 306			3	3	6.65				0.31 39.3			2.32 2.	32 56.5		4.30			4.57	174		177		4
Sun-16 Mon-17	420.1 472.6	0.0		5.9 0.0	11.5		241.3 241.3			7.6	296			3.8	3.8 312			3	3	6.47				0.32 38.2			2.10 2.	10 51.1		3.60			5.34	119		179		4
Mon-17 Tue-18	349.0	0.0		0.0	11.5		264.9 264.9 243.3 243.3		7.6	7.8	384 277	192		4.1	4.1 293 4.9 274	146	'	3	3	7.11 6 7.61	1.48			0.27 35.4	40.4		2.59 2.	59 55.7 59 58.0	49.5	4.40		0.18	5.33 4.63	411 138	705	188	2.6	7
Wed-19	349.3	0.0		0.0	10.9		243.3 243.3 240.1 240.1							4.9	4.9 274			3	3	7.61			0.33	0.33 42.2			3.59 3. 5.25 5.	59 58.0		7.30	< 0.01		5.27	138		169		3
Thu-20	358.2	0.0		0.0	11.8		235.6 235.6			7.5	276 320			4.2	4.4 370			1 1	4	7.63				0.29 49.5			4.12 4.	12 63.8		7.30	< 0.01		4.24	111		124		10
Fri-21	353.7	0.0		0.0	11.8		241.8 241.8			7.5	288			4.3	4.3 344			4	7	7.66				0.27 39.6			3.15 3.			4.70			4.33	145		141	10	-
Sat-22	429.7	0.0		0.0	10.7		242.4 242.4		7.5	7.5	303	109		3.7	3.7 305	194		3	3		19			0.28 25.4	39.9		2.40 2	60.5	53.4	580	l I.	0.01	5.02	410	473	219	29	4
Sun-23	506.9	0.0	311.2	6.9 0.0	11.4		242.9 242.9		7.4	7.4	290	112		3.8	3.8 292	187		3	3		170			0.22 31.8	30.9		3.18 3.	18 48.8	39.8	4.80		0.01	5.45	320	415	334	27	4
Mon-24	475.0	0.0	305.6	2.6 0.0	11.5		281.5 281.5		7.5	7.4	224	76		2.9	2.9 293	165		2	2	5.78	3.86		0.20	0.20 31.8	26.3		2.00 2	00 49.4	34.3	3.40		0.01	5.14	271	312	353	2.0	3
Tue-25	353.4	0.0	255.7	0.0	12.3	0.0	243.4 243.4	7.4		7.6	302			4.7	4.7 336			3	3	7.30				0.21 34.9			2.68 2	58 58.5		5.10			4.56	242		235		3
Wed-26	357.1	0.0	261.4	0.0	11.6	0.0	249.8 249.8	7.3		7.6	276			5.0	5.0 290			3	3	6.16			0.30	0.30 38.0	1		3.32 3.	32 43.4		4.80	< 0.01		4.49	242		243	1	6
Thu-27	351.1	0.0		0.0	11.5		234.0 234.0	7.4		7.7	276			5.3	5.3 306	1		3	3	6.54			0.31	0.31 38.3			3.84 3.	54.6		6.90			4.20	143		262		7
Fri-28	408.4	0.0		0.0	11.7		237.5 237.5			7.6	280			3.4	3.4 293			3	3	7.13			0.28	0.28 38.7			4.49 4.	9 60.6		6.30			4.38	121		167		6
Sat-29	425.7	0.0		0.0	11.9		234.7 234.7			7.6	296			2.9	2.9 318	1		2	2	6.81			0.24	0.24 32.2			2.28 2.	28 56.5		4.90			5.03	134		137		7
Sun-30	370.4	0.0		0.0	11.8		238.5			7.6	343			3.3	3.3 304			2	2	7.31			0.22	0.22 33.8			2.21 2.	39.0		4.80			5.72	104		132		3
Mon-31	357.1	0.0		0.0	11.6		240.9 240.9			7.6	300			3.8	3.8 352			3	3	8.16			0.22	0.22 43.3			3.42 3.	63.2		5.10			5.41	113		121		1
Average Minimum	383.7	0.0	258.4	3.4 0.0	11.4		243.6 243.6 229.6 229.6		7.5	7.6	296.6 224.0			4.8	4.8 319 2.9 274)			3	.3 3.3		5.31	-		0.31 39.1			3.35 3. 2.00 2/		44.3 34.3	5.32		0.05	6.10 4.20	156 67.3	476 312	- 163 76.2	2.1 2.6	4
Maximum	506.9	0.0		6.9 0.0	10.7		281.5 281.5		7.4	78	384.0			76	7.6 389	146		2	5		186			0.20 25.4			5.63 5			7.90		0.18	4.20	411	705	353	24 25	1 10
GeoMean																																					2.1 2.1	4
TOTAL		0	8,012	106 0	355	0	7,551 7,551				***					-			-																	-		

* Contact Laboratory for information about the quality assurance associated with the results

	Enl	nanced Primary T	reatment (EPT) Usage		
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
24	24	100%	24	24	100%

Report Co	mmonts		
Report Co	mments		
AEP Ref #			

Alfredo Suarez M.Sc.; P.Eng.

Senior Manager, Operations

RAW Untreaded Influent into the plant
NF Untreaded undowset from colection system
NF Influence received in the Neutronic Shortcome (Influence)
Per Primary Efficient from conventional primaries
Per Shared Primary Treatment
EFF Enhanced Primary Treatment
EFF Enhanced Primary Treatment
FFF Per Shared Primary Treatment
FFF Per Shared Primary Shared
FFF Per Shared Primary Shared Primary Shared
FFF Per Shared Primary Shared Prim

FEC Combined positivity districtions (FE-EPEPS)
OUTHAL 10 Understead, discharged via OUTHAL 10
OUTHAL 10 Combined Bybass (RAV + FE FE)
OUTHAL 10 Combined Bybass (RAV + FE FE)
MPW More Produck Warter Bruss - Positivity Combined Bybass (RAV + RAV + FE)
Mey Hospitel (UMDOOD Line)
MPM Most Produck Warter Bruss - RAV + RA

Jaff Channes Jeff Charrois PhD

Senior Manager, Analytical Operations & Process Development Teams

Digested Sludge: Total Monthly Volume (ML) 71.4

Appendix A - Monthly Plant Performance Reports

Second Column Second Colum																																									Digested Olds	ige. rousi mo	onthly volume	(mL)	,	.9
The color of the					Volum	e of Flow (I	ML)																					Liquid Str	eam Qual	ity																
Second Column Second Colum			Influent			Er	ffluent																																							
Column C					Non UV Dis	sinfected	U	V Disinfected			pH@25°C				TSS (mg	/L)				BOD _e /cBOD	(mg/L)					TP (mg/L)					NH3-N (mg/L)				TKN (mg/	L)		NO ₂ +NO ₃	(mg/L)		Chloric	e (mg/L)		E. c	oli (Counts/1	00 mL)
No.																						3																								
March Marc					11 30			OUTFALL:	10		11.30	OUTFALL 10		1130	11.20		OUTFALL 10		NUTF ALL 30	NUTFALL 20	PEPS	OUTFA			717	11 20		OUTFALL 10		11.30	717		NUTF ALL 10		017	NUFALL 10		11.30	LL 20 UTF ALL 10		1130	11.20	OUTFALL 10	TAW .	OUTF ALL 30	OUTFALL 10
Martin M			MEa		47 2		PEPS	EEC	cc		4 5			47.5	4 F	88	. Ť _	RAW				FEC	FE		4.5	MEPS NEPS		Ĭ _		47.5	M PEPS		_ Ĭ		15	5	1	4	5	1	47.5	QT FA				
Mart	DAIL III	MED)		247.0	0 0	0 113	0.0		75 7 RA	7 2	0 0	FEC 7.6	RAW	0	0	w FE	27 3	BOD ₅	BODs	BODs	BODs	cBOD _s	cBOD _s	RAW 0.24	0	0 ш	FEC 0.29	FE 0.28	RAW 42.7	0	0 ш	FE)	C FE	RAW 61.2	0	O FEC	RAW	0	O FEC	RAW	0	0	FEC	X10*6	X10*6 X1	046 FEC
No. 1. N										7.3												3	3										3.00	01.2												1
Second S	Thu-03 34	47.4 0	0.0	246.8	0.0	0 11.4	0.0			7.5		7.5	316									2	2	7.99			0.30	0.30	42.3				7.73 7.73	62.9		9.4			7.3	92.0			95			2
Section Sect	Fri-04 3	133.5	0.0	247.3	0.0	0 11.6	0.0	235.7 2	235.7	7.4		7.5	348				3.9 3.5	335				2	2	7.46			0.28	0.28	37.2				4.42 4.42	59.6		7.0			8.5	95.6			100			1
More								233.7 2	233.7	7.3		7.5	320				3.3 3.5	330				2	2	7.14			0.24	4 0.24	39.7				3.04 3.04	60.9		5.0							106			1
The color The			0.0	268.0						7.4	7.5	7.6	396	88			3.2 3.1	330	137			3	3	6.84	3.61		0.25	5 0.25	36.1	35.0			3.34 3.34	53.2	45.1	5.0		0.11	8.1	17 331	521		160		1.9	1
New Park Park Park Park Park Park Park Park																						3	3					- I		29.7					41.1											2
The Part Table T																						3	3							31.3			1.00		35.0									1.7		2
Fig. Section Fig.																						2	2																						4	1
Section Sect														120								< 2	2																							2
Second S										7.4	7.5			86					121			2	2		4.35					29.0					33.7			0.01			233				0.9	3
Model Mode										7.4	7.4			70					400			3	3		0.00					20.5					40.0			0.40			400					11
Second Heat Control										1.4												3	3																		100					3
Marke Mark										7.3	8.0			50					114				2		2.21					20.9					35.9			0.26							0.7	2
For Sale 1948 0 0 2564 0 0 256		151.9	0.0	250.8	0.0	0 11.2	0.0	239.6 2	239.6	7.4		7.5	296				2.9 2.5	297				< 2	2	7.58			0.23	3 0.23	37.5				2.57 2.57	53.5					10	.3 98			118	2.5		2
30-99 4487 00 2586 68 00 18 00 278 448 48 48 48 48 48 48 48 48 48 48 48 4	Thu-17 42	29.0	0.0	268.2	8.8	0 11.8	0.0	247.6 2	247.6	7.3	7.2	7.4	312	102			4.3 4.3	307	164			2	2	8.10	4.73		0.25	0.25	39.9	38.1			4.38 4.38	64.8	52.0	5.1		0.04	10	4 417	698		129		1.6	4
Book Second Process							0.0	244.6 2	244.6	7.4		7.4	300				2.9 2.5	265				< 2	2	8.64			0.22	0.22	41.8				3.02 3.02	68.1		4.3			10	.6 153			313			3
Model Mode										7.4	8.0			74					143			4	4		6.04		0.26			43.8			4.88 4.88	65.3	57.6			0.21			355		184		3.7	2
The 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										7.4												2	2																							5
90-82 346 0 2 354 0 0 500 10 10 10 10 10 10 10 10 10 10 10 10 1										7.3												2	2				0.19						5.33 5.33										122			2
May 2										7.4												2	2				0.20						4.66 4.66										99			1
FoS 383.1 0 2870 00 10 115 00 268.5 346.5 74 75 114 23.5 3.5 229 2 2 8.8 0 0.2 0.2 0.2 0.0 1.30 3.8 54.2 4.5 111 11.5 152 113 114 1152 1152 1153 1153										7.3												3	3									- 1	2.29 2.29										100			3
Sub 32 4114 00 2596 0 0 0 0 115 0 0 2481 2481 74 75 558 32 32 32 32 32 32 32 33 344 559 569 57 59 58 58 58 58 58 58 58 58 58 58 58 58 58										7.4												2	2				-					1 3	2.83 2.83										98			7
Society Soci										7.4												2	2				0.22	0.22																		2
Mode										7.4												2	2				0.24	0.24					3.30	64.2									100			2
Minimum 233.5 00 24.2 00 00 9.8 00 221.7 221.7 7.3 7.2 7.3 164 46 2.6 1.85 105 < 2 2 4.93 2.27 0.18 0.18 2.27 2.3 1.86 1.86 3.48 2.99 3.3 < 0.01 0.01 5.80 87 180 96 1.7 0.7 Maximum 783.3 00 5157 212.9 00 12.5 00 203.3 203 7.5 8.0 7.8 5.08 128 5.1 5.1 394 104 4 4 5.99 5.04 0.30 0.30 45.5 4.38 7.79 7.78 69.1 578 9.7 0.04 0.08 115 41.7 698 3.34 2.5 3.7 0.000000000000000000000000000000										7.4		7.4	320				3.2 3.2	217				2	2	7.90			0.23	0.23	37.7				3.30 3.30	64.6		4.5							137			2
National 783 05 557 2125 0.0 125 0.0 203 203 203 75 8.0 - 7.8 51 125 0.0 125 0.0 203 203 75 8.0 - 7.8 51 125 0.0 125 0.0 203 203 75 8.0 - 7.8 51 125 0.0 125 0					3.1 0.0			245.4 2	245.4	7.4	7.5	7.5	320	83			3.5 3.5	305	132		<u> </u>	2.4	2.4	7.62	3.90		0.23	3 0.23	39.2	32.3			3.89 3.89	58.6	41.8	5.5	0.02	0.13	9.3	4 173	381		163			
Solder 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.0	245.2	0.0 0.0	0 9.8	0.0				7.2	7.3	164	46		- :	2.6 2.1	185	105			< 2	2						22.7												180		95	1.7	0.7	1
		36.3 0	0.0	515.7 2	12.9 0.0	0 12.5	0.0	290.3 2	290.3	7.5	8.0	7.6	536	128		- :	5.1 5.1	394	164			4	4	9.89	6.04		- 0.30	0.30	45.5	43.8			7.78 7.78	69.1	57.6	9.7	0.04	0.26	11	.5 417	698		334			11
	TOTAL		0	7 559		221		6 970 6	970									-		-		-															-			-			-	2.1	1.4	2

* Contact Laboratory for information about the quality assurance associated with the results

D 0-				
Report Co	omments			
AEP Ref #	,			

| Enhanced Primary Treatment (EPT) Usage | Total Bypass (hr) | EPT Usage (hr) | % Usage | Total Bypass YTD (hr) | EPT Usage YTD | % Usage YTD | 100%

Alfredo Suarez M.Sc.; P.Eng.

Senior Manager, Operations

PAW Unreased Influent into the plant
NF Unreased washeward from collection system
NF Unreased unreased an the Nadewick Diversion Structure
Per Partial Control of the Nadewick Diversion Structure
Per Partial Control of the Nadewick Diversion Structure
Per Partial Control of the Nadewick Schwards via Control 30
PET Entrol Of Primary Telephorary
Peter Peter Partial Control of Primary Edition
Peter Peter Peter Primary Edition
Peter Peter

Contented post J.V. distriction (TE-EFPER)
I.V. distriction, discharged via QUTFALL 1
V.V. distriction, discharged via QUTFALL 1
Contributed Spass (RW + PFE + EFE)
Contributed Spass (RW + PFE + FFE)
Ameritance Postal. Water (Efficient revise water)
Mogistre (1,000,000 Line)
Mogistre (1,000,000 Line)
Mogistre (1,000,000 Line)
Mos Prostale Manteur
No Result
No Result
No Result
No Result
Abanta Environment & Parks

ations & Process Development Teams

Gold Bar Wastewater Treatment Plant
Plant Performance Report
March 2022

PH	MIDING MO	RE EPCO	н														March 20	122													_					
																																Dige	sted Sludge: Total N	Monthly Volume ((ML)	67.8
			17.7																																_	
				Volume of																	Liquid S	tream Q	uality													
		Sesec			Efflu				nH@25°C						non te	BOD, (mg/L),+NO, (mg/L)				/ 7		
			-	Non UV Disinfe	ected	UV L	Disinfected			F 10		TSS (-			p > + # 4 - 1 - 4			TP (mg/L)	F 10	1	NH3-I	N (mg/L)	F 10	1 1	TKN (m						Chloride (mg/L)	1 - 10		// (Counts/100 mL)
	Peak Flow		18.0	E S		å.	OUTFALL 10	FA S	8 E 8	PAL L10	8 4	£ 8	EPS OUT FAL L10	RAW 0	FAL OUT FAL L20	EPE	FEC FE	1 1	8 1	8 8	FAL		# 8 # 8	e e	PAL 110		OUTFA LL 30	MFA OUT FAL L10	A H		PAL L10		DUTFA IL 30 IL 20	FAL L10	A DO	004 C C C C C C C C C C C C C C C C C C
DATE	(MLD)	INFS R	iaw 8:	티 링크	MPW	EP	FEC FE	RAW 0 =	남 중남	FEC	RAW 3∃	급	FEC FE	BOD ₅ E	BODs BODs	BOD ₅	cBOD ₅ cBOD ₅	RAW C	S = S	岀	FEC FE	RAW	F2 F2	EP	FEC FE	RAW	급	PEC	RAW 0:	물 등급	FEC	RAW	EQ EQ	FEC X	X10^6 X1	10^6 X10^6 FEC
Tue-01	701.2		40.6 0.0		12.5		228.1 228.1	7.4		7.6	316		4.0 4.0	342			3 3	8.32			0.25 0.25	42.1	1		2.43 2.43	57.2		4.0			11.2	99.3		114		6
Wed-02	331.3	0.0 24	49.7 0.0	0.0	11.1	0.0	238.6 238.6	7.4		7.4	233		4.0 4.0	292			2 2	7.21			0.25 0.25	36.9	9		2.34 2.3	51.8		4.4	< 0.01		12.3	119		110		3
Thu-03	319.7	0.0 24	45.6 0.0	0.0	11.4	0.0	234.2 234.2	7.4		7.5	312		4.5 4.5	331			3 3	7.46			0.28 0.28	36.6	5		1.70 1.70	58.4		3.6			12.4	124		131		7
Fri-04	316.7	0.0 25	50.4 0.0	0.0	11.6	0.0	238.8 238.8	7.2		7.5	296		3.9 3.9	345			3 3	7.07			0.25 0.25	34.3	3		2.20 2.2	59.1		3.8			11.8	153		150		2
Sat-05	337.4	0.0 25	50.1 0.0	0.0	10.8		239.3 239.3	7.2		7.4	376		5.2 5.2	354		1	3 3	7.02			0.28 0.28	36.7	7		3.58 3.5	58.7		5.4			11.3	127	1	159		4
Sun-06	364.2	0.0 25	57.0 0.0	0.0	10.8	0.0	246.2 246.2	7.3	1	7.4	306		7.1 7.1	305			4 4	9.42			0.42 0.42	34.9	9	1	3.90 3.9	83.7		5.6			11.0	197	1	150		2
Mon-07	359.9	0.0 26	62.7 0.0	0.0	11.1		251.6 251.6	7.4		7.5	308		10.9 10.5	333		1	5 5	6.56			0.48 0.48	36.0	1		4.18 4.1	52.7		5.9			10.8	175	1	229		4
Tue-08	333.2	0.0 24	49.6 0.0	0.0	11.4	0.0	238.2 238.2	7.3		7.4	352		9.1 9.1	319			4 4	7.11			0.41 0.41	35.6	5		3.36 3.36	61.0		4.9			11.6	114		205		6
Wed-09	326.1	0.0 25	51.0 0.0	0.0	11.4		239.6 239.6	7.4		7.5	288		8.0 8.0	329			4 4	7.16			0.40 0.40	35.5			3.49 3.4	59.5		5.8	< 0.01		11.2	102	1	147		5
Thu-10	328.2	0.0 25	50.9 0.0	0.0	12.3		238.6 238.6	7.4		7.4	392		6.3 6.3	316			4 4	7.22			0.36 0.36	37.0			4.18 4.1	57.5		6.6			11.4	104		117		5
Fri-11	348.3	0.0 25	54.1 0.0	0.0	13.3		240.8 240.8	7.4		7.5	536		6.1 6.1	561			3 3	9.20			0.42 0.42	35.6			4.39 4.3	69.5		6.3				96		111		-
Sat-12	613.5	0.0 30	09.0 65.	0.0	13.2		230.0 230.0	7.4 7	7.5	7.4	316 100	,	5.1 5.1	246	101		4 4	5.83	4.08		0.36 0.36	32.2			3.04 3.0		40.4	5.3		0.01	12.7	290	443	118		0.1
Sun-13	364.0	0.0 25	53.5 0.0	0.0	11.1		242.4 242.4	7.4		7.3	300		6.5 6.5	282	101		1 1 1	6.78	4.00		0.30 0.30	36.8			1.79 1.79	52.7	40.4	3.4			11.1	127	***	240		4
Mon-14	440.6	0.0 26	61.6 0.0	0.0	11.2		250.4 250.4	7.4		7.4	357		6.2 6.2	324			3 3	7.10			0.34 0.34	38.0			3.93 3.90			5.1			11.4	142		152		-
Tue-15	661.9		31.1 74.		11.2		245.7 245.7	7.4	7.3	7.4	452 66		6.5 6.5	281	90		3 3	6.06	3.72		0.36 0.36				2.74 2.74		37.8	4.6		0.36	12.7	255	390	175	22	1.8 4
Wed-16	838.2	0.0 40	08.7 137	1 0.0	10.8		260.8 260.8		7.4	7.3	490 89		57 57	327	90		3 3	5.73	3.46		0.33 0.33	22.9			107 100	41.2	28.5	2.8		0.44	9.39	190	237	230		15 1
Thu-17	767.3		13.3 128	8 0.0	10.9		273.6 273.6		7.3	7.2	366 64		3.3 3.3	225	94		3 3	5.28	3.37		0.22 0.22	26.8			1.05 1.0	37.3	28.8	2.1		0.16	8.73	150	177	190		1.1 2
Fri-18	786.2		24.5 134		10.8		279.7 279.7		7.4	7.2	380 94		3.7 3.7	216	104		3 3	5.15	4.07		0.24 0.24	25.5			160 16	37.6	21.7	2.8		0.26	8.87	145	180	158		1.1 2
Sat-19	640.7	0.0 37	77.3 90.		12.1		275.2 275.2		7.3	7.2	292 94		4.0 4.0	223	102		2 2	5.54	4.78		0.19 0.19	25.5			1.79 1.79	42.2	39.6	3.4		0.02	8.59	136	154	149		1.2 4
Sun-20	485.7	0.0 32	23.1 45.		11.5	"	266.0 266.0		7.3	7.1	444 80		3.9 3.9	260	137		2 2	6.60	5.68		0.19 0.19	23.3			2.16 2.19	50.6	45.9	3.8		0.02	9.51	267	211	142		1.5 4
Mon-21	651.5	0.0 35	50.5 76.	0.0	11.9		262.2 262.2		7.3	7.4	104 77		3.0 3.0	157	104		2 2	4.40	5.11		0.16 0.16	28.2			3.31 3.3	36.7	40.9	4.3		0.03	9.98	129	163	211		1.6
Tue-22	789.0		21.2 141		12.2		267.8 267.8		7.3	7.3	292 54		2.4 2.4	183			< 2 2	5.39	3.14		0.16 0.10	24.0	1		232 23	38.0	32.2	3.3		0.07	9.34	114	124	143		1.4
Wed-23			53.2 152		12.4		288.1 288.1		7.3	7.3	252 66		2.4 2.4	156	40		< 2 2	4.85	3.14		0.14 0.14	24.0			1.33 1.33	38.0	32.2	3.3 2.6		0.13	9.34 8.03	124	124	123		1.4
Thu-24	530.2		82.0 76.		12.1		288.1 288.1		7.4	7.2	312 83		3.9 3.9	235	46		2 2	4.85 5.51	4.10		0.15 0.15	26.2			1.33 1.3	38.3	36.2	2.6		0.75	7.53	124	136	123		0.8 4
Fri-25	429.2		03.9 17.		11.5		274.9 274.9		7.4	7.2	312 83		2.8 2.8	235	118		2 2	7.06	5.90		0.19 0.19	32.7			3.10 3.1	38.3	41.0	4.2		1.10	9.22	118	136	131		1.7
Sat-26	442.7		88.1 19.		11.5		257.5 257.5		7.4	7.2	320 /1		2.8 2.8	293	118		2 2	6.06	5.44		0.17 0.17	32.			3.10 3.11	52.2	41.0	5.4		1.10	9.62	194	410	135		1.7
Sun-27	540.2		01.2 41.		11.9		247.9 247.9		7.3	7.3	308 77		2.4 2.4	293	104		< 2 2	6.02	4.97		0.16 0.16	33.0			3.98 3.98		43.3	5.4		1.12	9.62	194	177	220		1.6 2
Mon-28			06.6 33.		11.9		-			1 1							* 2 Z									44.3				1.12 2.68						
Tue-29	522.8		14.7 42.		11.6		261.5 261.5		7.4	7.3	528 99 343 55		2.6 2.6	278	111		3 3	6.29	5.04		0.17 0.17	32.5			2.28 2.20		43.5	3.4		1.26	10.8	166	209	145 157		1.4 2
Wed-30			28.0 41.		11.4		260.9 260.9		7.6	7.3			3.3 3.3	259	91	1	< 2 2	6.17	4.13		0.20 0.20	31.1	1			43.8	38.7	3.6			10.9	134	134			1.3 3
Thu-31	445.8	0.0 32	21.5	0.0	11.7	0.0	274.7 274.7	7.5 7	7.4	7.2	120 76		2.4 2.4	183	100		< 2 2	4.33	4.17		0.15 0.15	29.9	31.8		1.76 1.79	36.3	38.3	3.1	0.01	1.25	10.6	118	130	122		1.1 1
Average	509.3	0.0 32	10.8 43.	0.0	11.6	0.0	256.1 256.1	7.3 7	7.4	7.3	325 80		4.6 4.6	280	99		2.8 2.8	6.39	4.42		0.17 0.17	30.	7 33.6 B 29.5		2.65 2.6	36.6	37.8	4.2	0.01	0.64	10.5	148	210	118	1.7	1.3 3
Minimun		0.0 24	40.6 0.0	0.0	10.8		228.1 228.1	7.2 7	7.3	7.1	76 54		2.0 2.0	156	46		< 2 2	4.31	3.14		0.14 0.14	22.7	7 20.5		1.05 1.00	36.3	28.5	- 2.1	< 0.01	0.01	7.53	96.0	124	110	1.1	0.11 1
Maximum	838.2	0.0 45	53.2 152	7 0.0	13.3	0.0	293.6 293.6	7.5 7	7.6	7.6	536 100		10.9 10.5	561	139		5 5	9.42	5.90		0.48 0.48	42.	1 35.8		4.39 4.3	83.7	45.9	6.6	0.02	2.68	12.7	290	443	240	2.3	1.8 7
GeoMean														-																		***		-	1.6	1.2 3

189	189	100%	288	288	100%	
Report Commer	ts					

Enhanced Primary Treatment (EPT) Usage
Total Bypass (hr) EPT Usage (hr) % Usage Total Bypass YTD (hr) EPT Usage YTD (hr) % Usage YTD

RAW Utreated influent into the plant
NF Utreated watcoward from collection system
NF Influence and the Membership Watching Structure
PE Primary Ethnace from connectional primaries declarged via Outfal 30
PFF Chroscoff Primary Testimore
EFF Enhanced Primary Testimore
FEFF Enhanced Primary Testimore
FIFE Enhanced Primary Testimore
FIFE Enhanced Primary Ethnace
FIFE

Manager, Gold Bar Laboratory Operations Senior Manager, Operations

Combined post LIV distriction (FE-EPER)
LIV-districted, dischanged kind UTFALL 10
Combined Spipuss (RIV = FE-EPE)
Combined Spipuss (RIV = FE-EPE)
Combined Spipuss (RIV = FE-EPE)
Megillari (1,000,000 Line)
Megillari (1,000,000 Line)
Mos (Feach)
No Read
No

Gold Bar Wastewater Treatment Plant Plant Performance Report April 2022

Efficient	Chloride (mg/L) E. coll (Counts/100 mL)
Non UV Disinfected	Chloride (mg/L) E. coli (Counts/100 mL)
1	TEAL 30 OUTFALL 10 OUTFALL 10 OUTFALL 10
DATE MALD) NPS RAW & & & MPW & FEC FE RAW & & FEC RAW & & & FEC RA	W 8 8 FEC X1016 X1016 X1016 FEC
First Firs	00 00 116
Moliment	
Geolea	1.3 1.2 - 3

41		41	100%	329	329	100%	
Report Comr							
Report Comi	nents						
-							

Enhanced Primary Treatment (EPT) Usage

Total Bypass (hr) EPT Usage (hr) % Usage Total Bypass YTD (hr) EPT Usage YTD (hr) % Usage YTD

AEP Ref #	

Combined post-UV distinction (FE-IEPRS)
UV distincted, discharged via QUTFALL 10
Combined Bysass (IRW = FES = FED = FED

Alfredo Suarez M.Sc.; P.Eng.

Senior Manager, Operations

Jaff Charries

Digested Sludge: Total Monthly Volume (ML)

Digested Sludge: Total Monthly Volume (ML)

May 2022

Liquid Stream Quality Volume of Flow (ML) 486.7 439.6 332.6 677.2 682.5 492.9 342.7 360.9 343.4 320.9 301.8 307.9 363.9 363.9 363.2 344.6 349.7 256.2 269.4 257.2 256.8 265.0 251.1 256.4 253.0 249.3 255.6 250.5 242.5 242.5 242.5 242.5 242.5 257.2 274.5 257.2 274.5 257.3 253.4 261.3 263.7 261.3 263.4 261.3 263.4 261.3 0.22 0.76 0.21 0.25 0.21 0.28 0.25 0.27 0.28 0.25 0.27 0.26 0.20 0.23 0.20 0.23 0.20 0.23 0.20 0.21 0.22 0.20 0.21 0.22 0.20 0.21 0.22 0.20 0.21 0.21 0.22 0.20 0.21 0.21 0.22 0.20 0.21 0.21 0.22 0.23 0.24 0.25 0.27 0.26 0.27 0.27 0.28 0.29 0.29 0.20 0.21 0.21 0.22 0.20 0.21 0.21 0.21 0.22 0.23 0.21 0.21 0.21 0.22 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.23 0.21 0.21 0.21 0.22 0.23 0.21 0.21 0.21 0.22 0.23 0.21 0.21 0.22 0.23 0.21 0.21 0.22 0.23 0.21 0.21 0.22 0.23 0.21 0.22 0.23 0.21 0.21 0.22 0.23 0.24 0.24 0.25 0.27 0.22 0.76 0.21 0.24 0.25 0.27 0.28 0.25 0.27 0.28 0.20 9.4 9.4 9.9 10.6 10.1 10.2 9.8 10.7 11.2 10.6 10.7 11.7 11.0 9.6 10.7 11.1 11.0 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.9 8.0 10.7 10.9 10.8 10.7 10.9 10.8 10.9 92.9
94.0
94.0
96.5
97.0
104
105
100
95.4
93.5
99.7
103
96.7
98.8
94.5
91.0
96.7
97.4
96.8
99.8
99.5
91.0
96.7
97.4
96.8
99.8
99.8 266.5 267.8 266.8 266.8 266.8 266.8 266.8 266.8 266.8 266.4 266.2 266.4 257.2 256.8 266.0 255.0 251.1 256.4 253.0 249.3 248.9 251.8 263.7 246.3 7.62 6.61 7.30 7.62 7.52 7.30 6.98 7.54 7.90 Thu-05 Fri-06 Sat-07 Sun-08 Mon-09 1.1 Thu-12 Fri-13 8.24 7.67 7.53 255.6 250.5 242.6 282.9 292.8 249.0 243.0 248.4 259.3 257.2 274.5 257.2 276.3 253.4 261.3 250.9 6.72 7.38 7.52 5.97 5.90 5.91 Tue-17 Wed-18 1,137.9 416.1 345.3 309.3 332.6 321.1 1,209.4 942.3 0.57 0.7 72.7 79.5 Sat-21 Sun-22 Mon-23 Tue-24 Wed-25 Thu-26 7.00 6.74 7.47 6.55 6.47 6.04 6.63 80.8 75.7 80.7 66.3 0.5 0.6 2.3 0.3 4.62 1.06 3.78 0.91 2.24 0.52 0.32 1,002.8 696.2 333.5 333.9 0.0 Sat-28 Sun-29 Mon-30 5.2 < 0.01

AEP Ref #

PROVIDING MORE EPCOR

Total Bypass (hr) EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	PE 30	Primary Effluent from conventional primaries discharged via
30	30	100%	359	359	100%	EPT	Enhanced Primary Treatment
	•	•		•	•	EPE	Enhanced Primary Effluent
						EPEPS	Enhanced Primary Effluent Pump Station
Report Comme	ents					FE	Final Effluent from secondary treatment process (with biologic
							removal). Pre-Ultraviolet disinfection.
							- 1
							401

Senior Manager, Operations

Untreated wastewater from collection system Influent, screened at the Headworks Diversion Structure

Senior Manager, Analytical Operations & Process Development Teams

Combined pose LVI distriction (FE-FEPPS)
LVI districted discharged via QUITFALL 10
Combined Systam (RVIN + PE + SPE)
Combined Systam (RVIN + PE + SPE)
Combined Systam (RVIN + PE + SPE)
Combined Systam (RVIN + RVIN + PE + SPE)
Combined Systam (RVIN + RVIN + PE + SPE)
Combined Systam (RVIN + RVIN + SPE)
Combined Systam
Mediater (1,000,000 Lilley
Mediater (1,000,000 Lilley
Nos Russia
Nos Sample
Incalificint Sample
Incalificint Sample

Digested Sludge: Total Monthly Volume (ML)

June 2022

Liquid Stream Quality Volume of Flow (ML) FALL 30 265.4 266.0 308.4 305.9 329.7 315.0 325.5 552.1 541.8 452.8 355.5 318.9 320.9 843.5 487.3 1,708.7 395.2 492.6 395.2 1,635.5 539.2 395.9 395.9 395.9 277
320
292
312
372
412
432
284
280
234
212
323
276
431
234
320
372
264
308
297
302
532 0.23 0.30 0.22 0.23 0.26 0.24 0.49 0.18 0.21 0.15 0.17 0.18 0.16 0.18 0.16 0.18 0.16 0.14 0.13 0.16 0.14 0.13 32.2 34.0 39.1 40.6 22.9 26.1 37.1 37.1 37.1 37.5 9.5 9.2 28.5 23.0 27.1 30.9 29.6 22.1 18.6 20 58.2 53.3 56.0 59.7 57.0 53.0 46.8 55.5 56.1 48.6 20.7 46.5 38.2 20.7 46.5 38.2 59.2 49.7 22.1 49.7 40.9 42.0 48.4 40.9 48.4 46.9 Thu-02 269.4 257.6 12.0 11.8 11.7 11.8 11.8 11.5 11.1 10.9 10.6 10.7 10.9 11.6 12.5 12.5 12.5 12.1 12.1 12.1 12.3 12.7 12.7 12.7 12.8 12.4 11.8 11.8 245.8 245.3 267.0 294.2 264.6 265.0 260.6 250.2 253.1 245.8 245.3 267.0 294.2 264.6 265.0 260.6 250.2 253.1 281.9 324.1 326.8 6.88 6.82 5.47 5.60 6.53 6.21 6.05 6.69 9.51 10.1 10.3 8.11 9.38 9.82 8.84 9.05 9.04 5.43 3.53 8.45 10.2 7.02 6.20 7.64 5.60 10.9 0.0 45.1 35.2 5.8 0.0 0.0 0.0 0.0 0.0 Sun-05 Mon-06 257.0 323.9 341.2 282.2 2276.5 271.7 261.3 327.7 943.1 796.2 363.3 453.4 313.9 304.4 307.3 6670.5 691.8 382.8 369.2 369.2 444.2 7.5 7.5 7.8 4.15 3.94 5.33 1.28 0.88 1.20 1.3 1.3 1.8 Tue-07 Thu-09 0.0 0.0 63.7 4.6 606.9 457.5 13.8 120.4 32.3 0.0 0.0 11.9 188.6 347.5 20.9 0.0 0.0 2.6 2.3 2.3 2.0 1.7 1.1 6.00 5.48 3.11 2.05 Sun-12 Mon-13 3.59 2.58 1.42 1.09 1.71 3.07 3.77 281.9 324.1 326.8 7.6 7.5 7.5 7.8 7.5 7.6 0.07 1.10 2.58 1.42 0.25 0.02 2.6 1.7 0.6 Tue-14 79.0 86.5 87.7 89.8 87.6 96.9 95.6 337.9 320.5 307.6 301.4 292.3 283.3 282.8 310.3 315.7 5.03 4.70 6.57 95.5 81.8 90.8 0.3 0.8 0.7 337.9 320.5 307.6 301.4 292.3 283.3 282.8 310.3 315.7 330.5 325.9 323.2 309.4 333.1 Sat-18 6.18 2.65 6.09 4.92 Tue-21 92.8 62.1 1.4 0.8 0.9 0.2 7.6 7.5 7.5 7.6 7.7 7.7 3.23 1.89 2.53 1.17 3.10 4.42 0.28 0.38 0.37 3.98 0.61 0.62 318 360 360 266 324 3.62 2.84 3.97 4.64 5.03 Thu-23 8.0 0.0 0.0 0.0 0.0 330.5 94.5 1.0 325.9 323.2 309.4 333.1 312.3 Sun-26 Tue-28 2,287.9 1,415.3 376.8 305.9

95 11,541 2,456 2 * Contact Laboratory for information about the quality assurance associated with the results

PROVIDING MORE EPCOR

		nanced Primary T	reatment (EPT) Usage			
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr) % Usage Y		
174	174	100%	533	533	100%	

Report Co	
	Bipass information amended
AEP Ref #	

Allan Gordon for

Alfredo Suarez M.Sc.; P.Eng.

Comined post JVI disinfaction (File FERPS)
UV disinfacted, devaloged via QUITARV and VIA
Comined Biyassi (RAW + File + EFE)
Comined Biyassi (RAW + File + EFE)
Membrane Product Water (Ellmust re-use water)
Most probable Number
No Sample
No Sample
Aborts Environment & Parks
Aborts Environment & Parks

Jeff Charrois PhD

Digested Sludge: Total Monthly Volume (ML)

July 2022

Liquid Stream Quality Volume of Flow (ML) FALL 30 ALL 30 285.5 302.6 318.9 285.5 302.6 318.9 265 226 287 4.64 2.80 4.15 0.0 167.6 0.16 0.10 0.16 0.17 0.14 0.13 0.12 0.14 0.15 0.16 0.16 0.16 0.17 0.18 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.13 0.20 0.22 0.11 0.30 0.22 0.30 0.22 0.30 0.72 0.68 0.78 0.65 0.81 0.49 0.38 0.46 0.52 0.72 0.72 0.38 0.46 0.52 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.74 0.75 0.30 0.13 0.20 0.22 0.11 0.30 0.22 0.30 0.22 0.30 0.27 0.68 0.78 0.69 0.49 0.49 0.49 0.52 0.72 0.38 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 44.6 32.4 47.6 27.3 43.2 47.6 47.2 47.2 47.1 56.2 55.0 15.5 52.7 50.2 46.7 46.7 46.7 1.112.6 60.3 Sun-03 Mon-04 True-05 Med-06 Fri-08 Sun-10 Mon-11 True-12 Fri-15 Sun-17 Mon-18 Fri-15 Sun-17 Fri-21 Fri-21 Mon-18 Sun-17 Fri-21 Fri-22 Mon-18 Mon-18 Sun-17 Fri-28 Sun-24 Mon-18 Fri-28 Sun-24 Mon-28 Sun-24 Mon-28 Sun-24 Mon-28 Sun-24 Mon-28 Sun-24 Mon-28 Sun-24 Mon-28 Sun-24 Sun-28 310.7 340.1 347.8 336.2 334.0 323.0 309.9 303.9 295.2 288.3 276.6 281.1 279.7 256.6 267.1 266.6 274.9 256.6 274.9 256.6 274.9 256.6 274.9 256.6 274.9 256.6 274.9 256.6 274.9 256.6 274.9 256.6 266.6 274.9 256.6 276.9 238 344 320 456 304 308 286 300 344 328 388 348 436 437 400 296 312 408 276 300 296 314 238 163 185 211 203 218 213 272 5.14 3.45 4.38 4.90 4.04 4.73 5.05 5.85 5.87 6.38 6.55 6.23 7.48 6.87 7.27 6.11 6.12 6.12 6.12 6.12 6.12 84.4 44.8 81.3 83.1 84.1 85.8 79.7 709.2 415.6 411.8 395.3 395.3 398.1 320.2 319.9 314.6 299.1 299.0 287.3 291.6 280.0 273.6 265.4 271.6 273.6 358.3 57.0 64.9 50.6 24.7 7.5 7.5 7.7 7.6 7.6 1.00 0.87 0.37 0.25 0.50 347.8 336.2 334.0 323.0 309.9 309.3 92.6 80.7 71.0 92.1 86.1 94.6 91.1 94.3 100 100 102 104 81.9 90.2 392.0 388.7 378.9 373.6 356.7 303.9 295.2 288.3 288.3 276.9 278.6 281.1 273 299 92.0 96.7 89.0 83.6 85.4 87.2 90.7 92.0 91.2 101 94.0 82.8 94.0 87.6 102 84.4 88.4 83.4 279 254 253 294 279.7 269.5 267.1 262.7 254.6 260.2 279.6 268.1 266.6 271.6 274.9 256.6 332.3 561.7 321.8 325.2 331.6 327.8 262 246 258 251 248 6.19 6.24 6.10 5.83 6.03 96.5 91.8 88.0 44.8 -- 54.8 --102 -- 104 ---- 71.0 -- 1.4 -- 0.4 --

PROVIDING MORE EPCOR

	Enl	nanced Primary To	reatment (EPT) Usage		
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
79	79	100%	612	612	100%

1-Jul-22	On July 1, 2022, due to raw water auto-sampler issue, 4 grab samples were collected from 00:00-08:00 and the rest of the day was a
	composite sample. The results of July 1 on this report were calculated from the results of all the associated grab samples and the
	partial composite sample using weighted averages based on the flow rate data.

Urreaded Influent into the plant Urreaded wastewater from collection system influent, scened at the Headenine Diversion Structure Piersay Effluent from conventional primaries Piersay Effluent from conventional primaries primary Effluent from conventional primaries declarated Piersay Treatment Entracord Piersay Pressional Entracord Piersay Piersa Piersa Station

Affredo Suarez M.Sc.; P.Eng.

Senior Manager, Operations

Enhanced Primary Effluent Pump Station Final Effluent from secondary treatment p Ultraviolet disinfection.

Combined possil/V distriction (FE-EFEPS)
UV-districted, dischanged via QUTFALL 10
Combined Bypass (RW = PEP = PEP)
Combined Bypass (RW = PEP) = PEP
Combined Bypass (RW = RPS = PEP) = EPD
Mergland (1,000,000 Ltre)
Mergland (1,000,000 Ltre)
Mospland (1,000,000 Ltre)
No Result
No Result
No Sample
Insulficiors Sample
Insulficiors Sample
Abdats Environment & Parks FEC OUTFALL 10 OUTFALL 20 OUTFALL 30 MPW ML MPN NR NS

Jeff Charrois PhD

Senior Manager, Analytical Operations & Process Development Teams

Digested Sludge: Total Monthly Volume (ML)

August 2022

Volume of Flow (ML) 352.2 347.6 321.4 1,349.9 483.7 333.1 337.4 321.4 319.8 322.8 288.5 275.8 481.2 271.6 382.1 282.1 271.6 271.6 271.6 271.6 271.0 276.6 2
263.9 9.265.7 265.7 265.7 265.7 265.7 265.7 265.7 265.7 265.7 265.7 265.5 265.7 265.5 26 276.6
263.9
260.6
331.3
325.7
265.7
265.7
269.0
260.1
259.1
269.5
249.7
260.5
269.1
260.1
261.1
261.7
259.2
259.2
259.2
257.1
263.4
261.6
263.4
269.7 291 254 318 157 201 204 247 289 270 305 248 232 297 325 348 290 245 297 313 287 269 341 343 341 368 312 319 322 6.20 6.24 6.22 4.23 4.53 5.37 5.86 6.54 6.37 6.46 6.45 5.87 6.88 6.70 6.28 6.57 7.10 6.51 6.50 7.04 0.14
0.13
0.20
0.17
0.16
0.10
0.15
0.16
0.19
0.20
0.18
0.18
0.20
0.23
0.21
0.22
0.24
0.25
0.27
0.31
0.31
0.31
0.31
0.416 0.22 0.22 0.22 0.12 0.12 0.31 0.26 0.27 0.15 0.16 0.23 0.23 0.24 0.24 1.10 0.44 0.59 0.45 0.39 0.45 0.39 0.45 0.57 0.57 8.2 9.8 10.1 7.7 7.6 8.68 9.87 9.86 10.8 11.1 10.8 9.76 10.4 10.8 9.72 10.2 9.30 8.55 9.30 8.55 8.49 8.64 8.51 11.0 9.86 8.51 9.87 9.87 9.87 9.87 9.88 9.87 9.88 9.87 9.88 9.87 9.88 9.87 9.88 9.89 0.22
0.22
0.22
0.12
0.13
0.38
0.26
0.27
0.15
0.16
0.23
0.25
0.21
0.24
0.41
1.10
0.39
0.45
0.33
0.47
0.59
0.57
0.57
1.59
0.57
1.59
1.06 79.9
89.5
93.1
86.2
71.8
84.7
85.9
96.3
94.5
93.0
84.9
92.2
91.3
89.4
87.5
93.0
84.3
89.4
87.5
93.8
86.4
84.9
92.5 Tue-02 Wed-03 Fit-05 Sat-05 Sa < 2
3
< 2 2 < 2 2
< 2 2 2
2 2 2 3
3 2 2 2
3 3 3
3 3
3 3</pre> < 0.0 < 0.01 6.96 6.95 6.64 7.22 6.92 6.86 7.58 7.83

PROVIDING MORE EPCOR

								INFs	Influent, screened at the Headworks Diversion Structure	OUTFALL 20	Combined Bypass (RAW + PE + EPE)
		Enh	nanced Primary T	reatment (EPT) Usage				PE	Primary Effluent from conventional primaries	OUTFALL 30	Combined Bypass (INF + INFS + PE30 +
Total Bypa	ass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)			PE 30	Primary Effluent from conventional primaries discharged via Outfall 30	MPW	Membrane Product Water (Effluent re-use
18		18	100%	630	630	100%		EPT	Enhanced Primary Treatment	ML	Megalitre (1,000,000 Litre)
	•					•		EPE	Enhanced Primary Effluent	MPN	Most Probable Number
								EPEPS	Enhanced Primary Effluent Pump Station	NR	No Result
Report Con	nments							FE	Final Effluent from secondary treatment process (with biological nutrient removal).	NS	No Sample
									Pre-Ultraviolet disinfection.	INS	Insufficient Sample
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AEP	Alberta Environment & Parks
									4041/V. \i)		
									1 hours		
									1/40		

Senior Manager, Analytical Operations & Process Development Teams

Digested Sludge: Total Monthly Volume (ML)

Gold Bar Wastewater Treatment Plant September 2022

Volume of Flow (ML) OUTFALL 10 FEC FE 269.6 264.8 259.1 257.1 259.7 270.8 272.9 263.9 263.7 258.4 257.3 253.2 247.9 248.3 259.5 248.7 251.8 247.0 250.4 247.7 251.8 247.0 250.4 247.7 244.0 250.5 247.7 244.0 250.5 247.7 244.0 250.5 247.7 244.0 250.5 247.7 244.0 250.5 250.5 247.7 244.0 250.5 250.5 247.7 244.0 250.5 257.3 253.2 247.9 245.8 248.3 259.3 253.4 251.7 251.8 247.0 255.3 368 368 332 0.34 0.40 0.55 0.35 0.32 0.29 0.28 0.30 1.00 0.62 0.31 0.39 0.38 0.32 0.38 0.32 0.34 0.34 0.34 0.34 0.34 0.35 54.7 54.0 48.2 53.0 48.4 46.9 45.8 50.0 54.7 55.3 55.8 57.9 48.2 52.3 51.0 46.4 52.3 51.0 46.9 55.3 55.8 57.9 48.2 59.9 50.9 9.66 11.4 12.8 14.2 13.6 12.0 9.93 10.6 10.8 10.3 9.03 11.1 10.5 9.82 10.7 12.7 15.0 10.7 12.7 15.0 10.4 10.4 10.4 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.79 0.43 0.26 0.46 1.01 1.15 0.77 1.33 1.66 3.43 1.40 2.06 1.45 1.42 2.13 2.26 1.61 0.58 1.74 1.65 0.67 0.67 0.67 1.09 0.82 1.09 98.8 96.2 89.2 88.8 89.3 94.1 90.8 90.4 86.5 63.0 89.8 88.4 75.9 71.2 80.1 79.4 80.4 79.4 81.0 76.9 76.1 80.4 81.0 76.9 80.8 80.4 80.1 80.4 80.5 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.8 326.0 356.0 360.1 435.6 355.9 311.1 7.50 7.14 7.04 7.50 6.96 Sun-04 Mon-05 Tue-06 Wed-07 Thu-08 Fri-09 Sat-10 Sun-11 Mon-12 Tue-13 388 340 364 392 344 416 336 337 376 364 893 500 304 296 356 348 356 516 < 0.01 2.2 7.36 7.45 7.96 7.28 7.54 7.76 8.96 8.46 7.44 7.12 6.18 6.66 7.15 325.3 266.8 270.8 260.1 259.5 248.7 249.1 250.4 275.4 247.1 250.6 282.7 249.0 251.5 239.3 247.7 244.6 247.0 322.5 Wed-14 Thu-15 Fri-16 Sat-17 316.5 1,305.7 551.1 334.0 < 0.01 0.29 0.82 0.45 73.2 49.9 29.3 20.1 39.1 22.6 2.7 0.2 Sun-18 Mon-19 Tue-20 315.0 301.3 303.1 260.2 263.1 250.9 Wed-21 Thu-22 Fri-23 Sat-24 Sun-25 0.0 259.3 256.5 258.8 264.0 257.6 260.3 260.2 7.06 7.44 7.62 293.2 330.7 354.1 338.9 317.8 336.0 310.9 356 344 376 324 352 320 308 0.0 0.0 0.0 0.0 Mon-26 Tue-27 252.3 245.9 248.7 248.8 250.4 7.56 7.59 6.99 7.03 Wed-28 < 0.01 Thu-29 7.26 7.51 4.30 6.18 2.12 282.7 8.96 57.9

0 8,010 104 0 346 0

PROVIDING MORE EPCOR

	Eni	nanced Primary I	reatment (EPI) Usage		
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
12	12	100%	642	642	100%

1	This is the amended report to the orginal Gold bar Plant Performance Report 2022-09.
	Reason for the amendment: The Sept 17 Outfall 30 sample results were removed since there was no flow through Outfall 30 that day,

Untreated influent into the plant
Untreated wastewater from collection system
Influent, screened at the Headworks Diversion Structure
Primary Effluent from conventional primaries

rniamy enuous trom conventiona primanies primany Effluent from conventional primaries discharged via Outfall 30 Enhanced Primary Treatment Enhanced Primary Effluent Enhanced Primary Effluent Pump Station Final Effluent from secondary treatment process (with biological nutrient removal). Pro-Liteworlde disrefered process (with biological nutrient removal). Pro-Liteworlde disrefered process.

OUTFALL 10
OUTFALL 20
OUTFALL 30
MPW
ML
MPN
NR
NS
INS
AEP Joff Chance)

Jeff Charrols PhD

Senior Manager, Analytical Operations & Process Development Teams

Combined post-LIV distriction (FE-EPEPS)
UV districted, dischanger six OUTFALL 10
Combined Byses (RW + PE = PEP)
Combined Byses (RW + PE)
Combined Byses (RW + PE)
Combined Byses (RW + PE)
Mediater (1,000,000 Line)
Mediater (1,000,000 Line)
Mediater (1,000,000 Line)
Mod Phodate Mumber
No Result
No Result
Vo Result
Combined
No Result
No Result
Abouts Environment & Parks

Digested Sludge: Total Monthly Volume (ML)

Gold Bar Wastewater Treatment Plant October 2022

Volume of Flow (ML) OUTFALL 10 FEC FE | 2004 | 2004 | 2005 | 0.79 1.28 1.73 1.51 1.06 1.33 0.92 0.75 0.50 0.38 0.40 0.99 1.02 1.67 1.04 1.15 1.15 1.06 0.75 0.81 1.07 0.75 0.81 324 280 277 300 343 284 272 280 384 277 343 340 320 296 320 344 311 311 349 296 336 354 364 364 364 364 364 364 4.3 3.7 4.2 3.8 3.7 5.4 3.5 6.2 4.5 3.3 3.7 3.6 3.8 3.1 4.1 4.1 3.9 3.8 3.8 4.4 4.1 3.2 7.31 7.40 7.98 7.78 7.68 7.41 7.75 8.36 7.22 7.43 7.71 7.26 7.64 7.12 7.75 8.29 7.37 8.65 7.75 8.21 0.32 0.33 0.34 0.34 0.41 0.30 0.28 0.23 0.25 0.25 0.26 0.30 0.31 0.30 0.31 0.30 0.32 0.32 0.35 33.2 32.0 39.3 39.1 37.7 38.4 40.2 40.2 40.6 42.5 41.2 39.8 40.1 39.7 42.6 40.1 41.0 36.9 Tue-04 Wed-05 Thu-06 Fri-07 Sat-08 Sun-09 Mon-10 341.7 388.0 367.9 373.1 368.2 360.1 259.1 260.0 254.6 298 292 300 268 305 274 314 316 340 353 294 272 253.1 255.5 251.9 258.0 Tue-11 Wed-12 Thu-13 263.9 258.4 258.4 Fri-14
Sat-15
Sun-16
Mon-17
Tue-18
Wed-19
Thu-20
Fri-21
Sat-22
Sun-23
Mon-24
Tue-25
Wed-26
Thu-27
Fri-28
Sat-29
Sun-30 279 310 301 347 314 306 301 255.3 267.5 360.9 360.8 352.1 309.1 256.3 261.6 9.8 12.5 10.4 10.3 11.6 11.5 10.8 11.0 11.4 11.8 12.1 266.7 269.9 259.2 350.0 338.1 7.13 6.53 6.57 357.0 491.4 437.5 398.8 253.2 256.9 259.1 257.3 258.2 316 432 312 323 348 319 342 281 287 372 7.13 7.43 6.94 7.45 7.49 7.03 0.0 333.8 335.6

E EPCOR

Enhanced Primary Treatment (EPT) Usage													
Total Bypass (hr) EPT Usage (hr) % Usage Total Bypass YTD (hr) EPT Usage YTD (hr) % Usage YTD													
0	0	100%	642	642	100%								
Report Comments													
Report Comments													

Report Cor	mments
AEP Ref #	

Influent, screened at the Headworks Diversion Structure
Primary Effluent from conventional primaries

Combined post-UV disinfection (FE+EPEPS) UV-disinfected, discharged via CUTFALL 10 Combined Biyass (RAW + PE + EPE) Combined Biyass (RAW + PE + EPE) Combined Biyass (RF + INFS + PE30 + EPE) Membrane Product Water (Effuent re-use water) Megalitre (1,000,000 Litre) Most Probable Number No Result No Sample

Alberta Environment & Park

Jeff Charrois PhD

Senior Manager, Analytical Operations & Process Development Teams

Digested Sludge: Total Monthly Volume (ML)

Gold Bar Wastewater Treatment Plant

Liquid Stream Quality Volume of Flow (ML) OUTFALL 10 FEC FE 0.0 0.0 0.0 0.0 0.0 00 121 00
00 123 00
00 124 00
00 123 00
00 124 00
00 125 00
00 120 00
00 121 00
00 121 00
00 121 00
00 122 00
00 124 00
00 124 00
00 125 00
00 126 00
00 127 00
00 131 00
00 132 00
00 132 00
00 132 00
00 133 00
00 134 00
00 126 00
00 127 00
00 128 00
00 129 00
00 120 00
00 121 00
00 121 00
00 121 00
00 121 00
00 122 00
00 123 00
00 124 00
00 125 00
00 126 00
00 127 00
00 127 00
00 128 00
00 129 00
00 120 00
00 120 00
00 121 00
00 121 00
00 121 00
00 121 00
00 123 00
00 124 00
00 123 00
00 124 00
00 123 00
00 124 00 245.3 225.1 226.7 226.7 240.7 240.7 240.7 240.2 240.2 240.2 251.4 252.9 256.6 250.2 251.7 255.4 259.9 25 37.7 33.8 33.6 37.4 34.9 35.7 31.1 32.2 32.1 33.7 31.4 32.7 36.0 37.9 34.7 36.1 36.0 33.1 40.2 40.2 40.2 39.5 40.4 40.2 39.5 39.5 40.4 40.4 40.5 0.39 0.57 0.53 0.58 1.44 1.17 0.44 0.35 0.57 0.42 0.62 0.46 1.16 1.13 1.22 0.79 0.45 0.50 1.18 2.38 10.1 9.67 7.87 9.07 9.43 9.87 9.41 7.45 7.60 8.52 7.43 7.47 7.72 6.60 9.85 9.45 9.47 7.46 8.97 9.47 9.41 11.4 11.4 11.4 55.9 47.1 61.8 50.1 157.8 59.6 55.1 57.8 54.9 49.6 50.3 56.8 65.0 73.3 56.8 65.0 65.9 65.7 65.7 65.9 67.2 67.2 63.7 64.3 Wed-02
Thu-03
Fat-06
Sun-06
Sun-06
Wed-09
Thu-10
Sat-12
Sun-13
Mon-14
Sat-19
Sun-20
Mon-27
Thu-15
Sun-20
Wed-23
Thu-24
Sun-20
Sun-20
Wed-23
Sun-20
Wed-20
We 300 472 388 364 346 350 625 480 391 444 424 426 432 346 620 432 340 292 283 314 300 347 1.9 1.8 1.8 2.6 2.6 1.9 2.0 1.7 1.8 1.5 1.9 1.8 2.1 2.4 2.4 2.4 2.2 2.2 2.3 3.0 4.4 4.3 142 121 179 117 94.7 109 110 96.7 100 95.6 114 134 94.5 85.4 87.3 120 96.8 99.2 131 89.7 81.7 89.3 272.0 261.1 273.3 265.0 269.2 272.6 270.1 3.6 3.2 3.2 3.0 4.9 3.4 2.5 3.4 3.4 3.4 2.2 331.5 330.3 313.2 305.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 379 374 320 314 316 263 292 363 301 260.2 258.1 255.3 267.4 263.8 268.6 251.7 255.4 272.3 272.1 271.1 270.6 263.9 263.0 264.5 273.6 262.8 266.8 264.4 273.0 260.6 264.6 266.0 259.0 258.9 258.0 257.8 251.0 250.4 251.9 261.9 252.3 332 229 345 330 334 359 436 318 320 296 306 338 299 331 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 328.5 356.4 321.5 359.2 344.5 349.4 327.2 331.1 248.5 253.6 254.3 248.3 250.8 7.38 7.46 7.38 7.88 10.8 86.7 8.96 105 ----- 6.97 --- 81.7 --- ---

PROVIDING MORE EPCOR

1			nanced Primary T	reatment (EPT) Usage		
	Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
	0	0	100%	642	642	100%

1	BOD/cBOD samples in Raw and Outfall 10 on Nov 10 and 11 were tested by the subcontracted lab.	
AFP Ref		

United Market for the girst United assistance in condection pythem shruture, commond if the Headerdan Distriction Shruture instructive, commond in the Headerdan Distriction Shruture Privacy Effect for Connectional privace distriction of Privacy Education Connectional privace distriction of Privacy Teachers Centrace Privacy Enteror (Education Connectional privace) Privacy Enteror (Education Connectional Privacy Enteror (Education Connection Connect

Senior Manager, Analytical Operations & Process Development Teams

FEC
OUTFALL 10
OUTFALL 20
OUTFALL 30
MPW
ML
MPN
NR
NS
INS
AEP

Combined postaLV disinfection (FE-EPEPS)
LV-disinfection, (FE-EPEPS)
LV-disinfection, discharged via CUTFALL 10
Combined Bippass (RV+ PEPS + FED+ EPE)
Membrare PostaL Water (Efficient re-use water)
Megallare (1,000,000 Line)
Most Probable Number
No Result
No Result
No Result
Aborts Environment & Parks
Aborts Environment & Parks

Gold Bar Waste
Finan Fer
Dec

Gold Bar Wastewater Treatment Plant
Plant Performance Report
December 2022

1,000		ORE D																			Dec	ember 2	022																1						_	
			9																																					Dig	ested Sludge	e: Total Mon	nthly Volume (I	,ML)		66.5
				١	olume of	Flow (ML)																					Liqu	id Stream	Quality																	
			u.e																																								/ /			
			lin file			Effluer	nt																																				/ /			
				No	n UV Disinfed	cted	uv	Disinfected			pH @25°C	\$185°C T55 (mg/L) B00,6000, (mg/L) T7 (mg/L) N0,400, (mg/L) TXK (mg/L) N0,400, (m								+NO, (mg/L))		Chloride ((mg/L)		E. 00	oli (Countsi	100 mL)																		
																					H 10	2																								
								OUTFALI	L 10			ALL 1				AL1		ALL 3	ALL 2	99	OTFA						ALL 1			_		ALL 1				ALL 1			ALL 1				ALL 1		ALL 3	ALL 2
				k H	ALL 20					7	WE A	OUTF		ALL 20	60	PTTP	RA	v P	OUTF	EPEP	FEC	FE		ALL 30	ALL 20	90	975		VIT 30	AL 2	20	907		ALL 30	ALL 20	PTT-0	ALL 30	ALL 20	9776		ALL 30	ALL 20	9170	RAW	977	50
DATE	Peak Flow (MLD)	INFs	RAW	OUTE	OUTE	MPW	EPED	FEC	FE R	Aw E	150	FEC	RAW	OUTE	EPER	FEC F	FE BO	D _S BOD _S	BODs	BOD ₅	cBOD ₅	cBOD ₃	RAW	OUTE	OUTE	EPEP	FEC FE	E RAW	OUT.	OUTE	h FE	C FE	RAW	OUTE	OUTE	EC RA	w 5	OUTE	FEC	RAW	OUTE	OUTE	FEC	X10^6 X1	10^6 X	10^6 FEC
Thu-01	347.7	0.0	266.3	0.0	0.0		0.0		253.8	7.6		7.5						132			3	3	7.99					0.27 36				1.52 1.5				3.1			11.3	85.7			97.3	2.7		4
Fri-02 Sat-03	322.5 365.4	0.0	269.7 270.2	0.0	0.0		0.0		257.0 258.0	7.5		7.5 7.5					0.0	107 148			3	3	7.17 7.89					0.30 39				1.66 1.6 1.89 1.8				3.3			11.7				95.8 90.7			2
Sun-04	377.9	0.0	276.1	0.0	0.0		0.0		264.0	7.4		7.6						189			3	3	7.59					0.28 36				2.07 2.0				4.1			10.6				85.5			1
Mon-05	328.2	0.0	273.3	0.0	0.0		0.0		261.1	7.6		7.5						109			4	4	7.19					0.27 30				1.20 1.2				3.4			10.0				94.2			1
Tue-06 Wed-07	324.3 346.2	0.0	267.4 265.4	0.0	0.0		0.0		255.1 253.3	7.5		7.5 7.5					3.5	111			3	3	7.34 7.34					0.27 38 0.28 38				1.15 1.1 1.27 1.2	30.4			3.1 2.8 <	0.01		9.97	82.9 89.6			104 92.4			4
Thu-08	339.6	0.0	267.0	0.0	0.0	12.0	0.0		255.0	7.4		7.7						113			3	3	7.35					0.27 38				0.88 0.8				2.6			11.6				104			3
Fri-09 Sat-10	312.5 340.3	0.0	270.5 268.6	0.0	0.0		0.0		258.4	7.5		7.7						116			2	2	7.16					0.24 35				0.84 0.8				2.2			9.57	115			122			4
Sun-11	340.9	0.0	266.6	0.0	0.0		0.0		256.2 254.0	7.5		7.5 7.6					3.3	101			3	2	6.49					0.24 34 0.23 32				1.07 1.0 1.56 1.5				2.5			8.59 9.61	103 97.9			125 114			1
Mon-12	346.2	0.0	270.8	0.0	0.0		0.0		258.4	7.4		7.5					3.6	150			3	3	6.44					0.21 37				1.36 1.3				2.5			9.92	106			108	2.7		3
Tue-13 Wed-14	304.2 311.9	0.0	266.4 264.7	0.0	0.0		0.0			7.4		7.6					4.0	151			2	2	6.94					0.23 33				1.36 1.3				2.6			8.42	111			117			1
Thu-15	320.0	0.0	266.3	0.0	0.0	12.3	0.0	254.0	252.3 254.0	7.6 7.5		7.6 7.5						104 136			2 2	2 2	6.59 7.23					0.23 37 0.25 37				1.56 1.5 1.28 1.2				3.1 < 2.6	0.07		8.67 8.62	136 127			122 135	2.6		1
Fri-16 Sat-17	325.5 341.1	0.0	267.6 265.3	0.0	0.0		0.0		256.2 254.0	7.5		7.6 7.5						145			2	2	7.13 7.28					0.22 36 0.23 36				1.08 1.0				2.5			9.03 8.63	135 142			132			3
Sun-18	335.6	0.0	265.1	0.0	0.0		0.0		252.4	7.5		7.5					4.5	105			4	4	6.89					0.23 36				1.41 1.4				3.5			9.33	142			130			5
Mon-19	312.6	0.0	269.4	0.0	0.0		0.0		257.1	7.6		7.6					2.7	151			3	3	7.23					0.26				1.97 1.9				3.6			8.82	96.4			106			4
Tue-20 Wed-21	307.0 304.8	0.0	268.9 269.3	0.0	0.0		0.0		257.5 258.1	7.4		7.6 7.5						110			2	2 2	7.75 7.92					0.26 38 0.27 40				0.92 0.9 1.01 1.0				2.7	0.01		9.31 6.31	88.2 82.7			106 102			4
Thu-22	313.1	0.0	268.8	0.0	0.0		0.0		256.2	7.5		7.5						109			2	2	7.83					0.30 38				1.34 1.3				3.4	0.01		8.86	76.3			94.2			3
Fri-23	322.6	0.0	273.4	0.0	0.0		0.0		260.9	7.5		7.6						173			3	3	7.99					0.25 38				1.58 1.5	68.3			3.4			8.44	76.7			88.9			6
Sat-24 Sun-25	358.5 329.4	0.0	270.7 250.3	0.0	0.0		0.0		258.2 239.0	7.5		7.5					2.9	181			3	3	7.90 7.54					0.25 34				1.69 1.6 1.50 1.5				3.6			8.27 7.06	76.1 82.5			89.3 83.9			4
Mon-26	329.9	0.0	254.7	0.0	0.0				243.2	7.6		7.6						184			2	2	7.54					0.20 40				1.83 1.8				3.6			8.47	94.8			88.7			2
Tue-27	326.4	0.0	266.6	0.0	0.0		0.0		254.3	7.6		7.8						142			2	2	7.84					0.20 31				1.53 1.5				3.8			9.40	119			102			4
Wed-28 Thu-29	318.7 347.0	0.0	270.4 272.3	0.0	0.0		0.0		259.4 260.5	7.6		7.5 7.6						154			2	2	8.15 7.48					0.21 37 0.26 36				1.28 1.2 1.06 1.0				3.4	0.02		9.64 8.30	140 150			124 157			4
Fri-30	341.6	0.0	274.4	0.0	0.0			262.1	262.1	7.6		7.5						194			3	3	6.73					0.24 33				1.84 1.8				3.9			7.97	148			173			4
Sat-31 Average	363.6	0.0	274.2 268.1	0.0	0.0	12.1	0.0		262.1	7.6		7.6	396			3.2	3.2	178			3 27	3	7.00				0.24	0.24 36	.9			4.12 4.1	2 54.2 9 60.8			5.6	0.02		6.86	115			164			4_
Minimum	304.2	0.0	250.3	0.0	0.0	11.0	0.0	239.0	239.0	7.4			- 260			2.7		148			2.0		6.44				0.20					0.84 0.8	4 51.3			2.2 <			6.31			:	83.9			1
Maximum GeoMean	377.9	0.0	276.1	0.0	0.0	12.7	0.0	264.0					416																.6																	6
TOTAL		0	8,311	0	0	374	0	7,937																																						

* Contact Laboratory for information about the quality assurance associated with the results

Report Co	mmants		
пероп оо	imens		
AEP Ref #			

Enhanced Primary Treatment (EPT) Usage

Total Bypass (hr) EPT Usage (hr) % Usage Total Bypass YTD (hr) EPT Usage YTD (hr) % Usage YTD

NAV Unested When't to the just

FEC Contend pool U/ districted, distriction (FE-EFES)

NF Unested waterward for helicitors prise

NF Vibration waterward for helicitors Districts

CUTFAL 10 U1/ districted, distriction (FE-EFES)

NF Vibration waterward for helicitors Districts

CUTFAL 10 U1/ districted, distriction (FE-EFES)

PRIVATE COntended place (FMV **FE **FES)

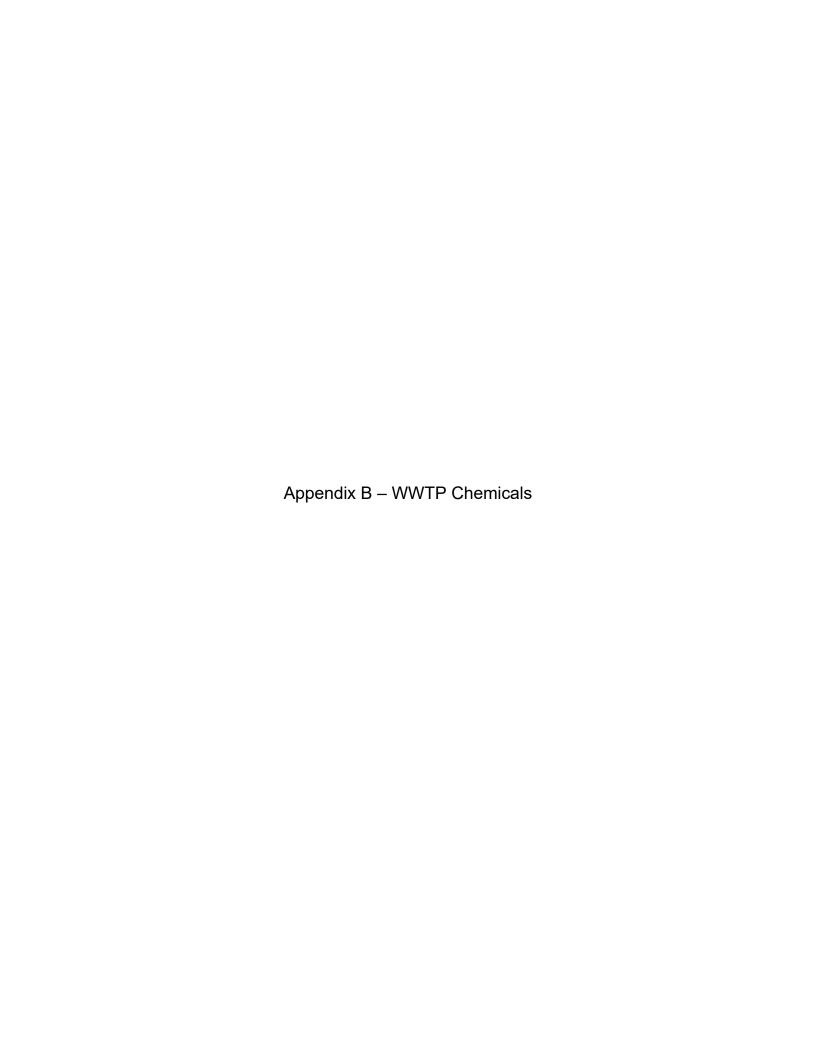
PRIVATE CONTENDED (FMV **FE **FES)

PRIVATE CONTENDED (FMV **FE **FES)

PRIVATE CONTENDED (FMV **FES)

NEW YORK (FMV **FES)

PRIVATE CONTENDE (FMV **FES)


NEW YORK (FMV **FES)

NEW Y

Suarez M.Sc.; P.Eng. Jeff Charrois

Senior Manager, Operations

Senior Manager, Analytical Operations & Process Development Teams

2022 Secondary Alum Usage (kg)

					2022 3	econdary	Alulli Osa	ige (kg)				
_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0	0	0
29	0		0	0	0	0	0	0	0	0	0	0
30	0		0	0	0	0	0	0	0	0	0	0
31	0		0		0		0	0		0		0
al (kg)	0	0	0	0	0	0	0	0	0	0	0	0

2022 EPT Alum Usage (kg)

					202	- LI I AIG	III Osuge	\'`& <i>I</i>				
	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	2159	0	0	0	0	0	0	0
2	0	0	0	0	1113	0	6776	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	87	8197	0	0	0	0
5	0	0	0	0	0	0	18104	2731	0	0	0	0
6	0	3898	0	0	3172	6363	9123	0	0	0	0	0
7	0	5359	0	0	0	4612	3870	0	2472	0	0	0
8	0	2686	0	0	0	1416	6751	0	0	0	0	0
9	0	4261	0	0	0	0	2919	0	0	0	0	0
10	0	12131	0	0	0	0	0	0	0	0	0	0
11	0	1953	0	0	0	0	0	0	0	0	0	0
12	0	0	7212	0	0	5502	0	0	0	0	0	0
13	0	3738	0	0	0	1054	0	0	0	0	0	0
14	0	401	0	0	0	27707	0	0	0	0	0	0
15	0	0	5794	0	0	24747	0	0	6321	0	0	0
16	0	0	7408	0	0	2186	0	0	1118	0	0	0
17	2847	3521	8476	0	0	11260	0	0	0	0	0	0
18	0	0	9031	0	0	5736	0	0	0	0	0	0
19	4	637	8008	6366	11448	0	0	0	1539	0	0	0
20	0	0	6239	8366	2564	0	0	0	0	0	0	0
21	0	0	6534	0	0	1952	0	0	0	0	0	0
22	3922	0	9876	0	0	10200	0	0	0	0	0	0
23	4454	0	10656	0	0	13159	0	0	0	0	0	0
24	1763	0	9320	0	0	21011	0	0	0	0	0	0
25	0	0	4356	0	2777	6481	2463	0	0	0	0	0
26	0	0	3627	115	3746	2029	0	0	0	0	0	0
27	0	0	5673	14183	1810	0	0	2942	0	0	0	0
28	0	0	5177	0	1769	0	0	0	0	0	0	0
29	0		5660	0	0	4200	0	0	0	0	0	0
30	0		5215	0	0	0	0	0	0	0	0	0
31	0		3959		0		6606	287		0		0
(kg)	12.990	38.584	122.223	29.031	30.558	149.617	56.700	14.158	11.451	0	0	0

Total (kg) 12,990 38,584 122,223 29,031 30,558 149,617 56,700 14,158 11,451 0 0 0

2022 EPT Polymer Usage (kg)

					2022	LFIFUIY	illei Osagi	= (N8)				
_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	6	0	0	0	0	0	0	0
2	0	0	0	0	3	0	35	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1	23	0	0	0	0
5	0	0	0	0	0	0	51	8	0	0	0	0
6	0	7	0	0	6	14	26	0	0	0	0	0
7	0	10	0	0	0	13	11	0	4	0	0	0
8	0	5	0	0	0	4	19	0	0	0	0	0
9	0	8	0	0	0	0	8	0	0	0	0	0
10	0	24	0	0	0	0	0	0	0	0	0	0
11	0	3	0	0	0	0	0	0	0	0	0	0
12	0	0	17	0	0	16	0	0	0	0	0	0
13	0	7	0	0	0	3	0	0	0	0	0	0
14	0	1	0	0	0	77	0	0	0	0	0	0
15	0	0	16	0	0	70	0	0	9	0	0	0
16	0	0	21	0	0	6	0	0	3	0	0	0
17	5	6	24	0	0	32	0	0	0	0	0	0
18	0	0	25	0	0	16	0	0	0	0	0	0
19	0	1	22	14	29	0	0	0	3	0	0	0
20	0	0	17	24	7	0	0	0	0	0	0	0
21	0	0	18	0	0	5	0	0	0	0	0	0
22	7	0	28	0	0	28	0	0	0	0	0	0
23	9	0	30	0	0	37	0	0	0	0	0	0
24	3	0	26	0	0	59	0	0	0	0	0	0
25	0	0	12	0	5	18	5	0	0	0	0	0
26	0	0	9	0	8	6	0	0	0	0	0	0
27	0	0	16	38	5	0	0	4	0	0	0	0
28	0	0	15	0	5	0	0	0	0	0	0	0
29	0		16	0	0	13	0	0	0	0	0	0
30	0		15	0	0	0	0	0	0	0	0	0
31	0		11		0		13	0		0		0
kg)	25	71	339	76	73	417	169	36	20	0	0	0

Total (kg) 25 71

2022 DAF Polymer Usage (kg)

					2022	DAFFUIY	illei Osag	c (kg)				
_	January	February	March	April	May	June	July	August	September	October	November	December
1	33	29	34	41	35	33	27	29	30	35	34	30
2	32	29	34	43	33	35	26	29	26	32	33	30
3	32	29	33	45	35	33	24	28	27	29	33	29
4	34	27	33	50	36	32	30	27	31	29	32	30
5	39	30	33	48	33	32	32	24	35	26	30	31
6	36	30	33	50	35	30	31	23	37	26	30	32
7	34	31	19	51	36	30	30	23	40	23	29	33
8	35	18	39	49	35	30	30	23	34	24	30	31
9	33	32	42	49	35	29	30	22	33	30	28	31
10	25	31	42	49	34	30	30	23	35	32	32	32
11	25	32	34	48	31	31	29	25	28	38	32	31
12	32	32	33	50	32	31	30	25	27	39	30	30
13	31	28	31	41	32	28	30	25	28	39	29	28
14	31	23	36	41	32	28	30	24	29	38	28	30
15	28	26	35	39	31	25	29	24	29	36	30	30
16	34	32	30	35	31	27	31	24	27	38	31	32
17	35	36	39	35	19	25	25	20	29	38	31	31
18	35	36	35	37	32	25	28	24	30	38	32	30
19	34	37	39	34	33	25	28	27	29	38	32	30
20	29	40	37	34	32	20	32	27	33	33	33	31
21	31	41	36	30	34	25	34	28	33	27	32	30
22	31	34	35	44	32	28	30	28	29	30	32	30
23	29	23	32	47	31	25	26	27	28	34	33	30
24	28	31	36	48	30	25	28	37	34	34	32	29
25	30	31	39	45	30	24	31	34	39	31	33	30
26	29	32	39	44	26	22	34	39	38	30	31	29
27	29	33	40	42	32	23	33	36	37	33	31	29
28	27	31	40	34	31	19	32	31	33	35	30	29
29	28		42	36	27	18	30	26	29	35	30	30
30	29		42	36	32	26	30	28	28	38	30	31
31	29		43		32		29	28		37		31
kg)	967	864	1,116	1,275	989	815	919	838	945	1,027	933	940

Total (kg) 967

2022 Membrane Bleach Usage (L as delivered 16% sodium hypochlorite solution)

				=		(- 00 000			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	
	January	February	March	April	May	June	July	August	September	October	November	December
1	375	281	640	184	448	703	476	392	545	513	620	447
2	381	297	635	236	412	570	507	643	514	483	649	364
3	303	325	391	248	468	316	318	498	486	458	627	294
4	174	611	429	754	280	605	480	494	695	622	627	411
5	310	549	431	578	422	316	475	410	560	623	639	294
6	232	558	457	637	459	373	368	461	527	383	534	460
7	299	610	458	514	392	535	470	428	387	324	658	346
8	384	495	477	562	290	549	463	534	122	588	581	268
9	368	449	423	523	318	490	459	627	400	352	508	510
10	359	511	477	458	229	673	453	622	538	400	428	513
11	565	334	472	533	358	603	574	605	374	464	241	431
12	431	288	593	553	647	506	702	534	215	253	498	398
13	421	355	499	506	370	539	722	491	481	589	571	411
14	469	580	345	380	586	491	527	502	357	479	497	343
15	575	465	630	610	542	264	379	661	477	384	611	532
16	459	472	483	415	330	388	460	496	309	471	584	576
17	419	286	385	461	625	366	542	458	660	250	483	370
18	339	309	481	452	592	457	525	561	463	244	485	370
19	230	239	508	388	447	532	307	400	456	266	690	371
20	295	300	393	552	582	587	511	626	636	594	676	280
21	356	236	457	573	644	570	449	547	547	690	575	583
22	297	298	548	466	398	575	520	385	502	661	559	485
23	404	303	467	469	379	494	547	562	709	811	492	369
24	349	449	480	549	532	320	461	606	650	494	564	359
25	270	650	385	485	447	446	617	475	566	593	594	390
26	452	764	314	617	711	518	516	396	644	567	231	231
27	493	306	469	422	374	496	431	357	453	450	463	527
28	408	371	493	319	436	530	585	355	313	497	365	346
29	571		461	412	474	503	498	609	494	550	419	416
30	507		434	470	457	430	342	632	462	572	313	413
31	541		434		463		515	457		468		422
l (L)	12,036	11,692	14,551	14,324	14,113	14,746	15,199	15,826	14,541	15,093	15,783	12,530

Total (L) 12,036 11,692

2022 Ostara Magnesium Chloride Usage (L as delivered 30% magnesium chloride solution)

	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	6284	6473	6300	5633	0	0	0
2	0	0	0	0	0	6293	6318	6150	6653	0	0	0
3	0	0	0	0	0	8499	6416	5449	6640	0	0	0
4	0	0	0	0	1508	6181	6436	6597	6472	0	0	0
5	0	0	0	0	5004	6189	4335	6595	6365	0	0	0
6	0	0	0	0	5365	6222	6584	6481	6429	0	0	0
7	0	0	0	0	5457	6242	6526	6862	6241	0	0	0
8	0	0	0	0	5450	6081	6485	6239	6594	0	0	0
9	0	0	0	0	5575	5981	6508	6411	6280	0	0	0
10	0	0	0	0	4836	6232	6428	5080	6390	0	0	0
11	0	0	0	0	4115	6131	6462	6414	6300	0	0	0
12	0	0	0	0	4143	5876	6495	6424	6199	0	0	0
13	0	0	0	0	5649	6103	5567	6252	1408	0	0	0
14	0	0	0	0	5875	6008	6466	5548	0	0	0	0
15	0	0	0	0	5876	6200	6514	4568	0	0	0	0
16	0	0	0	0	5402	0	5548	3633	0	0	0	0
17	0	0	0	0	5711	0	6048	4670	0	0	0	0
18	0	0	0	0	5732	0	1825	4805	0	0	0	0
19	0	0	0	0	5741	0	2623	5797	0	0	0	0
20	0	0	0	0	5591	0	4388	5806	0	0	0	0
21	0	0	0	0	5632	0	3456	5819	0	0	0	0
22	0	0	0	0	5634	0	6508	6414	0	0	0	0
23	0	0	0	0	5587	0	6499	4881	0	0	0	0
24	0	0	0	0	5556	4294	6446	6016	0	0	0	0
25	0	0	0	0	6157	5757	6405	5635	0	0	0	0
26	0	0	0	0	5711	5734	6416	6187	0	0	0	0
27	0	0	0	0	5937	5819	5053	6032	0	0	0	0
28	0	0	0	0	5875	6158	6349	6501	0	0	0	0
29	0		0	0	5666	6107	6359	6369	0	0	0	0
30	0		0	0	6084	6391	6388	5711	0	0	0	0
31	0		0		6007		6043	6053		0		0
ı (ı)	0	0	0	0	150 876	134 783	180 366	181 701	77 604	0	0	0

Total (L) 0 0 0 0 150,876 134,783 180,366 181,701 77,604 0 0 0

2022 Ostara Caustic Usage (kg)

					2022	Ostala Ca	astic Osag	ים ויים				
_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	752	659	786	697	0	0	0
2	0	0	0	0	0	664	555	811	815	0	0	0
3	0	0	0	0	0	639	609	678	752	0	0	0
4	0	0	0	0	192	580	647	889	812	0	0	0
5	0	0	0	0	703	626	560	765	751	0	0	0
6	0	0	0	0	673	625	567	745	685	0	0	0
7	0	0	0	0	782	519	729	761	670	0	0	0
8	0	0	0	0	728	678	648	755	781	0	0	0
9	0	0	0	0	709	576	584	745	697	0	0	0
10	0	0	0	0	690	736	667	749	595	0	0	0
11	0	0	0	0	627	623	729	860	683	0	0	0
12	0	0	0	0	419	548	822	537	612	0	0	0
13	0	0	0	0	776	637	475	674	224	0	0	0
14	0	0	0	0	705	695	737	611	0	0	0	0
15	0	0	0	0	1008	535	427	441	0	0	0	0
16	0	0	0	0	918	285	466	327	0	0	0	0
17	0	0	0	0	930	0	525	420	0	0	0	0
18	0	0	0	0	731	0	174	614	0	0	0	0
19	0	0	0	0	239	0	438	487	0	0	0	0
20	0	0	0	0	611	0	609	365	0	0	0	0
21	0	0	0	0	588	0	704	358	0	0	0	0
22	0	0	0	0	574	0	712	527	0	0	0	0
23	0	0	0	0	632	0	722	561	0	0	0	0
24	0	0	0	0	461	345	717	644	0	0	0	0
25	0	0	0	0	526	394	761	755	0	0	0	0
26	0	0	0	0	582	318	824	710	0	0	0	0
27	0	0	0	0	501	437	542	711	0	0	0	0
28	0	0	0	0	457	487	795	804	0	0	0	0
29	0		0	0	519	462	641	836	0	0	0	0
30	0		0	0	492	553	729	867	0	0	0	0
31	0		0		618		743	681		0		0
kg)	0	0	0	0	17.389	12.713	19.518	20.476	8.771	0	0	0

Total (kg) 0 0 0 17,389 20,476 8,771 0 12,713 19,518

Gold Bar Wastewater Treatment Plant 10977 50 Street Edmonton AB T6A 2E9 Canada epcor.com

Approval 639-03-07 Gold Bar Waste Water Treatment Plant Operations Monthly Summary

2022

SENIOR MANAGER, OPERATIONS MANAGER, OPERATIONS	ALFREDO SUAREZ KEN GROSSELL (LEVEL IV)
LEVEL IV OPERATORS	 TOM KWAN DIEGO ESPINOSA JANAKA LEKAMWASAM MIKE NUNES JODY PENNER COLE BAKER ANDREW NIEUWENHUIS ISMAIL SANDOUGA ADAM KELLY

January

- Draining EPT 11/12 for inspection Jan 2nd
- Primary 7/8 in service Jan 2nd
- Ferm 1 rake drive failed breaker replaced Jan 3rd
- Pre-screen 1 repaired Jan 4th
- PSV lifted again for Boiler 9 Engineering MOC entered to investigate Jan 4th
- Pre-screen 5 chain catching scraper bar, repaired Jan 5th
- Bio air control valves freezing due to cold temp and condensate in air line Jan 5th
- Bio 6 VFA supernatant valve replaced Jan 6th
- Prim 5 thru 8 idler gear frozen called out Maintenance Jan 7th
- Bio/Sec 7 O/S & drained for chain repair Jan 9th
- P.E. sampler failed dead display repaired Jan 9th
- Blower 5 transmitter failed replaced Jan 10th
- Outfall 30 ice buildup cleared sump pump running again Jan 12th
- Sec/Bio 7 filling back in service Jan 14th
- EPT 9 cross conveyor broken shear pin Jan 17th
- Membrane Train 7 & 8 drain valve replacement Jan 17-19th

- Power bump No impact on Sec Blowers or UV Some pre-treat/primary equipment needed reset in field – Jan 23rd
- Dig 3 heat exchanger check valve leak Jan 24th
- Grit 5 pre-screen horizontal conveyor plug Jan 24th
- Chain repair Sec/Bio 7 Jan 27th back in service same day
- Membrane bleach tank fitting leak Jan 28th. 3 totes rush ordered as back up. Leak repaired Jan 31st.
- Raw sampler failed Jan 30th back in service Jan 31st
- Dig 6 HEX flush and acid clean Jan 31st/Feb 1st

February

- 7 secondary bypass events Feb 6th, 7th, 8th, 9th 11th, 13th, 17th & 19th
- 9 total dead ducks found U.V. building for Feb
- New raw sampler installed Feb 1st
- Dig 6 heat exchanger acid clean complete Feb 2nd
- Bios 1 thru 8 in winter mode Feb 3rd
- U.V. channel 4 influent gate failure Feb 6th
- U.V. channel 4 influent gate repaired Feb 8th
- Solids shutdown Feb 8th
- Dig 6 PSVs replaced Feb 9th
- Alum ordered for EPT 10 loads Feb 9th
- Broke shear pin EPT 9 Feb 12th
- Outfall 20 flow meter calibrated Feb 14th
- East scrubber shutdown for media replacement not complete, back in service Feb 16th
- Broken shear pin EPT 9 cross collector Feb 17th
- 4" elbow pipe fitting dropped in Sec 3 cross collector area Feb 18th
- Hypo cleans done at membrane Feb 23rd
- EPT blower tripped out E/I called out Feb 26th
- Sec 3 Cell 5 coupling failure Feb 27th
- Sec 8 Cell 3 shear pin failure Feb 27th
- Membrane Train 5 off line cassettes switched to Train 7 Feb 28th
- Filling Influent Channel 3, Grit Tanks 6/7, Screens 7/8 started Feb 28th

March

- 18 secondary bypass events Mar 12th, 15th, 16th 17th, 17th 18th, 18th 19th, 19th 20th, 20th, 21st, 22nd 23rd, 23rd 24th, 24th 25th, 25th, 26th, 27th, 28th, 29th, 30th & 31st
- 3 dead ducks found U.V. Building for March
- Influent Channel 3, Grit Tanks 6/7 filling and in service Mar 1st
- EPT 11/12 in service Mar 2nd
- Membrane Train 7 in service after coating installed Mar 2nd
- Membrane Train 5 O/S for coating Mar 2nd
- 1500 L of butterwash released notified by Compliance Team Mar 3rd
- Solids shutdown Mar 7th
- Broken shear pin EPT 9 cross collector Mar 7th
- MLSS meters calibrated Mar 9th

- Raw backup sampler tripping on under voltage Mar 10th
- Dig 6 gas space level radar freezing up Mar 11th
- Temporary heat to Grit Building 2 Mar 11th
- Grit 4 incline conveyor belt has a tear on side of belt new one ordered Mar 11th
- Broken seal water line on east scrubber recirc pump off 01:30 hrs Mar 11th
- Odour complaints Mar 13th & 15th
- Modulating gates for Influent Channel 2/3 confirmed working Mar 14th
- Screen 4 inspection complete Mar 15th
- TWAS pump for DAF 3/4 failed & replaced Mar 17th
- Capital Region flow reduced from 0.6 MLD to 0.3 MLD Mar 17th
- Sec 4 broken shear pin repaired Mar 19th
- Broken scraper bar Pre-screen 5 repaired Mar 19th
- Main raw sampler not working backup sampler working Repaired Mar 21st
- Screen 5 O/S for inspection Mar 22nd
- Capital Region flow off Mar 23rd
- Ferm 3 TPS pump 28584 O/S for repair Mar 22nd, repaired Mar 24th
- WAS 8 O/S for impeller replacement Mar 23rd
- Product water pump PCP 26632 check valve replaced Mar 23rd
- 10 loads of alum ordered for EPT March 24th
- Outfall 30 sump level issues reading high Mar 26th repaired Mar 29th
- Broken shear pin Sec 8 Cell 3 Mar 26th
- Voltus shutdown 5 min Mar 26th
- Broken shear pin EPT 9 Cell 8 Mar 27th
- Screen 6 O/S for inspection Mar 29th
- Low flow Train D switched to Train C Mar 29th
- East Scrubber off line for acid clean off for 15 hours fence line monitoring done
 Mar 29th
- Sec 2 Bio in summer mode Mar 30th
- U.V. planned outage 3 hrs Mar 31st
- Sec 6,7,8 Bios in summer mode Mar 31st

April

- 3 secondary bypass events Apr 19th, 20th, 26th 27th
- 4 dead ducks found at U.V.
- 2 Voltus shutdowns Apr 20th & 22nd
- 10 loads of alum ordered for EPT
- EPT 9/10 O/S draining for inspection Apr 1st
- North blend tank mixer motor fault using recycle pump Apr 2nd
- All bios back in summer mode Apr 4th
- Grit Tank 4 horizontal conveyor motor fault Apr 4th motor replaced Apr 6th
- Train D flushed, HEI complete for inspection Apr 5th
- East Scrubber shutdown 1 hr & 10 min to work on bleach pumps Apr 6th
- East Scrubber bleach pump PCP 65315 tube failure Apr 6th
- Broken shear pin Ferm 1 TPS 28432 Apr 7th
- Citric cleans for membrane tanks started Apr 7th
- Broken shear pin Ferm 1 TPS 28432 Apr 8th
- Caustic spill Labatt Brewery 62.7 cubic meters pH of 12 Apr 10th

- Sec 8 Cell 4 broken shear pin Apr 9th
- Boiler 1 blowdown line plugged cleaned out Apr 11th
- Ferm 1 TPS 28432 broken shear pin Apr 11th
- EPT 12 broken shear pin east pass Apr 12th
- Ferm 1 TPS 28430 broken shear pin Apr 14th
- Bio/Sec 1 drained for chain repair Apr 15th
- Ferm scrubber bleach pump 65313 & 65314 tube failure both pumps Apr 17th
- Sec/Bio 1 back in service Apr 21st
- RAS 1 volute leak Apr 21st RAS pump replaced Apr 22nd
- Weir cleaning started Apr 24th
- Capital Region supernatant flow started at 0.3 MLD Apr 25th
- Ferm 2 dewatering started to empty for Projects Apr 26th
- GRF truck Apr 27th
- Broken shear pin EPT 11 & 12 Apr 27th
- Draining Grit Tank 7 for east horizontal auger repair Apr 28th
- Lot of security cameras not working WR entered

May

- 5 secondary bypass events May 1st 2nd, May 6th, May 19th 20th, May 25th 26th, & May 27th 28th
- 4 dead ducks found at U.V.
- 3 Voltus shutdown events May 10th, 24th & 25th
- 9 trucks at GRF
- Grit Tank 7 back in service May 3rd
- Grit Tank 4 O/S for inspection May 3rd
- Ops Retreat May 3rd
- Ferm 4 TPS pump 28645 piston leaking O/S May 4th
- Supernatant to Capital Region increased from 0.3 MLD to 0.6 MLD May 6th
- Sec 8 Cell 3 shear pin failure May 7th
- Bio 3 Cell 8 mixer failure May 8th
- Dig 6 O/S for PRV leaking May 9th replaced May 18th
- East Scrubber O/S for media replacement May 10th
- East Scrubber back in service after media replacement May 11th
- Capital Region supernatant increased from 0.6 MLD to 0.75 MLD May 12th
- Broken shear pin Sec 4 Cell 4 May 14th
- EPT 11 cross collector broken shear pin May 15th
- Capital Region supernatant return increased from 0.75 MLD to 0.9 MLD May 17th
- EPT 12 west sludge collector drive shear pin failure May 18th
- South blend tank O/S for inspection May 17th back in service May 20th
- Grit Tank 5 O/S for inspection May 18th
- Sec 3 Cell 1 shear pin failure May 22nd
- Sec 8 Cell 1 shear pin failure May 23rd
- Prim 3 sludge pump 19536 check valve failure May 26th
- EPT sludge lines flushed with F.E. for line inspection May 26th
- Prim 7 sludge pump failure 19616 replaced May 28th
- North blend tank drained & O/S for inspection May 29th

- EPT gas detection panel failed repaired May 30th
- EPT 9/10 back in service May 31st
- Grit Tank 5 back in service May 31st
- Main power feeder bump H-14 trip on H-17, some loss of equipment/restarted May 31st
- EPT scrubber recirc pump off for 1.5 hours due to power bump May 31st

June

- 14 secondary bypass events June 6th, June 6th 7th, June 8th, June 12th 13th, June 14th 16th, June 17th 18th, June 18th, June 21st 22nd, June 22nd 23rd, June 23rd June 25th, June 25th, June 26th, & June 29th
- GRF 11 trucks
- 20 loads of alum ordered for EPT
- North blend tank back in service after inspection June 1st
- Grit Tank 2/Screen 2 O/S for inspection June 5th
- Capital Region supernatant flow increase from 0.8 MLD to 1.0 MLD June 6th
- Secondary weir cleaning complete June 6th
- Primary 4 dewatered for cleaning and chain replacement June 7th
- Bypass gates 2736 lost communication / local control only June 8th
- Spill of 1200 L of milk from Saputo June 9th
- Grit Tank 5 incline auger jammed/cable still in service for wet weather June 12th
- Membrane product water pump PDP45348 broken check valve June 13th
- Sec 9 cross collector broken shear pin June 13th
- Sec 8 east drive broken shear pin June 15th
- Sec bypass gate control issues went back to old power supply for gates 35/36/49/50 – June 12th
- Blower 1 tripped blown fuse June 16th
- Grit Tank 2/Screen 2 back in service after inspection June 16th
- 10 loads of alum ordered for EPT June 16th
- Broken shear pin Sec 3 Cell 1 June 17th
- Outfall 30 flodar repaired due to failure June 17th
- Grit Tank 1/Screen 1 O/S drained for inspection June 19th
- Density meter changed for EPT 9/10 June 20th
- EPT 12 shear pin failure June 21st
- Density meter changed for EPT 11/12 June 21st
- New RAS 10 pump installed June 21st
- Both raw samplers failed grab samples taken June 21st
- Sec 4 Cell 3 broken shear pin June 22nd
- Both raw samplers failed grab samples taken June 22nd
- Membrane Train 3 aeration valve FV-8600 failed June 22nd
- Supernatant flow to Capital Region increased to 0.7 MLD June 22nd
- Broken shear pin EPT 12, Sec 4 Cell 3, Sec 10 Cell 1, Sec 8 Cell 3 June 22nd
- Main raw sampler not working again June 22nd
- Pre-screen 5 horizontal conveyor jammed with rags June 22nd
- Raw samplers plugged grab samples taken June 23rd
- East scrubber chlorine detector AIT-0955 failed calibration needed June 23rd

- Membrane Train 6 cyclic air valve changed June 23rd
- EPT 12 broken shear pin June 24th
- Outfall 30 sump pump level indicator stopped reading June 24th
- Train D west pump 45528 tripped switched to Train C June 24th
- Pre-screen 4 incline grit auger keeps tripping on VFD fault June 24th
- 6 bags of poly delivered to DAF June 24th
- Drainage reported spill of 2000L of skim milk from Saputo June 25th
- Grit 4 incline auger belt broken & repaired June 26th
- Broken shear pin Sec 3 June 26th
- EPT 9 12 scum tank level indicator nor starting scum pumps June 30th

July

- 8 secondary bypass events July 2nd, 5th 6th, 6th 7th, 7th 8th, 8th, 9th, 25th, & 31st
- GRF 5 trucks
- Raw sampler issues bottle switching July 1st
- Sec 9 cross collector shear pin broken July 1st
- Capital Region supernatant flow increased to 1.1 MLD July 3rd
- EPT poly tote ordered July 4th
- 1300 L of milk released to sewer by Saputo reported July 7th
- Sec 10 RAS pump used for Sec 11 RAS 11 pump O/S for repair July 7th
- Grit Tank 3 O/S for cleaning & inspection July 8th
- Broken shear pin Sec 8 Cell 3 July 10th
- Sec 9 cross collector broken shear pin July 10th
- Draining Grit Tank 5 to start to clean out grit July 11th returned July 12th
- Grit Tank 4 broken auger July 11th
- Membrane west contact tank sample pump failed, using east pump July 14th
- RAS 4 pump will not run in cascade card failure July 16th
- RAS 2 tripping card failure July 16th
- Bio/Sec 11 O/S for cleaning & inspection July 16th
- Dig Square 1 transfer pump 20053 pin hole leak in spool July 17th
- 4 Voltus shutdowns July 16th, 18th, 26th, & 31st
- Grit Tank 4 O/S for auger repair July 19th
- Grit Tank 4 back in service July 21st
- Broken shear pin EPT 12 east drive July 21st
- Sec 11/Bio 11 back to Ops July 21st
- 3 Gold Bar WWTP AQMS H2S exceedances July 22nd, 25th, & 30th
- Membrane Train 1 air valve issues resolved July 26th
- Power interruption at Ostara. Blown fuse on power pole July 27th
- 600-700 L of chromic acid released to sewer July 27th
- EPT Scrubber recirc pump discharge for stilling well plugged, loss of ORP readings
 July 30th
- PE sampler fridge not cooling July 30th

August

- 3 secondary bypass events Aug 4th, 5th, & 27th
- 11 trucks at GRF

- 1 dead duck found at U.V. Aug 1st
- Membrane Train 6 permeate flow issue, off Aug 1st back in service Aug 3rd
- Bypass Gate FG-2749 I/O input failure Aug 2nd
- 45 Gold Bar AQMS H2S exceedances
- Labatts caustic release 10 m³ to collection system Aug 3rd
- Broken shear pin on Sec 8 Cell 4 Aug 4th
- Broken shear pin on Sec 8 Cell 3 Aug 5th
- Cell 5 dredge pumping started Aug 5th
- Hidrostal loading pump failed using backup pump Aug 7th
- Dig 7/8 HEX inspection planned Aug 8th
- UV transformer planned for Aug 8th
- Pinhole leak RAS 11 discharge Aug 8th repaired Aug 9th
- Dewatered Grit Tank 5 to clean/repair auger/repair failed Aug 9th
- Fermenter 2 in service Aug 9th
- Draining Fermenter 3 for projects & inspection Aug 9th
- Fire drill Admin Building Aug 9th
- Broken shear pin Sec 9 Cell 3 Aug 11th
- Membrane Train 1 aeration valve failed Aug 11th repaired Aug 15th
- Sec 10 Cell 1 broken shear pin Aug 15th
- West Scrubber both bleach pumps tube failure Aug 16th
- Transfer pump 20055 Digester Square 1 breaker failure using backup pump Aug 17th
- DAF 3/4 drained for inspection Aug 17th
- Broken shear pin Primary 8 Aug 19th
- DAF subnatant sent to headworks to help odour control Aug 19th
- Labatts reported ammonia spill no volume mentioned Aug 21st
- Short term Outfall 30 sampler replaced Aug 23rd
- Broken shear pin Sec 2 Cell 3 Aug 23rd
- East scrubber ORP/pH meter pots plugged hose setup to drain Aug 23rd
- Broken shear pin Sec 4 Cell 5 Aug 24th
- Broken shear pin Sec 9 Aug 26th
- EPT 11 broken shear pin Aug 27th
- Sec 10/Bio 10 O/S for clarifier inspection Aug 28th
- Labatts reported spill 17.9 cubic meters of liquid with pH of 12 Aug 28th
- External glycol spill reported by Drainage going to Gold Bar several thousand gallons – Aug 30th
- Outfall 10 flow meter replaced Aug 30th

September

- 3 secondary bypass events Sept 7th, 15th & 19th
- 5 trucks to GRF
- 5 Voltus shutdowns Sept 1st, 11th, 13th, 15th & 27th
- Sec 10 back in service after inspection Sept 2nd
- Broken shear pin Sec 8, Cell 3 Sept 6th
- Recirc pump for blend tank replaced Sept 6th
- Membrane bleach tote setup for day tank repair Sept 7th
- Broken shear pin Sec 10, Cell 1 Sept 7th

- BNR sampling completed Sept 7th & 28th
- Membrane day tank repaired Sept 8th
- Alum dosing for EPT set to mass Sept 8th
- Sec 6 O/S for draining/inspection Sept 11th
- EPT scrubber off line for nozzle & pump repair Sept 13th
- Outfall 10 new sampler not working E/I called in Sept 15th
- Grit Tank 5 incline conveyor broken shear pin Sept 17th
- Bio 1 MLSS meter failed new one on order Sept 19th
- Ostara off line draining for end of season Sept 19th
- Bio 1, Cell 3 mixer failed Sept 21st
- Grit 6/7 carbon scrubber tripped due to low suction temp running on hand Sept 21st
- EPT 11 west collector drive broken shear pin Sept 22nd
- Sec 7/Bio 7 in service after inspection Sept 23rd
- EPT 12 cross collector broken shear pin Sept 24th
- Sec 8, Cell 3 broken shear pin Sept 25th
- Boiler house 1 boiler on line Sept 26th
- Grit Building Carbon Scrubber media replaced Sept 27th
- Sec 11, Cells 3/4 flights skipping drive replaced Sept 29th
- Dig 6 back in service after heat exchanger cleaning completed Sept 29th
- DAF 1 O/S drained for cleaning and chain replacement Sept 29th
- Broken shear pin Sec 10, Cell 1 Sept 30th

October

- Secondary bypass events 0 events
- GRF 2 trucks Oct 6th, 7th
- Broken shear pin Sec 2, Cell 3 Oct 1st
- Labatts brewery reported 11 cubic meters of liquid with pH of 12 discharged to collection system – Oct 2nd
- Sec 6 dewatered & O/S for cleaning/inspection Oct 2nd
- PE sampler not working, taking grab samples pump replaced Oct 2nd
- New curtain installed in Outfall 30 Oct 4th
- Dig 8 PSVs replaced Oct 4th
- K-102 O/S for Maintenance work Oct 5th
- Broken shear pin Sec 8, Cell 3 Oct 5th
- West Scrubber bleach tank level indicator level freezing up Oct 7th
- Screen 1 has broken metal on chain track O/S Oct 8th
- Sec 6 back in service Oct 9th
- Broken shear pin Sec 9, Cell 7/8 Oct 9th
- EPT 12 broken shear pin cross collector Oct 9th
- DAF 6 broken shear pin Oct 10th
- EPT 12 broken shear pin Oct 11th
- Ferm 3 back to Operations ready for service Oct 12th
- North flare set as lead to see if it helps with odors around plant Oct 13th
- DAF 6 poly pump small leak at packing Oct 13th
- Broken shear pin Sec 8, Cell 3 Oct 15th
- UV Channel 3 O/S for bulb replacements Oct 16th

- DAF 2 O/S for chain replacement Oct 16th
- RAS 9 O/S for replacement Oct17th
- DeltaV upgrade started at Cloverbar/Ostara Oct 17th
- DAF saturation tank failure hole in tank Oct 18th
- Acid clean Fermenter Scrubber/media replacement Oct 18th Back in service Oct 22nd
- Sec 7 drained for chain tightening Oct 19th Back in service Oct 21st
- FI-4003 Outfall 10 flow meter failure all UV channels on line Oct 20th
- Membrane bleach pump 26627 leaking Oct 23rd
- Sec 1 dewatered for chain tightening Oct 24th In service Oct 27th
- Monitoring compliance called City of Edmonton released 1000L of calcium chloride – Oct 23rd
- Train 2 membrane flow controller actuator failed Oct 23rd
- EPT scum tank level indicator failed high Oct 26th
- Broken shear pin EPT 12 east pass Oct 26th
- West Scrubber recirc flow dropped off to zero line has build up in it Oct 27th
- Bleach pump 65318 tube failure West Scrubber Oct 28th
- West Scrubber bleach tank level indicator dropping out Oct 28th
- EPT 9 shear pin switch keeps tripping Oct 29th
- Switched flare back to south north flare pilot keeps shutting down due to wind Oct 29th
- Grit Tank 5 O/S for auger repair/inspection Oct 29th
- UV Channel 1 only 79 bulbs on set to lag 4 Oct 30th
- Sec 10, Cell 1 broken shear pin Oct 31st

November

- Secondary bypass events 0 events
- 13 dead ducks found Sec/UV for Nov
- GRF off for season 2 trucks at GRF Nov 3rd
- Grit Tank 5 auger repaired back in service Nov 3rd
- Fermenter Scrubber recirculation flow low cleaned pumps/lines, media replaced – Nov 3rd
- Sec 7, Cell 7/8 broken shear pin Nov 7th
- West Scrubber outage Nov 8th
- DAF 5/6 TWAS pump replaced Nov 9th
- West Scrubber bleach tank level indicator replaced Nov 9th
- Outfall 30 short & long term samplers calibrated and commissioned Nov 9th
- Sec 9 cross collector broken shear pin Nov 9th
- Exhaust fan for lab not working cold building E/I called out Nov 10th
- Sec 10, Cell 1 broken shear pin Nov 10th
- Network outage fiber cable cut Nov 11th
- DAF 1 broken shear pin Nov 11th
- Ferm 3 back in service Ferm 4 O/S for sampling line modifications Nov 15th
- South poly system auger not working Nov 15th
- Channel 1 in service Channel 3 O/S to drain Grit Tank 7 and to get the influent gate closed – Nov 15th

- Ferm Scrubber bleach pump failure Nov 15th
- Influent Channel 3 back in service after Grit Tank 7 influent gate closed Nov 17th
- PE sampler controller failed replaced Nov 17th
- EPT 11 broken shear pin Nov 18th
- Blower 5 discharge valve failed to close contactor failed O/S Nov 18th
- East Scrubber foaming issues Nov 20th
- Raw sampler not drawing sufficient sample Nov 21st
- RAS 9 suction pipe leak temp repair done Nov 24th
- Fiber optic cable repaired for Ostara Nov 24th
- Broken shear pin Sec 10, Cell 1 Nov 26th
- Bleach pump to membrane plant leaking O/S, totes ordered Nov 28th
- Primary sludge line 1 elbow leak changed to line 2 Nov 30th
- Bleach pump to membrane facility repaired, back in service Nov 30th

December

- Secondary bypass events 0 events
- 29 dead ducks for the month of Dec
- 1 Voltus call Dec 21st
- Fermenter 4 drained Dec 1st
- RAS 9 suction piping leak patched Dec 5th
- EPT poly system flushed with mineral oil Dec 5th
- Prim 5 to 8 hot water scum tank cleaning Dec 6th
- EPT 9/10 O/S for cleaning and inspection Dec 4th
- East Scrubber nozzles replaced Dec 7th
- Sec 9 cross collector broken shear pin Dec 7th
- Sec 10 cross collector broken shear pin Dec 9th
- P.E. sampler failed grab samples taken Dec 12th
- Plant power outage @ 10:20 switch from Kennedale to Hardisty feed UV lost for ~4 minutes – Dec 13th
- Planned power outage to switch back from Hardisty to Kennedale feed UV lost for ~9 minutes @ 14:13 – Dec 13th
- Secondary 5 broken flight Dec 14th back in service Dec 15th
- RAS 11 leak patched Dec 14th
- Vac/flusher truck cleaning out Scum 5 to 8 lines Dec 15th
- Blower 5 repaired and available for use Dec 19th
- Heater setup for grit tank 4/5 basement due to no heat potable lines cracked/frozen sumps – Dec 19th
- DAF 3 in service after pressure tank repair Dec 20th
- East Scrubber fan icing over, off 45 minutes to clean up Dec 20th
- Water line from lab to Maint. Trailer leaking/cracked pipe/isolated Dec 25th
- Air handling unit in DAF not working Dec 26th
- Broken shear pin Sec 10 Cell 1 Dec 27th
- Ferm Scrubber recirc pump tripping E/I called in Dec 29th
- Prim 7 scum discharge line plugged Dec 29th
- Prim 8 scum pumps check valves plugged Dec 30th

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report January 2022

			East Scrubber			Ferr	menter Scrubber			١	Vest Scrubber				EPT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
January 1, 2022	9.8	670.1	0.0	0.0	9.8	669.6	9.0	44.0	9.8	670.0	0.7	0.0	9.8	680.1	10.4	1178.1	24.3	-0.4	0.4	0.1	0.0	645.4	
January 2, 2022	9.8	670.2	0.0	0.0	9.8	670.1	9.0	106.0	9.8	669.0	1.1	0.0	9.8	679.9	6.9	618.2	23.6	-0.4	0.4	0.1	0.0	608.2	
January 3, 2022	9.8	670.0	0.0	0.0	9.8	670.1	8.8	1.5	9.8	670.0	2.8	0.0	9.8	680.1	5.2	405.1	23.4	-0.4	0.4	0.1	0.0	339.4	
January 4, 2022	9.8	670.2	0.0	0.0	9.8	670.4	8.3	9.0	9.8	669.9	3.6	0.0	9.8	680.1	5.1	459.5	4.2	0.0	0.1	0.1	0.0	219.1	
January 5, 2022	9.8	670.0	0.0	0.0	9.8	670.6	6.2	69.8	9.8	669.9	3.3	0.0	9.8	680.0	4.0	387.4	-3.0	0.0	0.0	0.1	0.0	100.5	
January 6, 2022	9.8	670.1	0.0	0.0	9.8	670.0	4.0	157.8	9.8	669.7	3.2	0.0	9.8	680.1	4.9	494.6	11.3	0.0	0.0	0.2	0.0	0.0	
January 7, 2022	9.8	670.0	0.0	0.0	9.8	669.7	5.0	31.1	9.8	670.2	2.9	0.0	9.8	680.2	4.7	447.0	2.6	0.0	0.0	0.1	0.0	0.0	11.16
January 8, 2022	9.8	670.1	0.0	0.0	9.8	669.8	6.0	1.0	9.8	669.9	0.4	0.0	9.8	680.1	2.7	200.1	-17.0	0.0	0.0	0.1	0.0	0.0	
January 9, 2022	9.8	670.1	0.0	0.0	9.8	669.4	7.8	4.0	9.8	670.5	0.0	0.0	9.8	680.3	1.7	143.7	-6.4	0.0	0.0	0.1	0.0	0.0	
January 10, 2022	9.8	669.8	0.0	0.0	9.8	671.1	9.1	10.6	9.8	669.2	0.9	0.0	9.8	680.1	1.6	107.7	3.8	0.0	0.0	0.1	0.0	0.0	
January 11, 2022	9.8	669.9	0.0	0.0	9.7	665.6	29.7	151.3	9.8	667.1	7.6	0.0	9.8	680.0	4.1	350.8	13.7	-0.1	0.1	0.1	0.0	0.0	
January 12, 2022	9.8	670.1	0.0	0.0	9.8	670.6	35.8	78.5	9.8	667.9	6.9	0.0	9.8	680.1	3.2	252.6	24.4	0.1	0.0	0.1	0.0	0.0	
January 13, 2022	9.8	672.0	0.0	0.0	9.8	670.3	22.7	112.9	9.8	665.9	5.7	0.0	9.8	687.1	2.7	181.7	20.3	0.1	0.0	0.1	0.0	0.0	
January 14, 2022	9.8	669.8	0.0	0.0	9.8	669.5	21.4	4.2	9.8	671.0	6.0	0.0	9.8	680.0	2.7	182.1	19.8	0.1	0.7	0.1	0.0	0.0	3.85
January 15, 2022	9.8	669.7	0.1	0.0	9.8	670.3	20.4	4.5	9.8	666.1	7.7	0.0	9.8	680.1	3.9	288.8	20.0	-0.4	0.4	0.1	0.0	0.0	
January 16, 2022	9.8	667.6	0.3	0.0	9.8	669.7	20.5	5.6	9.8	630.1	7.8	0.0	9.8	679.9	3.8	279.4	20.0	-0.4	0.4	0.1	0.0	0.0	
January 17, 2022	9.8	672.4	0.5	0.0	9.8	670.8	21.3	43.1	9.8	664.6	7.7	0.0	9.8	680.2	4.9	382.2	20.3	-0.4	2.1	0.1	0.0	0.0	
January 18, 2022	9.8	669.3	0.3	0.0	9.8	670.9	10.2	10.3	9.8	669.3	3.3	0.0	9.8	680.1	3.3	312.8	22.1	-0.4	10.6	0.1	0.0	12.0	
January 19, 2022	9.8	669.5	0.6	0.0	9.8	669.8	8.0	20.9	9.8	669.0	4.5	0.0	9.8	680.1	3.7	360.5	21.9	-0.4	10.5	0.1	0.0	37.2	
January 20, 2022	9.8	670.8	1.3	0.0	9.8	669.8	10.5	5.7	9.8	667.6	6.1	0.0	9.8	680.0	4.1	344.6	21.3	-0.4	2.5	0.1	0.0	0.5	
January 21, 2022	9.8	670.4	0.7	0.0	9.8	669.9	12.3	2.0	9.8	667.2	6.9	0.0	9.8	680.1	3.8	312.9	14.8	-0.2	0.2	0.1	0.0	0.1	18.9
January 22, 2022	9.8	669.9	0.6	0.0	9.8	670.0	12.0	4.9	9.8	665.2	7.0	0.0	9.8	680.1	4.8	370.9	5.2	0.0	0.0	0.1	0.0	0.0	
January 23, 2022	9.8	670.4	0.6	0.0	9.8	670.3	9.9	16.6	9.9	665.4	4.3	0.0	9.8	680.1	4.0	313.9	10.3	-0.1	0.1	0.1	0.0	1.0	
January 24, 2022	9.8	669.8	0.3	0.0	9.8	670.1	8.5	1.0	9.8	669.0	1.6	0.0	9.8	680.3	2.2	158.7	7.9	-0.2	0.2	0.1	0.0	12.7	
January 25, 2022	9.8	671.7	0.5	0.0	9.8	668.4	9.7	2.4	9.8	667.7	4.7	0.0	9.8	690.0	3.7	315.8	3.7	-0.1	0.1	0.1	0.0	19.4	
January 26, 2022	9.8	669.8	0.6	0.0	9.9	672.3	9.8	4.1	9.8	668.3	5.5	0.0	9.8	680.3	3.7	228.4	3.3	0.0	0.0	0.1	0.0	0.1	
January 27, 2022	9.8	669.9	0.8	0.0	9.8	669.3	13.5	15.1	9.8	668.0	5.9	0.0	9.8	680.0	2.8	165.1	-0.1	0.0	0.0	0.1	0.0	0.0	
January 28, 2022	9.8	669.8	0.9	0.0	9.8	670.2	12.9	1.0	9.8	667.4	7.9	0.0	9.8	680.1	4.1	263.9	-1.3	0.0	0.0	0.1	0.0	0.0	45.92
January 29, 2022	9.8	670.0	0.7	0.0	9.8	670.2	10.8	18.7	9.8	667.2	8.9	0.0	9.8	680.0	4.7	294.6	2.5	0.0	0.0	0.1	0.0	0.0	·
January 30, 2022	9.8	670.1	0.6	0.0	9.8	670.0	11.3	2.0	9.8	667.0	9.7	0.0	9.8	680.1	5.2	330.1	2.1	0.0	0.0	0.1	0.0	0.0	
January 31, 2022	9.8	670.5	0.4	0.0	9.8	670.5	8.8	1.1	9.8	666.8	7.2	0.0	9.8	680.2	4.4	287.8	-9.4	0.0	0.0	0.1	0.0	10.2	
																							·
Avg	9.8	670.1	0.3	0.0	9.8	670.0	12.7	30.4	9.8	667.0	4.9	0.0	9.8	680.6	4.1	336.1	10.0	-0.1	0.9	0.1	0.0	64.7	19.96
Min	9.8	667.6	0.0	0.0	9.7	665.6	4.0	1.0	9.8	630.1	0.0	0.0	9.8	679.9	1.6	107.7	-17.0	-0.4	0.0	0.1	0.0	0.0	3.85
Max	9.8	672.4	1.3	0.0	9.9	672.3	35.8	157.8	9.9	671.0	9.7	0.0	9.8	690.0	10.4	1178.1	24.4	0.1	10.6	0.2	0.0	645.4	45.92

Appendix D - Air Pollution Control System Data

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report February 2022

			East Scrubber			Feri	menter Scrubber				West Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
February 1, 2022	9.80	669.6	0.28	0.0	9.80	670.0	7.90	0.1	9.80	667.5	6.12	0.0	9.80	680.2	3.8	262.6	-15.7	0.04	0.00	0.1	0.0	48.1	
February 2, 2022	9.78	672.1	0.09	0.0	9.80	670.2	7.01	0.8	9.80	668.4	5.35	0.0	9.80	680.1	3.3	231.8	-18.3	0.04	0.00	0.1	0.0	50.5	
February 3, 2022	9.83	669.9	0.13	0.0	9.80	670.2	6.28	2.0	9.80	668.5	4.91	0.0	9.80	680.2	3.0	196.9	-1.4	-0.12	0.15	0.1	0.0	7.4	8.16
February 4, 2022	9.79	669.9	0.23	0.0	9.79	669.2	9.43	15.5	9.80	668.6	5.79	0.0	9.80	680.0	3.4	234.4	22.7	-0.40	0.44	0.1	0.0	0.4	
February 5, 2022	9.80	670.0	0.17	0.0	9.80	669.8	11.11	161.5	9.79	666.6	6.47	0.0	9.80	680.1	4.0	267.0	20.8	-0.43	0.44	0.1	0.0	0.0	
February 6, 2022	9.80	670.1	0.18	0.0	9.80	670.2	11.94	0.5	9.81	666.7	5.72	0.0	9.79	679.9	5.1	353.9	19.6	-0.44	0.45	0.1	0.0	0.0	
February 7, 2022	9.79	670.8	0.09	0.0	9.80	669.8	11.71	5.3	9.68	664.2	2.73	0.0	9.79	686.3	3.0	151.2	19.4	-0.44	0.43	0.1	0.0	0.0	
February 8, 2022	9.80	670.1	0.21	0.0	9.79	669.4	8.65	2.3	9.77	669.8	2.77	0.0	9.80	680.3	2.9	133.3	19.2	-0.45	0.44	0.1	0.0	0.0	
February 9, 2022	9.80	670.0	0.11	0.0	9.80	670.4	11.46	0.3	9.81	670.3	2.86	0.0	9.81	680.3	2.4	99.9	19.3	-0.44	0.44	0.1	0.0	135.8	
February 10, 2022	9.81	669.9	0.06	0.0	9.80	671.1	4.96	0.2	9.80	669.9	0.09	0.0	9.80	680.6	0.5	3.0	18.9	-0.46	0.43	0.1	0.0	3.8	
February 11, 2022	9.81	670.1	0.00	0.0	9.81	669.7	4.33	21.6	9.80	670.0	0.26	0.0	9.80	680.2	0.6	5.3	19.8	-0.44	0.43	0.1	0.0	0.0	8.16
February 12, 2022	9.80	669.7	0.00	0.0	9.80	669.8	6.03	20.7	9.82	668.5	2.32	0.0	9.80	680.1	2.1	83.0	19.9	-0.44	0.44	0.1	0.0	0.0	
February 13, 2022	9.80	670.2	0.00	0.0	9.79	669.4	6.57	7.9	9.79	668.1	3.17	0.0	9.78	680.0	3.4	153.2	19.3	-0.44	0.43	0.1	0.0	0.0	
February 14, 2022	9.80	670.0	0.00	0.0	9.80	669.8	9.09	8.5	9.80	668.3	3.40	0.0	9.81	680.2	2.6	111.2	19.7	-0.42	0.44	0.1	0.0	0.0	
February 15, 2022	9.80	670.1	0.00	0.0	9.80	669.9	9.30	4.2	9.80	666.4	4.38	0.0	9.80	680.1	3.5	169.4	20.0	-0.42	0.44	0.1	0.0	0.0	
February 16, 2022		697.9	0.08	0.0	9.80	670.0	10.38	19.1	9.80	661.1	3.22	0.0	9.80	680.1	2.9	140.8	20.6	-0.41	0.45	0.1	0.0	12.6	
February 17, 2022	9.79	670.3	0.00	0.0	9.80	670.1	11.07	19.3	9.80	667.5	3.10	0.0	9.79	680.0	3.6	158.7	19.9	-0.43	0.42	0.1	0.0	8.4	8.24
February 18, 2022		669.6	0.00	0.0	9.80	670.0	7.92	9.0	9.80	666.2	3.00	0.0	9.81	680.2	2.7	119.6	20.2	-0.41	0.44	0.1	0.0	13.0	
February 19, 2022		670.4	0.00	0.0	9.80	670.0	7.94	12.0	9.79	664.1	4.32	0.0	9.80	680.1	3.6	148.1	19.6	-0.43	0.43	0.1	0.0	7.6	
February 20, 2022		669.7	0.00	0.0	9.80	669.7	9.54	5.1	9.81	664.4	3.98	0.0	9.80	680.1	3.0	144.9	21.0	-0.40	0.44	0.1	0.0	22.7	
February 21, 2022		669.9	0.00	0.0	9.80	669.8	10.25	1.3	9.80	666.6	3.33	0.0	9.80	680.1	2.8	140.8	21.3	-0.41	0.45	0.1	0.0	15.1	
February 22, 2022		670.0	0.00	0.0	9.80	670.0	8.60	6.0	9.80	667.2	3.28	0.0	9.80	680.2	2.8	122.4	21.4	-0.41	0.44	0.1	0.0	5.0	
February 23, 2022		669.8	0.00	0.0	9.81	677.5	3.17	8.1	9.80	667.8	4.32	0.0	9.80	680.1	3.0	43.7	21.1	-0.41	0.43	0.0	0.0	16.0	
February 24, 2022		673.7	0.00	0.0	9.79	668.5	2.08	19.7	9.72	669.8	4.53	0.0	9.80	683.4	2.3	10.8	22.3	-0.41	0.41	0.1	0.0	2.0	8.83
February 25, 2022		670.0	0.00	0.0	9.79	668.8	2.94	40.5	9.80	669.5	3.96	0.0	9.80	680.2	2.3	0.0	25.9	-0.41	0.42	0.1	0.0	61.6	
February 26, 2022		670.2	0.00	0.0	9.80	670.3	3.86	54.8	9.80	669.2	4.36	0.0	9.97	668.9	3.0	0.0	25.4	-0.42	0.41	0.1	0.0	63.3	
February 27, 2022		670.1	0.00	0.0	9.80	670.1	3.71	56.5	9.80	668.3	4.75	0.0	9.99	671.6	2.4	13.4	25.6	-0.41	0.42	0.1	0.0	5.6	
February 28, 2022	9.81	670.2	0.09	0.0	9.80	670.1	3.60	25.8	9.80	669.2	4.19	0.0	9.80	680.1	1.7	48.3	25.7	-0.41	0.41	0.1	0.0	6.6	
NP	9.80	671.2	0.06	0.0	9.80	670.1	7.53	18.9	9.79	667.6	3.81	0.0	9.81	679.8	2.8	126.7	17.6	-0.38	0.39	0.1	0.0	17.3	8.35
/in	9.78	669.6	0.00	0.0	9.79	668.5	2.08	0.1	9.68	661.1	0.09	0.0	9.78	668.9	0.5	0.0	-18.3	-0.46	0.00	0.0	0.0	0.0	8.16
Max	9.83	697.9	0.28	0.0	9.81	677.5	11.94	161.5	9.82	670.3	6.47	0.0	9.99	686.3	5.1	353.9	25.9	0.04	0.45	0.1	0.0	135.8	8.83

Appendix D - Air Pollution Control System Data

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report March 2022

			East Scrubber			Ferr	menter Scrubber			V	Vest Scrubber			E	EPT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
March 1, 2022	9.74	671.2	0.19	0.0	9.77	669.8	3.55	15.6	9.80	668.2	4.93	0.0	9.80	680.1	1.8	90.9	25.6	-0.41	0.42	0.1	0.0	0.1	
March 2, 2022	9.80	670.1	0.18	0.0	9.80	670.2	3.43	13.5	9.80	668.9	3.94	0.0	9.80	680.0	1.9	0.0	25.5	-0.41	0.43	0.1	0.0	54.9	9.02
March 3, 2022	9.80	670.0	0.07	0.0	9.80	669.9	3.35	14.8	9.80	669.3	2.29	0.0	9.80	680.0	1.7	0.0	25.5	-0.41	0.43	0.1	0.0	93.0	
March 4, 2022	9.80	670.1	0.03	0.0	9.80	670.0	3.04	11.0	9.79	668.6	2.74	0.0	9.79	680.0	3.5	0.0	26.2	-0.40	0.42	0.1	0.0	7.4	
March 5, 2022	9.80	669.9	0.00	0.0	9.80	670.1	3.31	17.8	9.80	667.1	3.79	0.0	9.80	680.3	1.2	0.0	26.3	-0.41	0.43	0.1	0.0	1.2	
March 6, 2022	9.80	670.1	0.00	0.0	9.80	669.9	3.15	12.6	9.80	667.1	4.08	0.0	9.81	680.4	0.7	0.0	25.5	-0.41	0.42	0.1	0.0	14.0	
March 7, 2022	9.80	670.2	0.14	9.4	9.80	669.9	2.65	13.1	9.80	664.5	2.82	0.0	9.80	680.3	0.7	0.0	25.1	-0.43	0.40	0.1	0.0	1.3	
March 8, 2022	9.80	670.0	0.26	21.6	9.80	670.0	3.85	13.8	9.80	670.3	2.06	0.0	9.96	713.7	2.0	0.0	25.9	-0.41	0.42	0.1	0.0	8.7	
March 9, 2022	9.80	670.0	0.24	175.6	9.80	670.0	6.10	387.8	9.80	670.3	1.95	0.0	9.80	680.3	1.0	53.8	26.3	-0.40	0.42	0.1	0.0	47.9	23.55
March 10, 2022	9.80	674.4	0.00	343.1	9.80	669.9	10.72	1217.5	9.78	670.3	1.51	158.5	9.78	686.2	1.3	402.0	26.5	-0.40	0.42	0.1	35.6	728.0	
March 11, 2022	9.80	672.8	0.00	291.7	9.80	669.7	11.81	1153.8	9.80	669.7	1.13	233.9	9.80	680.5	0.9	1939.2	26.2	-0.40	0.42	0.1	0.3	2290.5	
March 12, 2022	9.80	670.2	0.00	374.0	9.79	670.2	14.02	1385.7	9.79	670.2	0.92	220.1	9.79	673.0	1.7	3318.0	24.6	-0.42	0.42	0.1	2.5	1303.4	
March 13, 2022	9.80	670.1	0.00	395.9	9.81	670.0	9.14	879.5	9.80	669.7	0.67	197.8	9.81	695.7	0.6	942.1	25.5	-0.41	0.41	0.1	2.0	778.1	
March 14, 2022	9.80	669.9	0.00	391.7	9.79	669.7	11.25	1032.1	9.81	670.4	0.80	172.6	9.78	693.8	1.2	1840.4	25.2	-0.41	0.42	0.1	3.2	543.2	
March 15, 2022	9.80	670.0	0.00	348.4	9.79	670.5	11.93	876.0	9.82	669.9	0.55	158.7	10.77	727.0	2.2	5786.8	24.6	-0.42	0.40	0.1	3.1	36.5	
March 16, 2022	9.79	670.0	0.18	335.3	9.81	670.5	6.37	364.1	9.82	670.2	0.59	148.7	10.53	686.1	0.7	392.9	24.4	-0.43	0.41	0.1	7.2	24.0	26.07
March 17, 2022	9.81	670.0	0.00	266.5	9.81	670.4	3.20	214.0	9.80	670.8	0.01	184.0	9.80	680.6	0.3	232.5	24.4	-0.42	0.41	0.1	6.2	257.7	
March 18, 2022	9.80	669.8	0.00	375.4	9.80	669.9	2.03	128.2	9.80	670.5	0.00	190.1	9.80	680.6	0.3	269.9	24.3	-0.42	0.41	0.1	0.6	187.3	
March 19, 2022	9.80	670.1	0.00	262.8	9.81	670.1	3.14	212.7	9.81	670.8	0.00	179.9	9.81	680.5	0.2	63.8	24.5	-0.42	0.41	0.1	1.9	168.1	
March 20, 2022	9.80	670.1	0.00	266.8	9.80	670.1	3.03	223.4	9.79	671.5	0.00	174.9	9.79	680.1	0.4	199.5	24.6	-0.42	0.41	0.1	0.9	287.0	
March 21, 2022	9.78	673.7	0.00	137.2	9.78	667.2	2.79	199.0	9.80	670.8	0.03	119.0	9.78	680.6	0.5	244.2	24.7	-0.42	0.42	0.1	3.6	265.3	
March 22, 2022	9.80	669.9	0.76	349.5	9.80	669.9	4.65	285.2	9.81	670.4	0.02	152.4	9.81	680.3	0.3	127.5	24.0	-0.43	0.42	0.1	2.8	171.5	22.08
March 23, 2022	9.80	670.0	0.00	0.0	9.81	670.2	5.24	143.4	9.79	668.5	0.00	135.9	9.79	680.3	0.2	45.4	23.9	-0.43	0.40	0.1	3.2	0.0	
March 24, 2022	9.80	670.4	0.00	7.5	9.80	670.0	2.72	60.6	9.80	673.0	0.00	107.5	9.80	680.2	0.3	51.9	24.5	-0.43	0.41	0.0	2.0	0.2	
March 25, 2022	9.80	669.9	0.00	51.7	9.80	669.9	3.57	23.1	9.79	670.5	0.04	87.4	9.81	680.1	0.5	142.1	24.9	-0.42	0.42	0.1	1.3	3.5	
March 26, 2022	9.80	670.0	0.00	168.7	9.80	669.9	5.24	31.8	9.81	670.9	0.27	46.5	9.80	680.2	1.2	763.7	25.1	-0.41	0.41	0.1	1.1	2.5	
March 27, 2022	9.80	670.0	0.00	120.8	9.80	669.9	4.75	10.1	9.79	669.0	0.33	8.6	9.80	679.9	1.7	1365.2	24.9	-0.40	0.41	0.1	1.1	2.3	
March 28, 2022	9.80	670.0	0.00	134.4	9.80	669.9	6.09	6.2	9.80	670.7	0.39	10.0	9.80	674.6	2.2	2149.2	24.9	-0.42	0.55	0.1	0.9	3.2	
March 29, 2022	8.68	451.8	0.00	74.0	9.80	670.3	4.33	0.9	9.81	671.2	0.23	1.6	9.80	679.9	1.3	849.2	24.8	-0.42	1.06	0.1	5.7	2.4	11.83
March 30, 2022	9.75	672.2	0.00	129.6	9.80	669.6	5.13	22.0	9.79	668.9	0.28	2.0	9.79	679.7	2.7	2666.0	24.1	-0.43	0.41	0.1	11.0	10.2	
March 31, 2022	9.80	670.0	0.03	45.2	9.80	669.9	4.82	84.8	9.80	669.8	0.06	1.9	9.80	680.2	3.5	4052.4	23.6	-0.34	0.78	0.1	11.3	2.1	
	9.76	663.4	0.07	163.8	9.80	669.9	5.43	292.1	9.80	669.7	1.18	86.8	9.86	683.7	1.2	902.9	25.0	-0.41	0.45	0.1	3.5	235.3	18.51
N/S							2.03									0.0	25.0	-0.41	0.45		0.0	235.3	9.02
viin	8.68	451.8	0.00	0.0	9.77	667.2		0.9	9.78	664.5	0.00	0.0	9.78	673.0	0.2					0.0			
Max	9.81	674.4	0.76	395.9	9.81	670.5	14.02	1385.7	9.82	673.0	4.93	233.9	10.77	727.0	3.5	5786.8	26.5	-0.34	1.06	0.1	35.6	2290.5	26.07

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report April 2022

		-	ast Scrubber			Fer	menter Scrubber			١	West Scrubber			EI	PT Scrubber			GRF Scru	ıbber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H₂S Out (ppb)	H₂S Out (ppb)	H ₂ S Out (ppb)
April 1, 2022	9.80	669.8	0.00	0.0	9.80	669.8	6.18	74.7	9.80	668.5	0.59	0.0	9.82	680.5	2.4	2469.0	23.2	-0.28	0.99	0.1	12.8	73.2	
April 2, 2022	9.82	595.3	0.00	0.0	9.80	669.9	7.65	73.0	9.80	668.4	1.02	0.0	9.80	680.2	0.8	458.5	23.0	-0.29	0.99	0.1	16.2	190.5	
April 3, 2022	9.79	692.8	0.00	0.0	9.80	669.9	8.07	192.4	9.82	669.1	1.11	0.0	9.80	680.1	0.7	270.9	22.8	-0.29	0.97	0.1	14.2	38.4	
April 4, 2022	9.80	667.0	0.00	0.0	9.80	669.9	9.81	219.0	9.80	670.5	1.08	0.0	9.81	680.9	0.7	227.2	22.8	-0.29	0.97	0.1	16.8	22.4	
April 5, 2022	9.95	635.5	0.00	0.0	9.79	669.2	10.66	138.1	9.76	672.1	0.91	0.0	9.83	690.3	0.4	234.8	22.8	-0.31	1.02	0.1	44.4	0.0	
April 6, 2022	9.79	680.8	0.00	0.0	9.80	670.2	10.33	59.8	9.79	668.5	0.93	0.0	9.80	729.8	0.3	817.2	23.3	-0.24	0.99	0.1	81.3	39.6	
April 7, 2022	9.80	682.5	0.00	0.0	9.80	670.4	9.66	207.3	9.81	670.3	1.00	0.0	9.80	738.2	0.4	5020.2	22.9	-0.33	1.09	0.1	78.3	41.8	
April 8, 2022	9.80	669.9	0.06	0.0	9.79	669.5	9.64	209.3	9.79	669.0	1.60	0.0	9.80	716.3	0.4	5808.6	22.4	-0.31	1.00	0.1	90.2	0.0	3.84
April 9, 2022	9.81	670.4	0.00	0.0	9.80	669.9	9.78	194.6	9.80	668.5	1.79	0.0	9.80	689.7	0.5	3254.8	23.0	-0.30	1.00	0.1	82.7	63.3	
April 10, 2022	9.80	670.1	0.00	0.0	9.80	669.7	11.54	75.5	9.80	669.0	1.67	0.0	9.80	685.2	0.1	622.0	23.1	-0.30	1.01	0.1	60.9	14.1	
April 11, 2022	9.80	670.2	0.00	0.0	9.81	670.1	13.40	153.0	9.79	668.5	1.46	0.0	9.80	694.6	0.0	4521.1	23.2	-0.29	1.02	0.1	30.9	42.1	4.27
April 12, 2022	9.80	669.9	0.00	0.0	9.80	670.1	11.78	139.7	9.81	669.9	1.63	0.0	9.80	680.1	0.0	1753.1	23.3	-0.27	1.03	0.1	21.2	59.9	
April 13, 2022	9.80	670.0	0.00	0.0	9.80	670.1	10.58	143.3	9.79	668.9	1.32	0.0	9.80	680.2	0.0	1605.5	23.4	-0.28	1.03	0.1	16.9	55.3	
April 14, 2022	9.80	670.0	0.00	0.0	9.80	670.1	9.83	81.5	9.80	669.4	1.45	0.0	9.80	680.1	0.0	1725.5	23.5	-0.28	1.04	0.1	32.0	2.2	
April 15, 2022	9.80	670.0	0.00	0.0	9.80	669.7	10.62	0.6	9.79	668.2	1.86	0.0	9.80	680.1	0.0	1622.4	23.3	-0.28	1.03	0.1	35.7	12.1	
April 16, 2022	9.80	670.0	0.00	0.0	9.80	669.7	13.08	0.0	9.81	668.5	2.25	0.0	9.80	680.1	0.0	1288.2	23.2	-0.29	1.03	0.1	33.0	58.9	
April 17, 2022		669.9	0.00	0.0	9.80	527.7	15.21	30.4	9.77	665.9	2.32	0.0	9.80	680.1	0.0	1253.9	23.3	-0.29	1.03	0.1	35.0	38.8	
April 18, 2022	9.80	669.8	0.00	0.0	9.80	670.9	14.34	1.2	9.84	668.3	2.08	0.0	9.91	697.6	0.0	1887.9	23.0	-0.29	1.02	0.1	27.7	28.0	
April 19, 2022	9.81	670.8	0.00	0.0	9.79	669.7	15.94	41.1	9.84	672.1	1.67	0.0	9.84	687.6	0.2	2931.0	22.9	-0.28	1.05	0.0	19.6	8.5	
April 20, 2022	9.80	668.9	0.00	0.0	9.82	671.0	10.12	0.0	9.80	669.9	0.45	0.0	9.80	680.2	0.0	789.5	22.9	-0.28	1.14	0.1	12.5	1.7	
April 21, 2022	9.80	669.8	0.00	0.0	9.80	669.5	8.45	1.2	9.80	669.5	1.07	0.0	9.81	680.2	0.0	566.2	22.8	-0.29	1.02	0.1	7.4	8.9	
April 22, 2022	9.80	670.0	0.00	0.0	9.80	669.9	10.53	1.4	9.79	669.0	1.88	0.0	9.80	680.0	0.0	1079.8	22.9	-0.29	1.02	0.1	7.5	54.6	38.31
April 23, 2022	9.80	670.1	0.00	0.0	9.80	670.1	11.86	0.0	9.80	668.6	1.43	0.0	9.80	680.1	0.0	1353.1	22.5	-0.30	1.02	0.1	4.6	64.9	
April 24, 2022		669.7	0.00	0.0	9.80	669.8	13.17	3.1	9.81	668.2	1.95	0.0	9.80	680.0	0.0	1769.0	22.3	-0.30	1.02	0.1	2.7	83.4	
April 25, 2022	9.80	670.0	0.00	0.0	9.79	669.8	14.08	24.1	9.80	666.7	2.41	0.0	9.80	680.0	0.0	2260.8	22.2	-0.31	1.01	0.1	1.2	9.8	
April 26, 2022		669.9	0.00	0.0	9.80	669.4	17.82	53.2	9.80	667.0	2.57	0.0	9.80	679.9	0.0	2665.3	22.3	-0.29	1.01	0.1	0.7	0.3	
April 27, 2022		670.4	0.17	0.0	9.81	671.6	16.21	33.8	9.81	670.4	1.00	0.0	9.80	680.8	0.0	2474.2	22.6	-0.30	1.01	0.1	0.1	1.8	
April 28, 2022		669.2	0.00	0.0	9.77	669.3	8.75	0.0	9.80	669.0	0.34	0.0	9.80	680.2	0.0	58.8	22.6	-0.29	1.01	0.1	0.2	2.5	
April 29, 2022		670.3	0.10	0.0	9.80	670.0	14.86	2.4	9.80	669.4	0.67	0.0	9.80	680.0	0.0	657.6	22.5	-0.30	1.02	0.1	0.0	0.3	
April 30, 2022	April 30, 2022 9.81 669.3 0.00 0.0			9.81	669.7	12.93	0.0	9.81	668.6	1.16	0.0	9.80	680.0	0.0	1296.6	22.3	-0.31	1.02	0.1	0.0	29.7	83.89	
Δνα	9.81	667.7	0.01	0.0	9.80	665.2	11.56	71.8	9.80	669.0	1.42	0.0	9.81	687.1	0.2	1758.1	22.9	-0.29	1.02	0.1	26.2	34.9	32.58
Min	9.79	595.3	0.00	0.0	9.77	527.7	6.18	0.0	9.76	665.9	0.34	0.0	9.80	679.9	0.0	58.8	22.2	-0.33	0.97	0.0	0.0	0.0	3.84
Max	9.95	692.8	0.17	0.0	9.82	671.6	17.82	219.0	9.84	672.1	2.57	0.0	9.91	738.2	2.4	5808.6	23.5	-0.24	1.14	0.1	90.2	190.5	83.89

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report May 2022

			East Scrubber			Ferr	nenter Scrubber			1	West Scrubber				EPT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
May 1, 2022	9.80	669.8	0.22	0.0	9.80	669.3	18.18	42.5	9.80	669.2	1.23	0.0	9.79	679.7	0.0	1968.2	22.1	-0.30	1.03	0.1	0.0	0.0	
May 2, 2022	9.80	670.1	0.00	0.0	9.80	670.7	13.84	56.7	9.79	670.4	1.39	0.0	9.79	680.2	0.0	1351.0	22.1	-0.30	1.01	0.1	0.1	0.0	
May 3, 2022	9.79	669.9	0.00	0.0	9.80	669.9	14.79	147.0	9.80	669.2	1.87	0.0	9.80	680.0	1.9	1406.5	22.5	-0.30	1.01	0.1	0.0	0.3	
May 4, 2022	9.80	670.3	0.03	0.0	9.80	670.0	14.14	266.9	9.80	668.8	1.87	0.0	9.80	680.1	7.1	1299.2	22.0	-0.31	1.01	0.1	0.0	15.6	
May 5, 2022	9.80	669.6	0.13	0.0	9.81	670.1	15.19	426.4	9.80	667.8	2.04	0.0	9.80	679.9	8.3	1655.9	22.1	-0.31	0.99	0.1	0.0	1.1	
May 6, 2022	9.81	670.6	0.12	0.0	9.80	670.1	15.10	735.7	9.80	669.0	1.80	0.0	9.80	680.3	9.8	2079.5	21.9	-0.31	0.99	0.1	0.0	4.0	380
May 7, 2022	9.80	670.2	0.02	0.0	9.80	669.7	16.15	509.2	9.79	668.3	1.76	0.0	9.80	680.0	8.0	1685.7	22.0	-0.30	1.00	0.1	0.0	30.5	
May 8, 2022	9.80	670.2	0.00	0.0	9.80	669.7	18.33	618.2	9.80	667.9	1.52	0.0	9.80	679.9	7.9	1677.7	22.3	-0.29	1.00	0.1	0.4	130.7	
May 9, 2022	9.80	670.2	0.35	79.4	9.80	670.0	20.07	0.0	9.80	667.8	1.65	0.0	9.80	680.1	7.6	1568.1	22.5	-0.29	1.01	0.1	0.0	320.2	
May 10, 2022	10.41	648.5	0.12	1.3	9.79	669.5	21.06	0.0	9.80	668.3	1.50	0.0	9.80	679.9	6.3	1547.5	22.8	-0.29	1.02	0.1	0.1	268.0	
May 11, 2022	10.69	597.2	0.01	13.9	9.81	670.1	19.49	0.0	9.77	667.0	1.75	0.0	9.80	680.0	2.3	210.0	22.3	-0.30	1.02	0.1	0.0	16.2	
May 12, 2022	9.81	672.8	0.00	0.0	9.80	669.7	22.08	50.1	9.80	666.3	1.96	0.0	9.80	679.9	2.2	189.6	21.7	-0.31	1.01	0.1	0.0	97.4	
May 13, 2022	9.80	674.3	0.00	0.0	9.80	670.1	22.33	123.1	9.80	666.5	1.76	0.0	9.80	679.9	2.2	175.3	22.2	-0.31	1.02	0.1	0.0	5.0	11.08
May 14, 2022	9.80	681.4	0.00	0.0	9.80	670.1	22.04	116.2	9.79	666.2	1.80	0.0	9.80	680.1	2.2	206.1	22.2	-0.31	1.01	0.1	0.0	1.6	
May 15, 2022	9.80	681.4	0.00	0.0	9.80	669.4	23.67	120.1	9.80	664.9	2.14	0.0	9.80	680.0	2.8	296.8	22.1	-0.32	1.01	0.1	0.0	100.5	
May 16, 2022	9.79	680.4	0.00	0.0	9.79	670.4	25.02	126.3	9.75	673.7	1.83	0.0	9.79	682.1	2.4	215.2	21.7	-0.32	1.01	0.1	0.0	2.9	
May 17, 2022	9.80	678.9	0.00	0.0	9.80	669.7	26.71	169.6	9.79	667.6	1.82	0.0	9.80	680.0	2.6	215.0	22.0	-0.31	1.01	0.0	0.0	0.4	
May 18, 2022	9.80	680.5	0.00	0.0	9.80	670.3	31.00	221.2	9.80	667.1	2.25	0.0	9.80	680.0	3.2	312.8	22.5	-0.31	1.01	0.1	0.0	13.2	
May 19, 2022	9.81	689.4	0.17	0.0	9.79	670.5	31.64	354.6	9.81	669.7	1.28	0.0	9.79	680.3	2.5	238.1	22.9	-0.30	0.99	0.1	0.0	0.6	11.46
May 20, 2022	9.79	683.8	0.00	0.0	9.82	671.0	20.92	168.9	9.79	668.7	0.85	0.0	9.81	680.1	0.5	5.3	22.9	-0.31	1.01	0.1	0.2	2.4	
May 21, 2022	9.80	669.5	0.00	0.0	9.79	669.2	20.80	85.3	9.80	668.2	1.81	0.0	9.80	680.0	1.6	129.2	22.5	-0.31	1.02	0.1	0.1	31.0	
May 22, 2022	9.80	670.2	0.00	0.0	9.80	670.2	23.28	105.8	9.80	667.8	1.70	0.0	9.80	680.0	1.7	136.3	22.0	-0.31	1.02	0.1	0.0	20.0	
May 23, 2022	9.79	669.5	0.01	0.0	9.80	669.8	22.45	113.1	9.80	666.7	2.03	0.0	9.80	680.1	1.7	135.7	22.0	-0.31	1.01	0.1	0.2	0.0	
May 24, 2022	9.73	669.9	0.12	0.0	9.48	678.9	23.47	625.3	9.80	664.6	2.47	0.0	9.80	680.1	1.9	127.8	21.9	-0.30	1.01	0.1	0.0	0.1	
May 25, 2022	9.74	667.9	0.89	87.3	9.83	672.8	24.61	158.8	9.80	664.9	3.02	0.0	9.78	679.6	2.5	250.3	21.9	-0.31	1.00	0.1	0.0	3.2	
May 26, 2022	9.81	668.2	0.00	0.0	9.81	671.4	16.36	117.3	9.81	669.5	1.68	0.0	9.82	681.0	1.3	87.9	21.9	-0.31	1.05	0.1	0.0	1.5	
May 27, 2022	9.80	668.9	0.24	0.0	9.79	669.6	14.71	82.4	9.80	666.2	3.67	0.0	9.78	679.5	1.9	156.6	21.6	-0.31	1.01	0.1	0.0	0.0	6.59
May 28, 2022	9.81	671.2	0.04	0.0	9.80	670.1	14.06	79.4	9.81	667.8	2.14	0.0	9.82	681.0	1.2	60.7	21.8	-0.31	1.02	0.1	0.0	0.1	· · · · · · · · · · · · · · · · · · ·
May 29, 2022	9.80	669.3	0.35	0.0	9.79	668.8	17.43	153.2	9.80	666.2	3.48	0.0	9.80	680.0	1.6	109.2	22.1	-0.31	1.02	0.1	0.0	0.0	
May 30, 2022	9.80	670.3	0.15	0.0	9.80	669.8	21.38	143.1	9.79	665.9	3.53	0.0	9.80	680.1	1.5	98.5	22.1	-0.31	1.14	0.1	0.0	1.1	
May 31, 2022	9.80	669.8	0.41	0.0	9.81	670.3	23.30	169.8	9.87	664.2	4.14	0.0	9.96	672.4	1.9	196.1	22.0	-0.35	1.14	0.1	0.7	48.2	·
						-		•		-	•						•			•	-	•	·
Avg	9.84	669.8	0.11	5.9	9.79	670.4	20.44	196.3	9.80	667.6	2.06	0.0	9.80	679.9	3.2	638.4	22.1	-0.31	1.02	0.1	0.1	36.0	102.28
Min	9.73	597.2	0.00	0.0	9.48	668.8	13.84	0.0	9.75	664.2	0.85	0.0	9.78	672.4	0.0	5.3	21.6	-0.35	0.99	0.0	0.0	0.0	6.59
Max	10.69	689.4	0.89	87.3	9.83	678.9	31.64	735.7	9.87	673.7	4.14	0.0	9.96	682.1	9.8	2079.5	22.9	-0.29	1.14	0.1	0.7	320.2	380

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report June 2022

			East Scrubber			Ferm	nenter Scrubber			1	West Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
June 1, 20	9.80	672.2	0.15	0.0	9.59	668.0	21.77	540.8	9.80	666.6	4.26	0.0	9.80	679.9	2.6	269.4	22.2	-0.35	1.15	0.1	0.0	8.7	
June 2, 20	9.80	668.7	0.15	0.0	9.81	670.5	19.77	61.1	9.79	667.1	4.47	0.0	9.80	680.6	3.0	342.8	22.1	-0.37	1.12	0.1	0.1	5.9	
June 3, 20	9.80	669.6	0.20	0.0	9.80	669.6	18.52	34.6	9.80	666.3	4.92	0.0	9.80	681.0	3.3	393.6	22.8	-0.37	1.12	0.1	0.0	1.0	5.46
June 4, 20	9.77	670.8	0.26	0.0	9.80	669.7	18.93	10.8	9.80	665.7	5.20	0.0	9.80	681.3	4.1	495.3	21.7	-0.36	1.12	0.1	0.0	1.3	
June 5, 20	9.75	669.5	0.25	0.0	9.79	669.5	20.13	2.5	9.80	666.1	5.44	0.0	9.80	681.4	4.2	512.6	21.5	-0.36	1.12	0.1	0.0	0.9	
June 6, 20	9.80	671.4	0.15	0.0	9.80	669.4	22.16	0.5	9.80	665.7	4.40	0.0	9.78	681.3	5.1	673.9	22.1	-0.35	1.08	0.1	0.0	0.3	
June 7, 20	9.65	679.0	0.02	0.0	9.79	670.3	22.47	12.1	9.80	667.7	2.64	0.0	9.81	681.6	2.6	241.6	22.9	-0.34	1.10	0.1	0.0	3.0	
June 8, 20	9.81	670.9	0.07	0.0	9.82	670.8	15.85	1.2	9.80	666.9	4.51	60.3	9.80	680.0	3.4	369.5	22.7	-0.34	1.12	0.1	34.6	39.9	
June 9, 20	9.80	669.9	0.26	34.6	9.80	670.0	15.39	35.2	9.80	666.4	5.21	0.0	9.81	680.8	3.6	367.1	22.6	-0.34	1.11	0.1	0.0	11.2	
June 10, 20	9.69	670.1	0.01	0.0	9.79	668.3	13.48	0.0	9.80	665.8	6.45	0.0	9.77	682.0	4.2	408.0	20.9	-0.36	1.10	0.1	0.0	0.9	4.3
June 11, 20	9.81	671.0	0.02	0.0	9.80	670.6	15.83	0.0	9.80	663.6	7.84	0.0	9.80	681.2	6.0	772.9	20.9	-0.36	1.11	0.1	0.0	1.3	
June 12, 20	9.80	670.7	0.04	0.0	9.81	670.2	13.25	0.1	9.81	664.6	6.45	0.0	9.80	681.6	5.8	771.2	20.1	-0.35	1.12	0.1	0.0	14.0	
June 13, 20	9.80	677.7	0.00	0.0	9.81	680.6	12.53	7.5	9.81	667.6	4.22	0.0	9.79	680.8	2.4	168.4	20.7	-0.36	1.20	0.1	0.0	20.4	
June 14, 20	9.82	672.5	0.02	0.0	9.79	670.5	15.91	210.9	9.82	670.8	1.44	0.0	9.80	680.6	3.6	459.0	19.9	-0.35	1.02	0.1	0.0	0.0	
June 15, 20	9.80	670.1	0.00	0.0	9.82	671.3	6.37	51.2	9.80	669.9	0.00	0.0	9.81	680.5	0.2	2.4	20.1	-0.36	1.11	0.1	0.0	0.0	
June 16, 20	9.80	669.7	0.00	0.0	9.80	669.8	3.40	0.0	9.80	669.7	0.09	0.0	9.80	680.1	0.2	0.0	20.6	-0.37	1.11	0.1	0.0	0.0	
June 17, 20	9.79	670.1	0.00	0.0	9.80	670.1	4.20	7.4	9.80	669.7	0.34	0.0	9.78	680.0	1.6	60.7	20.6	-0.36	1.12	0.1	0.0	0.0	2.78
June 18, 20	9.80	669.2	0.00	0.0	9.79	669.7	4.06	0.0	9.80	669.6	1.34	0.0	9.81	680.6	1.7	49.2	20.4	-0.35	1.06	0.1	0.0	0.0	
June 19, 20	9.80	669.5	0.00	0.0	9.80	669.4	5.69	0.0	9.80	668.5	2.28	0.0	9.80	680.0	1.2	31.9	20.4	-0.36	1.10	0.1	0.0	0.0	
June 20, 20	9.80	670.2	0.01	0.0	9.79	669.5	8.04	11.7	9.80	668.7	3.20	0.0	9.80	680.2	2.1	151.1	20.3	-0.37	1.10	0.1	0.0	0.0	
June 21, 20	9.79	669.0	0.06	0.0	9.81	669.8	9.31	17.4	9.80	667.5	4.00	0.0	9.77	679.1	4.4	610.2	21.2	-0.36	1.11	0.1	0.0	0.2	
June 22, 20	9.81	671.8	0.14	0.0	9.77	667.9	12.69	140.7	9.81	670.4	2.73	0.0	9.81	681.1	4.8	683.8	20.3	-0.35	1.14	0.1	0.0	5.3	
June 23, 20	9.80	670.4	0.00	0.0	9.83	673.2	5.79	11.2	9.81	670.1	1.00	0.0	9.79	680.1	2.7	282.4	20.1	-0.35	1.10	0.1	0.0	0.1	
June 24, 20	9.80	670.0	0.00	0.0	9.80	670.9	4.70	4.1	9.80	669.9	0.00	0.0	9.83	681.2	0.5	32.1	20.3	-0.35	1.11	0.1	0.0	0.0	9.69
June 25, 20	9.80	668.7	0.00	0.0	9.81	670.1	3.11	0.8	9.80	669.8	0.11	0.0	9.80	680.5	0.8	32.8	20.5	-0.37	1.11	0.1	0.0	0.0	
June 26, 20	9.79	669.9	0.01	0.0	9.80	669.2	4.40	0.0	9.80	669.8	0.63	0.0	9.80	680.1	1.3	99.3	21.2	-0.36	1.11	0.1	0.0	0.0	
June 27, 20	9.80	680.9	0.00	0.0	9.77	668.4	6.94	0.0	9.79	669.3	1.39	0.0	9.46	670.5	1.2	26.0	20.2	-0.37	1.12	0.1	0.0	0.0	
June 28, 20	9.87	670.4	0.01	0.0	9.81	670.8	8.82	24.0	9.86	661.3	2.82	0.0	9.60	679.2	4.6	1357.3	20.3	-0.35	0.92	0.1	0.0	0.0	
June 29, 20		675.2	0.02	0.0	9.80	670.1	8.90	42.6	9.90	660.4	1.42	0.0	9.85	680.2	3.0	711.2	20.2	-0.37	0.95	0.1	0.0	0.6	
June 30, 20	9.80	669.8	0.06	0.0	9.80	669.7	8.58	12.9	9.80	668.7	2.82	0.0	9.80	679.9	1.9	356.7	20.7	-0.36	1.10	0.1	0.0	0.0	10.08
vg	9.79	671.3	0.06	1.2	9.79	670.3	11.70	41.4	9.81	667.5	3.05	2.0	9.78	680.2	2.9	357.7	21.0	-0.36	1.10	0.1	1.2	3.8	6.46
/lin	9.65	668.7	0.00	0.0	9.59	667.9	3.11	0.0	9.79	660.4	0.00	0.0	9.46	670.5	0.2	0.0	19.9	-0.37	0.92	0.1	0.0	0.0	2.78
Лах	9.87	680.9	0.26	34.6	9.83	680.6	22.47	540.8	9.90	670.8	7.84	60.3	9.85	682.0	6.0	1357.3	22.9	-0.34	1.20	0.1	34.6	39.9	10.08

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report July 2022

		E	ast Scrubber			Fer	menter Scrubber			V	Vest Scrubber			EP.	T Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H₂S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H₂S Out (ppm)	H₂S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
July 1, 202	9.80	670.4	0.00	0.0	9.81	670.0	9.37	11.0	9.80	668.3	3.28	0.0	9.80	680.0	2.7	633.4	20.1	-0.36	1.12	0.1	0.0	0.0	
July 2, 202	9.80	670.8	0.01	0.0	9.80	670.1	10.79	60.5	9.81	670.8	1.48	0.0	9.80	680.0	2.2	505.5	19.8	-0.35	1.06	0.1	0.0	0.0	1
July 3, 202	9.80	669.2	0.00	0.0	9.80	669.6	8.66	22.3	9.79	668.7	1.60	0.0	9.80	680.0	1.0	140.0	20.5	-0.36	1.11	0.1	0.0	0.0	<u> </u>
July 4, 202	9.80	670.2	0.00	0.0	9.80	669.8	10.30	14.7	9.80	667.7	3.16	0.0	9.80	679.9	1.8	334.8	20.5	-0.35	1.11	0.1	0.0	0.0	<u> </u>
July 5, 202	9.80	671.0	0.00	0.0	9.81	671.1	11.59	71.4	9.81	670.0	1.55	0.0	9.80	680.1	3.1	794.8	20.0	-0.35	0.98	0.1	0.0	0.0	1
July 6, 202	9.80	669.7	0.00	0.0	9.80	669.8	7.24	2.5	9.80	669.8	0.23	0.0	9.80	680.2	1.0	161.4	20.4	-0.35	1.11	0.2	0.0	0.0	1
July 7, 202	9.79	668.6	0.02	0.0	9.79	669.7	6.57	0.1	9.80	668.8	1.34	0.0	9.79	679.7	1.7	336.6	20.8	-0.35	1.12	0.1	0.0	0.0	1
July 8, 202	9.79	669.2	0.05	0.0	9.80	670.1	6.11	1.8	9.79	668.5	1.61	0.0	9.81	680.3	2.0	411.3	21.2	-0.37	1.11	0.1	0.0	0.0	0
July 9, 202	9.80	669.5	0.12	0.0	9.80	669.6	7.54	0.4	9.80	666.2	4.08	0.0	9.79	679.7	3.3	803.5	20.9	-0.37	1.10	0.1	0.0	0.0	1
July 10, 202	9.81	670.1	0.04	0.0	9.80	669.7	9.63	8.5	9.80	664.7	4.26	0.0	10.22	683.8	2.8	854.1	21.0	-0.38	1.09	0.1	0.0	0.0	1
July 11, 202	9.80	675.4	0.00	0.0	9.80	670.0	10.58	13.4	9.81	663.8	5.71	0.0	10.38	689.8	3.1	1438.0	21.8	-0.37	1.09	0.1	0.0	0.0	
July 12, 202	9.80	669.8	0.03	0.0	9.79	671.1	12.26	37.1	9.80	665.8	4.82	0.0	9.80	679.9	2.5	467.4	23.8	-0.38	1.08	0.1	0.0	0.0	1
July 13, 202	9.80	670.5	0.00	0.0	9.80	669.7	13.72	38.8	9.79	663.9	6.12	0.0	9.80	679.9	3.2	705.5	21.0	-0.38	1.09	0.1	0.0	0.1	1
July 14, 202		670.6	0.01	0.0	9.80	669.5	16.26	88.1	9.80	664.5	6.99	0.0	9.80	680.0	4.2	1031.1	21.6	-0.40	1.08	0.1	0.0	3.6	1
July 15, 202	9.80	669.9	0.02	0.0	9.80	670.6	17.31	53.9	9.80	663.9	6.19	0.0	9.80	680.0	3.6	816.6	22.8	-0.38	1.08	0.1	0.0	0.0	6.36
July 16, 202	9.80	670.2	0.09	0.0	9.80	669.7	17.32	63.1	9.79	664.1	6.98	0.0	9.80	680.0	4.6	1192.9	23.4	-0.38	1.08	0.1	0.0	0.3	1
July 17, 202		669.7	0.02	0.0	9.80	669.7	17.09	35.0	9.81	665.8	5.26	0.0	9.80	680.0	2.9	605.2	21.4	-0.37	1.10	0.1	0.0	0.3	<u> </u>
July 18, 202		669.8	0.11	0.0	9.79	669.4	19.92	32.9	9.79	663.2	6.21	0.0	9.80	679.9	3.7	885.0	22.1	-0.36	1.09	0.1	0.0	0.0	<u> </u>
July 19, 202	9.81	669.7	0.19	0.0	9.79	669.0	21.95	46.8	9.79	637.6	6.35	2.2	9.80	679.9	4.0	964.0	22.8	-0.37	1.09	0.1	0.0	0.7	<u> </u>
July 20, 202		670.1	0.29	0.0	9.80	670.0	21.59	53.0	9.78	663.8	6.51	0.0	9.80	679.9	4.8	1257.6	20.3	-0.36	1.10	0.1	0.0	2.6	26.37
July 21, 202		669.9	0.34	0.0	9.80	669.9	20.55	56.3	9.80	663.0	8.01	0.0	9.80	680.0	5.2	1501.8	21.6	-0.37	1.08	0.1	0.0	0.0	<u> </u>
July 22, 202		670.0	0.25	0.0	9.81	670.9	18.48	22.5	9.80	664.6	8.14	0.0	9.80	679.9	5.0	1470.1	20.4	-0.37	1.10	0.1	0.0	0.1	<u> </u>
July 23, 202		670.0	0.18	0.0	9.80	669.6	19.60	31.8	9.79	659.3	8.06	0.0	9.80	674.1	6.0	2024.3	20.0	-0.37	1.11	0.1	0.0	0.2	<u> </u>
July 24, 202		670.4	0.22	0.0	9.80	669.1	22.15	43.1	9.81	663.6	8.63	0.0	9.79	658.7	6.5	2183.6	21.4	-0.37	1.10	0.1	0.0	0.0	<u> </u>
July 25, 202		672.7	0.79	29.1	9.80	672.5	24.12	50.3	9.80	661.2	9.03	0.0	9.78	677.2	7.9	3464.5	19.6	-0.30	1.03	0.0	0.0	0.7	
July 26, 202		671.5	0.45	0.0	9.81	670.3	18.86	194.7	9.80	666.2	8.83	0.0	9.81	642.7	6.1	1957.0	20.2	-0.37	1.11	0.1	0.0	3.4	
July 27, 202		670.3	0.47	0.0	9.80	670.1	18.16	91.3	9.80	666.9	7.28	0.0	9.81	639.6	5.7	1901.6	22.6	-0.37	1.10	0.1	0.0	7.5	37.11
July 28, 202		697.1	0.43	0.0	9.72	669.7	18.66	67.3	9.80	667.1	7.54	0.0	9.79	665.4	5.4	1840.0	24.0	-0.37	1.07	0.1	0.0	16.7	
July 29, 202		669.1	0.49	0.0	9.79	669.2	20.50	11.4	9.80	666.4	8.76	0.0	9.81	650.7	5.5	1751.7	23.7	-0.37	1.09	0.1	0.0	0.5	<u> </u>
July 30, 202		670.3	0.56	0.0	9.80	669.7	20.24	2.9	9.81	663.8	9.04	0.0	9.80	645.2	7.2	2274.9	22.5	-0.36	1.09	0.1	0.0	1.1	+
July 31, 202	9.79	670.9	0.74	235.0	9.80	669.5	19.88	0.3	9.81	662.8	6.94	0.0	9.80	680.3	9.1	3243.2	19.2	-0.35	1.12	0.1	0.0	4.6	<u> </u>
				1																			
Avg	9.80	671.2	0.19	8.5	9.80	670.0	15.39	39.6	9.80	664.7	5.61	0.1	9.83	674.4	4.1	1224.2	21.3	-0.36	1.09	0.1	0.0	1.4	17.46
Min	9.75	668.6	0.00	0.0	9.72		6.11	0.1	9.78	637.6	0.23	0.0	9.78	639.6	1.0	140.0	19.2	-0.40	0.98	0.0	0.0	0.0	0
Max	9.81	697.1	0.79	235.0	9.81	672.5	24.12	194.7	9.81	670.8	9.04	2.2	10.38	689.8	9.1	3464.5	24.0	-0.30	1.12	0.2	0.0	16.7	37.11

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report August 2022

			East Scrubber			Fer	menter Scrubber			\	Vest Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
August 1, 2022	9.80	667.5	0.40	0.0	9.82	671.4	15.31	0.4	9.79	664.8	8.45	0.0	9.79	679.7	5.0	1507.4	20.2	-0.35	1.12	0.2	0.0	27.3	
August 2, 2022	9.82	673.2	0.44	0.0	9.80	669.4	15.89	1.1	9.80	666.1	7.38	0.0	9.80	680.0	5.3	1702.8	18.6	-0.35	1.09	0.1	0.0	2.3	
August 3, 2022	9.80	669.4	0.37	0.0	9.80	669.6	17.38	14.8	9.80	665.8	8.61	0.0	9.80	680.1	5.6	1811.9	17.6	-0.36	1.11	0.1	0.0	0.4	28.8
August 4, 2022	9.81	671.9	0.51	110.4	9.80	670.3	20.54	72.4	9.80	667.1	6.16	0.0	9.79	679.5	6.4	2201.8	17.3	-0.36	1.06	0.1	0.0	11.7	
August 5, 2022	9.79	669.1	0.29	22.7	9.81	671.1	13.45	4.3	9.80	666.9	6.72	0.0	9.81	681.0	5.1	1666.8	15.3	-0.36	1.10	0.1	0.0	0.5	
August 6, 2022	9.80	669.8	0.23	0.0	9.80	669.7	18.05	44.8	9.80	667.1	6.24	0.0	9.80	680.1	3.7	1094.9	17.0	-0.37	1.11	0.1	0.0	0.4	
August 7, 2022	9.78	670.2	0.09	0.0	9.80	670.1	15.31	4.7	9.79	666.1	6.25	0.0	9.80	680.3	5.3	1791.3	21.0	-0.36	1.09	0.1	0.0	0.0	
August 8, 2022	9.82	669.8	0.23	0.0	9.79	670.6	17.39	5.4	9.80	665.9	7.55	0.0	9.80	680.0	4.4	1360.6	19.9	-0.37	1.07	0.1	0.0	1.4	
August 9, 2022	9.80	669.5	0.27	0.0	9.74	663.6	21.50	285.5	9.80	665.3	10.23	0.0	9.80	679.8	6.4	2109.1	18.3	-0.37	1.11	0.1	0.0	0.3	15.39
August 10, 2022	9.75	673.1	0.26	0.0	9.79	671.4	28.98	328.0	9.79	667.6	9.49	0.0	9.77	688.3	6.5	2290.7	20.5	-0.37	1.10	0.1	0.0	0.3	
August 11, 2022	9.82	669.3	0.16	0.0	9.82	671.7	22.05	201.6	9.80	666.0	8.78	0.0	9.80	680.0	5.1	1786.0	21.4	-0.36	1.09	0.1	0.0	3.7	
August 12, 2022	9.79	670.6	0.07	0.0	9.80	669.6	19.92	155.7	9.80	665.0	10.14	0.0	9.80	680.0	5.3	1937.2	21.7	-0.37	1.10	0.1	0.0	1.0	
August 13, 2022	9.80	669.4	0.04	0.0	9.80	669.7	20.72	155.2	9.80	665.4	9.18	0.0	9.79	679.6	6.5	2449.8	23.4	-0.37	1.09	0.1	0.0	3.2	
August 14, 2022	9.80	670.3	0.07	0.0	9.81	665.4	22.88	161.6	9.80	665.6	9.82	0.0	9.81	680.5	8.4	3272.4	21.5	-0.37	1.09	0.1	0.0	0.3	
August 15, 2022	9.80	667.8	0.09	0.0	9.79	674.1	22.71	106.2	9.80	665.2	9.35	0.0	9.80	680.0	5.8	2192.6	21.3	-0.38	1.10	0.1	0.0	2.7	
August 16, 2022	9.80	671.0	0.13	0.0	9.80	670.4	24.17	236.7	10.17	530.2	11.88	78.4	9.80	681.0	6.2	2475.9	21.6	-0.36	1.10	0.1	0.0	1.1	23.65
August 17, 2022	9.80	671.0	0.06	0.0	9.78	669.3	25.09	398.8	9.87	662.8	10.48	1.5	9.84	678.3	6.3	2662.2	21.4	-0.37	1.10	0.1	0.0	1.7	
August 18, 2022	9.80	670.4	0.09	0.0	9.80	669.8	30.05	385.1	9.80	665.5	11.89	0.0	9.80	676.5	6.2	2666.2	21.8	-0.37	1.10	0.1	0.0	11.0	
August 19, 2022	9.81	670.3	0.04	0.0	9.80	669.8	32.82	382.3	9.80	666.0	11.11	0.0	9.81	663.3	6.3	2881.0	24.1	-0.38	1.08	0.1	0.0	0.0	
August 20, 2022	9.79	670.5	0.04	0.0	9.79	669.4	31.97	326.2	9.80	666.4	10.78	0.0	9.80	679.9	4.8	2193.6	23.4	-0.37	1.09	0.1	0.0	1.8	
August 21, 2022	9.82	669.8	0.00	0.0	9.80	669.7	33.13	232.7	9.80	665.4	10.98	0.0	9.80	679.9	5.4	2353.5	21.7	-0.37	1.10	0.1	0.0	0.1	
August 22, 2022	9.79	669.8	0.01	0.0	9.80	669.5	35.78	335.3	9.80	666.1	10.57	0.0	9.80	680.1	5.3	2373.7	20.6	-0.37	1.11	0.1	0.0	0.8	
August 23, 2022	9.79	671.5	0.00	0.0	9.80	669.9	37.64	252.8	9.80	665.3	11.59	0.0	9.80	679.9	4.9	2168.9	21.2	-0.37	1.10	0.0	0.0	0.3	41.28
August 24, 2022	9.82	680.8	0.00	0.0	9.75	665.8	37.66	243.6	9.80	662.5	11.02	0.0	9.80	678.4	5.5	2443.8	21.2	-0.37	1.10	0.1	0.0	36.1	
August 25, 2022	9.80	669.7	0.00	0.0	9.73	670.1	41.44	1088.1	9.80	665.5	12.31	0.0	9.81	679.7	5.2	2183.7	22.2	-0.37	1.09	0.1	0.0	5.1	
August 26, 2022	9.79	670.0	0.00	0.0	9.79	669.0	43.19	1178.3	9.80	666.2	11.67	0.0	9.80	679.9	4.3	1680.3	22.7	-0.37	1.08	0.1	0.0	0.0	
August 27, 2022	9.81	670.0	0.00	0.0	9.80	670.8	51.12	3037.2	9.80	662.4	11.04	0.0	9.80	679.9	5.4	2159.6	19.0	-0.35	1.09	0.1	0.0	1.0	
August 28, 2022	9.81	671.2	0.00	0.0	9.80	671.2	51.34	3394.2	9.80	666.4	8.25	0.0	9.80	680.3	3.5	1291.8	18.2	-0.36	1.10	0.1	0.0	0.5	
August 29, 2022	9.78	677.3	0.00	0.0	9.79	669.1	55.12	3905.5	9.79	665.2	9.95	0.0	9.80	680.0	3.7	1381.0	18.7	-0.36	1.10	0.1	0.0	4.5	
August 30, 2022	9.80	671.2	0.00	0.0	9.81	669.5	50.49	3631.2	9.80	665.5	9.86	0.0	9.80	680.0	4.4	1776.0	21.4	-0.37	1.09	0.1	0.0	19.7	43.01
August 31, 2022	9.81	670.0	0.00	0.0	9.81	670.3	50.42	3163.7	9.80	627.1	10.41	0.0	9.80	680.0	4.1	1606.2	22.5	-0.37	1.09	0.1	0.0	3.2	
Aug	0.00	670.8	0.13	4.3	0.70	669.7	29.79	765.6	0.01	660.0	0.63	2.6	9.80	C70 F	5.4	2047.5	20.6	-0.37	1.10	0.1	0.0	4.6	30.43
Min	9.80 9.75	667.5	0.13	0.0	9.79 9.73	663.6	13.45	765.6 0.4	9.81 9.79	530.2	9.62 6.16	0.0	9.80	679.5 663.3	3.5	1094.9	20.6 15.3	-0.37 -0.38	1.10	0.1	0.0	0.0	30.43 15.39
May		680.8				674.1	55.12	3905.5	10.17	667.6						3272.4					0.0	36.1	15.39 43.01
IVIAX	9.82	8.080	0.51	110.4	9.82	6/4.1	55.12	3905.5	10.17	667.6	12.31	78.4	9.84	688.3	8.4	32/2.4	24.1	-0.35	1.12	0.2	0.0	36.1	43.01

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report September 2022

			East Scrubber			Fer	menter Scrubber			1	West Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
September 1, 2022	9.81	670.1	0.00	0.0	9.80	669.4	51.45	3335.5	9.81	666.5	9.66	0.0	9.80	680.1	3.6	1375.1	20.6	-0.37	1.09	0.1	0.0	7.7	
September 2, 2022	9.80	669.9	0.00	0.0	9.81	671.2	51.94	3967.7	9.80	666.2	10.27	0.0	9.80	680.4	4.2	1680.0	20.5	-0.36	1.09	0.1	0.0	0.1	
September 3, 2022	9.78	670.3	0.00	0.0	9.80	670.1	51.39	4268.0	9.80	666.4	9.02	0.0	9.80	680.4	4.3	1759.0	22.2	-0.37	1.09	0.1	0.0	0.0	
September 4, 2022	9.81	670.1	0.00	0.0	9.80	668.3	54.44	4725.8	9.80	666.3	8.21	0.0	9.80	680.0	4.1	1705.0	21.7	-0.37	1.09	0.1	0.0	0.4	
September 5, 2022	9.81	670.2	0.00	0.0	9.80	670.0	54.26	4367.7	9.80	667.1	6.47	0.0	9.80	680.2	2.8	1093.8	18.6	-0.37	1.10	0.1	0.0	0.6	
September 6, 2022	9.80	669.5	0.00	0.0	9.81	671.3	51.67	4363.0	9.79	664.0	9.38	0.0	9.80	680.0	3.4	1400.9	16.3	-0.37	1.12	0.1	0.0	30.4	35.3
September 7, 2022	9.79	669.9	0.01	0.0	9.80	670.5	49.49	5000.7	9.79	662.1	13.18	0.0	9.78	679.1	7.5	3621.7	15.6	-0.36	1.12	0.1	0.0	49.0	
September 8, 2022	9.81	673.9	0.00	0.0	9.79	668.4	48.04	4762.4	9.81	660.4	11.06	0.0	9.81	682.6	6.2	2796.2	14.1	-0.36	1.12	0.1	0.0	32.9	
September 9, 2022	9.80	670.0	0.00	0.0	9.79	670.0	49.66	3628.4	9.80	667.4	9.19	0.0	9.80	680.2	4.8	2063.7	13.2	-0.37	1.13	0.1	0.0	8.3	
September 10, 2022	9.80	670.2	0.00	0.0	9.79	670.4	49.80	4122.2	9.80	667.0	5.74	0.0	9.80	680.1	4.0	1690.7	14.8	-0.37	1.12	0.1	0.0	11.4	
September 11, 2022	9.80	670.0	0.00	0.0	9.80	669.4	48.87	4010.4	9.80	667.4	0.03	0.0	9.80	680.1	3.4	1445.3	17.1	-0.37	1.11	0.1	0.0	1.2	
September 12, 2022	9.80	669.7	0.00	0.0	9.76	667.1	50.33	3211.9	9.79	666.4	0.00	0.0	9.66	722.5	5.0	1644.9	16.0	-0.37	1.12	0.2	0.0	2.9	
September 13, 2022	9.80	670.1	0.00	0.0	9.86	673.6	48.34	2633.5	9.80	665.9	0.00	0.0	9.04	687.8	3.8	776.7	15.8	-0.36	1.12	0.1	0.0	5.5	6.94
September 14, 2022	9.80	670.4	0.00	0.0	9.80	670.3	44.54	3288.2	9.80	666.0	0.00	0.0	9.80	680.3	4.2	1222.2	15.0	-0.36	1.13	0.1	0.0	52.8	
September 15, 2022	9.78	668.0	0.60	97.8	9.81	671.4	48.89	5144.5	9.79	665.8	5.65	122.9	9.76	679.8	8.5	4003.2	15.6	-0.37	1.13	0.1	113.5	869.0	
September 16, 2022	9.82	672.2	0.05	0.0	9.81	671.0	47.52	7996.1	9.81	667.5	10.08	0.0	9.85	683.4	4.4	2549.9	15.3	-0.36	1.20	0.1	0.0	56.9	
September 17, 2022	9.77	665.4	0.06	0.0	9.79	668.9	40.06	6954.5	9.80	667.8	11.28	0.0	9.80	680.5	5.3	3408.3	13.6	-0.37	1.11	0.1	0.0	28.3	
September 18, 2022	9.82	673.4	0.19	0.0	9.79	669.4	43.48	7397.4	9.80	667.4	11.83	0.0	9.80	680.9	5.0	3113.3	12.4	-0.37	1.13	0.1	0.0	3.3	
September 19, 2022	9.80	669.3	0.11	0.0	9.81	670.7	35.73	5339.2	9.80	667.0	10.14	0.0	9.80	681.7	4.2	2671.1	11.7	-0.37	1.10	0.1	0.0	15.7	
September 20, 2022	9.81	670.0	0.24	0.0	9.79	669.3	29.56	1797.7	9.79	666.2	11.39	0.0	9.77	688.5	4.8	2356.1	11.3	-0.37	1.13	0.1	0.0	7.9	15.99
September 21, 2022	9.80	670.0	0.06	0.0	9.79	669.7	31.36	1230.4	9.81	667.6	9.75	0.0	9.81	683.0	10.4	3255.8	11.9	-0.37	1.13	0.0	0.0	256.5	
September 22, 2022	9.80	669.3	0.13	0.0	9.81	669.6	33.27	1111.8	9.79	667.6	10.51	0.0	9.80	679.8	4.3	920.5	13.8	-0.37	1.11	0.1	0.0	17.4	
September 23, 2022	9.80	670.5	0.19	0.0	9.80	670.3	32.90	906.0	9.80	667.0	12.18	0.0	9.80	679.9	5.1	1109.9	13.2	-0.37	1.12	0.1	0.1	78.6	
September 24, 2022	9.80	670.9	0.06	0.0	9.80	670.4	32.34	978.6	9.80	666.6	12.37	0.0	9.80	679.9	6.2	1341.0	13.8	-0.39	1.12	0.1	0.8	55.2	
September 25, 2022		669.7	0.10	0.0	9.80	670.1	30.97	988.3	9.80	666.3	13.24	0.0	9.80	680.2	6.2	1381.2	13.5	-0.38	1.12	0.1	0.7	57.6	
September 26, 2022	9.80	669.8	0.15	0.0	9.80	670.0	29.54	954.7	9.80	666.3	13.72	0.0	9.80	679.8	5.7	1276.0	17.5	-0.37	1.12	0.1	0.0	42.1	
September 27, 2022	9.80	670.3	0.07	0.0	9.80	669.6	29.72	1036.4	9.80	666.8	13.67	0.0	9.80	680.5	5.6	1249.6	17.8	-0.36	1.11	0.1	3.5	9.3	56.29
September 28, 2022	9.79	670.3	0.08	0.0	9.79	669.1	32.79	1086.0	9.80	667.1	13.02	0.0	9.80	680.3	6.4	1420.8	16.1	-0.35	1.13	0.1	2.9	0.0	
September 29, 2022	9.81	670.1	0.02	0.0	9.80	669.6	35.95	802.8	9.80	666.2	13.62	0.0	9.80	680.0	6.7	1541.7	14.7	-0.35	1.13	0.1	0.0	0.0	
September 30, 2022	9.80	669.9	0.01	0.0	9.79	669.7	35.23	452.7	9.80	666.6	13.10	0.0	9.80	680.2	7.2	1688.2	15.3	-0.35	1.08	0.1	0.3	0.0	
Δνα	9.80	670.1	0.07	3.3	9.80	670.0	42.45	3328.8	9.80	666.3	9.26	4.1	9.77	682.4	5.3	1918.7	15.6	-0.37	1.12	0.1	4.1	56.7	28.63
Min	9.77	665.4	0.00	0.0	9.76	667.1	29.54	452.7	9.79	660.4	0.00	0.0	9.04	679.1	2.8	776.7	11.3	-0.39	1.08	0.0	0.0	0.0	6.94
Max	9.82	673.9	0.60	97.8	9.86	673.6	54.44	7996.1	9.81	667.8	13.72	122.9	9.85	722.5	10.4	4003.2	22.2	-0.35	1.20	0.0	113.5	869.0	56.29
IVIUA	3.02	0/3.3	0.00	37.0	3.00	0/3.0	34.44	7330.1	3.01	007.0	13.72	122.3	3.03	122.3	10.4	4003.2	22.2	-0.33	1.20	0.2	113.3	803.0	30.23

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report October 2022

			East Scrubber			Fern	nenter Scrubber			W	/est Scrubber			EP	T Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
October 1, 2022	9.81	670.4	0.00	0.0	9.81	670.5	34.69	377.9	9.80	666.3	12.79	0.0	9.80	680.2	6.4	1425.5	13.6	-0.35	1.14	0.1	0.4	0.0	
October 2, 2022	9.79	669.5	0.00	0.0	9.79	668.1	37.44	438.5	9.79	665.9	14.98	0.0	9.79	679.8	5.0	1031.3	16.0	-0.37	1.12	0.1	0.0	0.0	
October 3, 2022	9.80	670.2	0.00	0.0	9.78	668.3	44.10	255.3	9.80	667.0	13.24	0.0	9.80	680.1	3.9	708.4	14.1	-0.40	1.11	0.1	0.1	0.0	
October 4, 2022	9.79	670.1	0.00	0.3	9.81	671.8	45.40	133.7	9.80	666.4	13.32	0.0	9.79	680.0	5.4	1168.4	13.3	-0.39	1.11	0.1	0.3	0.0	14.73
October 5, 2022	9.79	669.8	0.00	0.9	9.80	670.5	39.11	513.7	9.81	664.9	14.36	0.0	10.06	686.7	5.8	1106.7	10.2	-0.40	1.13	0.1	3.0	5.7	
October 6, 2022	9.82	676.7	0.00	1.5	9.80	671.8	37.83	623.8	9.80	665.8	15.38	0.0	9.67	680.1	6.4	1933.3	11.2	-0.38	1.14	0.1	5.6	10.3	
October 7, 2022	9.80	669.7	0.00	2.0	9.80	670.5	36.02	622.7	9.80	666.5	14.70	0.0	9.80	679.8	5.8	1561.4	11.8	-0.36	1.14	0.1	5.4	29.9	
October 8, 2022	9.81	670.2	0.00	1.1	9.80	670.4	31.59	476.2	9.81	667.4	12.66	0.0	9.80	680.1	6.6	1831.5	12.8	-0.37	1.14	0.1	6.8	2.5	
October 9, 2022	9.80	669.9	0.01	6.5	9.80	669.9	33.13	533.4	9.80	666.6	15.59	0.0	9.80	679.9	4.7	1186.4	12.5	-0.37	1.13	0.1	6.1	7.2	
October 10, 2022	9.79	669.0	0.13	58.7	9.80	669.6	33.79	746.4	9.80	666.7	14.48	0.0	9.80	680.0	6.9	1922.3	12.1	-0.38	1.11	0.1	14.1	1.1	
October 11, 2022	9.80	670.1	0.00	13.0	9.80	670.0	33.42	677.9	9.80	667.1	12.81	0.0	9.79	679.9	4.6	1176.3	10.3	-0.38	1.11	0.1	8.2	4.6	
October 12, 2022	9.68	665.6	0.00	16.5	9.80	670.0	29.22	485.5	9.80	667.3	13.21	0.0	9.80	680.0	4.5	1111.9	10.1	-0.28	0.70	0.1	8.9	13.1	40.25
October 13, 2022		670.5	0.01	8.1	9.80	671.2	31.01	616.9	9.80	666.8	14.01	0.0	9.80	680.0	5.1	1309.2	8.6	0.00	-0.03	0.1	11.7	66.7	
October 14, 2022	9.80	669.8	0.00	19.6	9.81	670.0	26.64	710.6	9.80	666.4	13.79	0.0	9.80	679.8	6.2	1720.7	12.4	0.00	-0.03	0.1	5.9	2.3	
October 15, 2022	9.80	670.0	0.00	24.1	9.79	669.2	30.01	630.4	9.81	666.8	12.88	0.0	9.81	680.1	5.8	1454.5	9.1	0.00	-0.02	0.1	16.3	3.7	
October 16, 2022		670.5	0.00	14.6	9.80	669.8	28.95	474.4	9.80	665.7	16.64	0.0	9.79	679.8	6.1	1551.9	9.3	0.00	-0.03	0.1	30.3	3.0	
October 17, 2022	9.80	679.1	0.12	31.6	9.79	668.3	30.92	536.3	9.79	665.6	15.76	0.0	9.79	679.6	8.7	2359.9	10.1	0.00	-0.03	0.1	16.9	3.6	
October 18, 2022	9.80	669.7	0.11	7.1	9.80	667.6	12.22	722.9	9.80	666.8	16.44	0.0	9.80	680.0	9.8	2658.8	10.0	0.00	-0.03	0.1	28.0	0.0	6.83
October 19, 2022	9.80	670.8	0.01	1.0	9.79	654.0	0.00	0.0	9.80	666.4	14.07	0.0	9.80	680.1	8.4	2224.8	10.2	0.00	-0.03	0.1	9.5	91.3	
October 20, 2022	9.80	668.9	0.01	16.5	9.73	638.0	1.96	5.3	9.81	667.3	12.93	0.0	9.80	680.1	6.5	1788.0	12.7	-0.01	0.02	0.1	3.8	191.0	
October 21, 2022		670.1	0.00	18.1	9.71	607.0	3.03	69.0	9.80	666.6	14.40	0.0	9.80	679.9	6.4	1733.2	9.4	0.00	0.03	0.1	16.5	336.2	
October 22, 2022		670.8	0.00	0.8	9.78	538.2	9.99	692.0	9.80	665.9	17.48	0.0	9.80	680.1	7.6	2033.6	5.5	0.01	-0.02	0.1	20.0	235.3	
October 23, 2022	9.80	670.5	0.00	11.2	9.80	676.1	12.31	0.0	9.80	665.1	15.36	0.0	9.80	679.8	6.7	1647.3	4.0	0.01	-0.02	0.1	20.9	190.9	
October 24, 2022	9.80	670.2	0.00	6.1	9.78	654.4	22.81	1154.3	9.80	666.8	16.07	0.0	9.81	680.2	5.7	1539.0	3.1	0.01	-0.01	0.1	14.5	294.9	
October 25, 2022	9.80	670.2	0.00	0.0	9.85	686.6	32.26	5135.5	9.78	665.6	15.85	0.0	9.80	656.9	5.6	1528.0	4.5	0.01	-0.12	0.1	9.3	357.7	0.22
October 26, 2022		669.9	0.00	0.1	9.71	671.1	31.52	8333.6	9.79	666.8	16.59	0.0	9.80	680.1	5.0	1306.4	1.9	0.01	-0.02	0.1	8.2	434.7	
October 27, 2022	9.77	670.7	0.00	0.8	9.80	669.9	23.90	6151.8	9.76	664.0	14.02	0.0	9.80	679.9	5.4	1534.2	8.2	0.00	-0.03	0.1	2.9	429.2	
October 28, 2022		670.2	0.00	0.0	9.79	669.1	25.93	7407.3	9.80	659.2	14.99	0.0	9.81	680.0	5.5	1466.3	9.1	0.00	-0.02	0.1	0.0	466.6	
October 29, 2022		670.0	0.00	0.0	9.81	670.6	24.06	6147.7	9.81	667.2	13.31	0.0	9.80	680.2	5.0	1254.0	7.7	0.00	-0.02	0.1	0.1	479.4	
October 30, 2022		669.9	0.00	0.0	9.80	670.0	24.01	6360.9	9.80	666.6	13.51	0.0	9.80	680.0	4.7	1236.5	8.6	-0.01	-0.03	0.1	0.1	453.4	
October 31, 2022	9.80	667.6	0.00	0.0	9.82	671.9	28.27	7287.7	9.80	664.6	16.53	0.0	9.79	680.9	4.5	1071.7	5.7	0.00	-0.02	0.2	0.3	474.3	
	0.00	670.0	0.04	1 0.	0.76	552.4	20.05	1001.3	0.00		44.50		0.00	670.5		4524.0		0.44		1 01	1 00	1100	45.54
Avg	9.80	670.3	0.01	8.4	9.79	662.4	26.95	1881.3	9.80	666.1	14.58	0.0	9.80	679.5	6.0	1534.9	9.6	-0.14	0.41	0.1	8.8	148.0	15.51
Min	9.68	665.6	0.00	0.0	9.71	538.2	0.00	0.0	9.76	659.2	12.66	0.0	9.67	656.9	3.9	708.4	1.9	-0.40	-0.12	0.1	0.0	0.0	0.22
Max	9.82	679.1	0.13	58.7	9.85	686.6	45.40	8333.6	9.81	667.4	17.48	0.0	10.06	686.7	9.8	2658.8	16.0	0.01	1.14	0.2	30.3	479.4	40.25

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report November 2022

D-4-		E	ast Scrubber			Ferm	nenter Scrubber			1	West Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
November 1, 2022	9.80	669.2	0.01	0.0	9.80	670.1	29.83	4559.8	9.80	666.9	14.47	0.0	9.80	679.8	5.8	1428.9	6.3	0.01	-0.06	0.1	2.4	334.6	6.42
November 2, 2022	9.80	670.3	0.00	0.0	9.81	670.3	28.47	3589.8	9.81	668.5	9.29	0.0	9.81	680.6	3.6	787.6	1.2	0.02	1.32	0.1	10.0	383.6	
November 3, 2022	9.80	670.1	0.00	0.0	9.13	575.7	26.92	4444.8	9.80	667.3	12.11	0.0	9.80	680.2	5.2	1341.2	-3.1	0.02	1.36	0.1	6.4	622.6	
November 4, 2022	9.80	670.4	0.00	0.0	9.79	669.9	28.46	2169.4	9.80	667.9	12.21	0.0	9.80	680.3	4.5	1229.5	-2.3	0.02	-0.05	0.1	0.1	710.1	
November 5, 2022	9.80	669.9	0.00	0.0	9.82	670.4	26.53	2423.1	9.80	667.8	11.13	0.0	9.80	680.0	5.0	1362.7	4.1	0.02	-0.02	0.1	1.7	521.4	
November 6, 2022	9.80	669.9	0.00	0.0	9.80	670.0	24.15	2370.7	9.80	667.5	10.46	0.0	9.80	680.0	4.3	1046.2	-3.3	0.02	-0.02	0.1	0.9	293.7	
November 7, 2022	9.80	670.0	0.00	0.0	9.79	669.0	27.80	2748.8	9.81	667.2	11.30	0.0	9.80	680.0	3.8	933.9	2.7	0.03	-0.02	0.1	0.0	254.9	
November 8, 2022	9.80	670.3	0.00	0.0	9.80	670.4	27.45	2479.0	9.81	598.0	8.99	161.1	9.80	680.3	3.6	888.3	-9.5	0.03	-0.02	0.1	4.2	620.9	
November 9, 2022	9.80	669.8	0.00	0.0	9.80	670.2	27.91	2526.3	9.75	657.0	7.74	0.0	9.80	679.9	3.3	864.4	-13.4	0.04	-0.02	0.1	11.3	621.7	3.37
November 10, 2022	9.80	670.0	0.00	0.0	9.80	670.1	24.69	2193.0	9.84	681.5	7.39	0.0	9.80	680.1	2.9	725.9	-12.6	0.03	-0.02	0.1	15.8	626.2	
November 11, 2022	9.80	670.1	0.00	0.0	9.79	669.5	28.29	2762.7	9.81	669.3	7.87	0.0	9.80	680.0	3.6	988.5	-9.2	0.03	-0.02	0.1	20.0	686.1	
November 12, 2022	9.79	670.0	0.00	0.0	9.80	670.1	31.21	3237.3	9.80	669.0	7.99	0.0	9.80	680.1	3.9	1003.2	-1.2	0.02	-0.06	-3.0	4.8	615.4	
November 13, 2022	9.80	670.0	0.00	0.0	9.81	670.2	24.03	2426.0	9.80	668.4	7.82	0.0	9.80	680.1	2.9	697.2	-1.0	0.03	-0.02	-0.6	7.6	597.3	
November 14, 2022	9.79	670.0	0.00	0.0	9.78	669.8	32.18	3511.8	9.79	668.5	8.79	0.0	9.79	679.9	3.4	793.7	15.8	-0.16	0.47	0.1	3.8	570.4	12
November 15, 2022	9.77	663.4	0.37	84.4	9.79	673.2	38.47	4218.2	9.83	670.4	6.91	0.0	9.78	686.7	4.2	989.1	35.5	-0.37	0.80	0.1	4.6	427.1	
November 16, 2022	9.79	668.6	0.93	217.7	9.81	670.3	41.88	4853.3	9.45	663.2	7.46	2.4	9.80	680.1	5.6	1287.4	23.9	-0.46	0.43	0.1	0.0	265.7	
November 17, 2022	9.83	676.1	0.44	147.5	9.83	671.6	18.24	1938.4	9.80	668.6	8.01	0.0	9.81	680.2	4.7	1079.4	13.9	-0.46	0.47	0.1	0.1	373.2	
November 18, 2022	9.74	669.5	0.02	1.1	9.79	669.8	16.79	1844.0	9.80	669.0	6.16	0.0	9.80	680.0	4.8	1215.2	37.4	-0.44	0.41	0.1	0.0	516.9	
November 19, 2022	9.66	652.5	0.00	144.9	9.80	669.8	16.81	1769.3	9.80	668.6	6.46	0.0	9.79	679.8	5.4	1425.3	48.0	-0.43	0.39	0.1	0.0	955.4	
November 20, 2022	9.70	655.5	0.03	81.7	9.80	669.8	17.19	1641.3	9.79	667.8	7.58	0.0	9.80	680.2	5.9	1566.3	45.5	-0.41	0.40	0.1	0.0	996.8	
November 21, 2022	9.80	670.1	0.01	0.0	9.79	669.7	18.76	1714.3	9.81	669.0	6.42	0.0	9.80	680.1	4.5	1117.3	23.8	-0.47	0.43	0.1	0.1	564.7	
November 22, 2022	9.79	670.0	0.08	0.0	9.79	670.0	20.75	1977.1	9.80	667.7	7.40	0.0	9.79	680.0	5.4	1350.1	15.2	-0.48	0.42	0.1	0.0	824.9	23.5
November 23, 2022	9.80	660.5	0.01	0.0	9.77	670.6	19.18	1789.1	9.80	668.3	5.74	0.0	9.80	680.0	4.4	1008.7	30.9	-0.47	0.41	0.1	0.0	869.6	
November 24, 2022	9.80	669.1	0.09	0.0	9.80	670.2	20.32	2135.5	9.80	668.4	6.35	0.0	9.79	680.3	4.7	1166.5	29.4	-0.50	0.40	0.1	0.5	845.7	
November 25, 2022	9.80	670.3	0.09	8.5	9.80	670.3	19.81	1929.3	9.81	669.6	5.42	0.0	9.80	680.0	4.3	1059.1	16.1	-0.49	0.40	0.1	0.0	746.2	
November 26, 2022	9.80	666.9	0.00	0.0	9.80	669.3	22.44	2153.4	9.80	668.8	5.46	0.0	9.80	680.1	4.9	1256.4	16.2	-0.50	0.43	0.1	0.0	930.1	
November 27, 2022	9.81	672.4	0.06	1.9	9.80	669.9	28.94	2992.5	9.80	668.4	6.83	0.0	9.80	680.0	5.2	1346.7	15.0	-0.49	0.43	0.1	0.0	796.5	Did not operate
November 28, 2022	9.82	672.2	0.00	0.0	9.81	669.8	21.83	2406.2	9.81	670.1	3.78	274.6	9.79	687.1	4.0	904.8	9.9	-0.50	0.44	0.1	0.0	385.9	Did not operate
November 29, 2022	9.81	674.2	0.00	25.3	9.81	670.9	21.33	2654.4	9.80	669.9	4.77	0.0	9.80	680.1	4.5	1028.5	9.5	-0.29	0.32	0.1	0.0	461.7	
November 30, 2022	9.81	670.7	0.00	175.3	9.80	670.0	20.05	3017.5	9.80	670.0	4.30	0.0	9.80	680.0	3.8	863.4	18.6	0.10	-0.01	0.1	0.8	275.1	
Avg	9.79	668.7	0.07	29.6	9.78	667.0	25.02	2682.5	9.79	666.1	7.89	14.6	9.80	680.5	4.4	1091.8	12.1	-0.22	0.31	-0.1	3.2	589.8	11.32
Min	9.66	652.5	0.00	0.0	9.13	575.7	16.79	1641.3	9.45	598.0	3.78	0.0	9.78	679.8	2.9	697.2	-13.4	-0.50	-0.06	-3.0	0.0	254.9	3.37
Max	9.83	676.1	0.93	217.7	9.83	673.2	41.88	4853.3	9.84	681.5	14.47	274.6	9.81	687.1	5.9	1566.3	48.0	0.10	1.36	0.1	20.0	996.8	23.50

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report December 2022

			East Scrubber			Fern	nenter Scrubber			1	West Scrubber			E	PT Scrubber			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	рН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
December 1, 2022	9.80	670.3	0.00	326.3	9.80	670.0	18.04	2896.3	9.80	670.2	4.40	0.0	9.80	679.9	5.1	1209.5	23.6	0.09	-0.02	0.1	0.0	679.7	
December 2, 2022	9.80	670.2	0.00	324.2	9.80	670.2	18.16	2998.1	9.80	669.7	3.90	0.0	9.80	679.9	6.5	1543.9	23.4	0.09	-0.02	0.1	0.0	726.1	
December 3, 2022	9.81	692.7	0.00	234.5	9.80	670.0	16.90	3044.8	9.79	668.3	6.05	0.0	9.80	679.9	6.9	1752.8	23.3	0.09	-0.02	0.1	0.0	959.1	
December 4, 2022	9.79	677.4	0.00	97.1	9.80	670.0	17.14	3143.7	9.80	667.0	11.98	0.0	9.81	680.3	4.9	1160.9	24.0	0.07	-0.02	0.1	0.0	1588.3	
December 5, 2022	9.81	670.8	0.00	53.7	9.80	670.0	18.54	3167.3	9.81	669.8	5.24	0.0	9.80	680.0	1.9	351.2	22.9	0.08	-0.01	0.1	0.5	600.6	
December 6, 2022	9.81	670.4	0.00	309.3	9.80	670.2	17.85	2902.4	9.81	670.0	3.88	0.0	9.80	680.0	2.1	464.6	22.7	0.09	0.00	0.1	0.2	552.8	
December 7, 2022	9.84	676.7	0.01	138.5	9.80	669.8	18.86	3100.7	9.79	669.6	4.01	0.0	9.80	680.0	1.9	430.3	23.8	0.09	-0.02	0.1	0.0	515.6	
December 8, 2022	9.80	673.2	0.00	0.0	9.80	670.0	17.33	2576.8	9.80	669.3	5.23	0.0	9.80	680.0	2.2	499.3	23.4	0.09	-0.02	0.1	0.0	874.6	
December 9, 2022	9.81	682.1	0.00	0.0	9.80	670.0	18.39	2680.4	9.80	667.8	7.63	0.0	9.80	679.9	2.7	628.0	23.4	0.08	-0.01	0.1	0.0	1160.8	
December 10, 2022	9.80	680.1	0.00	0.0	9.80	669.9	19.11	2641.2	9.81	667.7	8.56	0.0	9.81	680.0	3.2	763.2	23.5	0.09	-0.02	0.1	0.0	1146.1	
December 11, 2022	9.81	683.4	0.00	0.0	9.80	670.1	19.36	2383.4	9.80	668.4	6.22	0.0	9.80	680.0	3.0	652.1	23.0	0.09	-0.01	0.1	0.0	962.2	
December 12, 2022	9.80	684.2	0.00	0.0	9.81	670.1	20.45	2621.0	9.81	669.2	5.20	0.0	9.80	680.1	1.9	356.3	23.0	0.09	-0.01	0.1	0.0	555.3	
December 13, 2022	9.79	683.2	0.00	0.0	9.81	670.1	19.18	2491.9	9.89	665.6	5.24	0.0	9.86	681.6	2.6	553.3	22.8	0.09	-0.02	0.1	0.0	443.2	
December 14, 2022	9.81	682.0	0.00	0.0	9.76	669.9	15.54	2077.2	9.76	668.6	3.28	0.0	9.78	679.4	2.2	415.2	23.0	0.09	-0.02	0.1	0.0	348.3	
December 15, 2022	9.80	684.7	0.00	0.0	9.78	667.6	20.32	2723.5	9.80	669.4	4.03	0.0	9.80	679.7	2.1	136.9	22.6	0.10	-0.01	0.1	0.0	410.1	
December 16, 2022	9.79	669.4	0.00	0.0	9.80	670.0	16.83	2371.4	9.80	668.8	4.66	0.0	9.80	679.0	2.6	219.2	23.2	0.09	-0.01	0.1	0.0	467.9	Did not operate
December 17, 2022	9.81	670.6	0.00	0.0	9.81	670.1	16.46	2187.4	9.80	668.6	4.17	0.0	9.79	676.6	2.4	158.4	22.8	0.08	-0.01	0.1	0.0	303.9	
December 18, 2022	9.80	670.0	0.00	0.0	9.80	670.0	16.74	2187.4	9.81	669.0	4.13	0.0	9.80	678.9	2.0	143.2	22.4	0.10	-0.01	0.1	0.0	247.3	
December 19, 2022	9.80	669.8	0.17	69.4	9.79	669.8	12.18	2237.7	9.80	669.7	3.14	69.3	9.80	681.8	1.8	119.4	22.2	0.11	-0.01	0.1	69.5	152.8	
December 20, 2022	9.81	677.8	0.00	0.0	9.80	670.2	7.52	2308.0	9.80	669.8	2.56	0.0	9.80	680.4	2.2	276.6	21.2	0.10	-0.01	0.1	0.0	195.7	
December 21, 2022	9.79	680.9	0.00	0.0	9.81	670.4	6.51	1870.3	9.79	671.3	2.60	0.0	9.80	680.2	2.3	161.9	20.7	0.09	-0.01	0.1	0.0	390.7	
December 22, 2022	9.80	678.8	0.00	0.0	9.81	670.3	4.06	1177.0	9.80	669.9	2.28	0.0	9.80	680.4	2.3	35.5	20.6	0.09	-0.02	0.1	0.0	361.2	
December 23, 2022	9.80	670.1	0.00	0.0	9.80	670.0	4.03	1062.7	9.80	669.3	2.77	0.0	9.80	679.8	2.3	4.0	21.4	0.09	-0.03	0.1	0.0	488.5	
December 24, 2022	9.73	672.0	0.00	0.7	9.80	669.9	4.23	944.0	9.79	668.9	2.92	0.0	9.79	679.4	2.1	7.0	22.6	0.08	-0.02	0.1	0.0	696.4	
December 25, 2022	9.72	708.8	0.00	2.1	9.81	670.0	4.67	786.9	9.80	669.1	2.61	0.0	9.80	677.1	2.0	0.4	22.6	0.08	-0.02	0.1	0.0	584.5	
December 26, 2022	9.80	679.8	0.00	0.0	9.79	669.5	5.89	1504.3	9.80	669.6	2.36	0.0	9.79	673.8	1.7	35.1	22.7	0.08	-0.02	0.1	0.0	514.5	
December 27, 2022	9.80	669.7	0.00	0.0	9.80	669.8	7.23	1672.1	9.80	669.3	2.55	0.0	9.80	680.1	1.7	180.5	22.6	0.08	-0.01	0.1	0.0	383.7	
December 28, 2022	9.78	667.4	0.00	0.0	9.82	670.8	7.15	1654.2	9.83	657.3	3.05	0.0	9.82	693.9	2.0	162.0	22.7	0.08	-0.01	0.1	0.3	441.5	
December 29, 2022	9.80	670.7	0.00	0.0	9.80	670.0	16.79	3840.0	9.80	669.4	2.70	0.0	9.80	638.9	1.7	438.2	22.9	0.08	-0.02	0.1	0.0	403.3	
December 30, 2022	9.80	669.7	0.00	0.0	9.80	669.9	24.08	4715.3	9.80	668.9	2.94	0.0	9.80	679.9	1.8	449.1	22.9	0.08	-0.01	0.1	0.0	409.8	
December 31, 2022	9.80	670.7	0.00	0.0	9.79	670.0	24.57	18665.5	9.80	669.6	2.86	0.0	9.80	680.2	2.0	462.6	22.6	0.09	-0.01	0.1	0.0	425.5	
		,										1					1			•	•	1	
Avg	9.80	676.7	0.01	50.2	9.80	670.0	14.65	2923.6	9.80	668.7	4.29	2.2	9.80	678.7	2.7	444.2	22.7	0.09	-0.01	0.1	2.3	580.3	N/A
Min	9.72	667.4	0.00	0.0	9.76	667.6	4.03	786.9	9.76	657.3	2.28	0.0	9.78	638.9	1.7	0.4	20.6	0.07	-0.03	0.1	0.0	152.8	N/A
Max	9.84	708.8	0.17	326.3	9.82	670.8	24.57	18665.5	9.89	671.3	11.98	69.3	9.86	693.9	6.9	1752.8	24.0	0.11	0.00	0.1	69.5	1588.3	N/A

2022 Scrubber Bleach Usage (L as delivered 16% sodium hypochlorite solution)

	January	February	March	April	May	June	July	August	September	October	November	December
1	776	850	734	662	826	1102	848	1385	1737	1943	1112	751
2	736	581	840	669	848	1294	721	1554	1884	1826	442	718
3	888	653	712	744	815	1448	691	1214	1375	2348	1768	953
4	852	692	706	405	821	1565	888	1700	1917	2208	1145	915
5	656	817	834	577	912	1755	869	1157	1618	2430	1208	690
6	640	965	823	527	816	1752	551	1433	2087	1797	1145	567
7	583	723	934	457	792	1441	672	1343	2448	1183	1101	677
8	580	595	511	457	888	1437	695	1150	1774	2616	1036	647
9	487	729	631	502	1025	1666	1001	1278	1760	1826	1327	660
10	465	378	552	889	1069	1726	1131	1786	1626	1757	1108	823
11	1226	351	601	651	1006	2238	1100	1468	2054	1342	1087	698
12	1352	974	707	643	1127	2015	1243	1359	2319	2307	1206	654
13	1272	704	415	629	1061	1464	1302	1235	1887	1665	987	715
14	943	775	599	585	1166	808	1752	1074	1688	1423	984	795
15	1086	970	573	672	1376	471	1518	2188	1478	1757	1228	1119
16	1066	1202	524	745	1277	274	1405	1129	1667	2004	1342	1115
17	1103	1002	312	902	1134	508	1611	1184	1225	2002	1145	1470
18	785	971	241	827	1035	569	1899	1736	1472	1525	904	1132
19	719	860	119	519	1061	715	2388	1506	1373	893	890	962
20	881	1188	240	397	703	786	2211	1853	1571	730	1037	802
21	900	942	341	442	987	1031	1980	1610	1572	875	1007	655
22	1008	1087	357	684	1058	1065	1039	1244	1688	1970	1012	647
23	864	769	368	659	1167	583	3027	1869	1761	3182	1133	607
24	609	834	164	807	621	416	2137	1671	1689	2790	911	1016
25	708	603	362	812	1391	404	1627	1774	1712	1892	990	765
26	770	315	456	976	904	515	1520	1179	1707	1656	982	785
27	992	675	453	843	969	1038	1547	1095	1681	1652	1363	843
28		603	499	350	736	1016	1710	7978	1784	1669	829	1258
29	968		564	676	1012	716	1812	2255	2002	1503	763	666
30			563	724	1121	739	2027	1787	1933	1451	767	780
31	801		443		1262		1867	1123		1453		728
I (L)	26,795	21,808	16,179	19,435	30,985	32,560	44,789	52,316	52,487	55,675	31,960	25,612

Total (L) 26,795 21,808

2022 Scrubber Caustic Usage (kg)

					2022 3	CI UDDCI C	austic Ost	180 (NB)				
	January	February	March	April	May	June	July	August	September	October	November	December
1	103	126	116	105	115	123	126	169	173	207	104	82
2	93	111	117	66	123	139	116	164	190	206	86	82
3	109	137	115	114	104	164	128	157	173	216	45	86
4	106	90	116	102	115	178	120	190	172	229	139	91
5	94	100	121	132	113	170	98	148	169	193	122	78
6	92	107	120	57	118	165	117	157	169	191	112	67
7	87	30	169	163	116	156	113	160	180	183	94	93
8	90	118	122	140	114	152	119	161	165	165	111	84
9	118	146	101	146	130	147	131	151	199	171	110	91
10	89	145	111	125	93	149	140	158	202	168	78	82
11	133	123	70	121	124	192	125	148	197	164	108	79
12	167	141	129	117	125	166	136	142	197	169	94	73
13	150	150	90	108	107	152	136	158	185	162	85	73
14	133	140	106	100	133	130	149	137	174	143	113	76
15	130	140	87	115	127	115	149	153	165	154	133	78
16	134	138	124	112	124	75	159	139	157	175	123	89
17	127	148	79	119	129	106	140	155	139	172	118	86
18	120	115	102	113	118	122	156	180	136	85	101	89
19	112	137	79	104	130	123	213	183	149	86	87	69
20	130	118	101	99	114	115	188	159	165	74	99	79
21	135	119	90	103	121	130	194	157	152	64	97	39
22	136	136	104	97	141	152	203	186	165	110	105	74
23	96	118	110	109	123	101	198	185	151	182	107	34
24	127	149	48	112	118	125	196	170	176	140	105	73
25	105	96	115	111	129	119	181	173	150	170	108	73
26	112	123	106	119	128	106	178	181	157	145	102	71
27	163	98	100	121	124	137	160	177	179	163	120	74
28	130	83	92	94	150	124	164	202	200	144	88	113
29	127		101	117	134	126	180	188	218	108	86	59
30	121		106	104	153	123	187	210	216	108	82	75
31	105		122		134		186	194		102		69
(kg)	3.676	3.382	3.272	3.344	3.827	4.077	4.785	5.192	5.221	4.748	3.061	2.378

Total (kg) 3,676 3,382 3,272 3,344 3,827 4,077 4,785 5,192 5,221 4,748 3,061 2,378

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings January 2022

Date				H₂S (ppb)				Comments
Date	1	2	3	4	5	6	7	8	Comments
January 1, 2022	21.54	3.19	3.25	3.49	8.16	19.24	4.89	0	
January 2, 2022	0	4.8	0	0	0	0	0	0	
January 3, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 4, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 5, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 6, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 7, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 8, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 9, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 10, 2022	3.17	4.78	0	0	0	6.74	3.95	3.79	
January 11, 2022	5.5	3.35	3.42	4.07	8.86	21.05	10.65	5.11	
January 12, 2022	3.84	5.7	6.31	7.72	3.34	3.95	25.16	3.02	
January 13, 2022	6.91	7.98	4.12	3.18	3.6	3.29	3.34	3.55	
January 14, 2022	0	0	0	0	3.22	4.6	25.63	3.09	
January 15, 2022	0	13.41	0.127	0	4.08	14.66	0	0	
January 16, 2022	13.72	0	0	0	0	0	0	0	
January 17, 2022	3.38	7.75	5.25	3.93	3.46	0	4.02	0	
January 18, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 19, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
January 20, 2022	6.3	0	0	0	4.4	8.59	4.7	0	
January 21, 2022	0	4.61	4.49	6.55	0	0	0	0	
January 22, 2022	5.77	3.23	5.07	5.6	0	0	0	0	
January 23, 2022	3.93	3.19	3.06	4.27	0	4.35	14.16	4.17	
January 24, 2022	5.1	3.68	3.51	3.81	0	3.2	3.41	3.41	
January 25, 2022	0	0	0	0	3.89	4.47	8.87	0	
January 26, 2022	0	0	0	3.76	3.94	5.26	0	0	
January 27, 2022	3.85	5.14	3.71	3.22	3.23	6.46	7.06	0	
January 28, 2022	4.79	0	0	0	3.16	4.27	4.75	0	
January 29, 2022	0	8.24	0	0	3.61	0	0	3.18	
January 30, 2022	4.23	0	3.52	0	0	3.3	3	3.55	
January 31, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
Avg	4.38	3.76	2.18	2.36	2.71	5.40	5.89	1.57	
Min	0	0.70	0	0	0	0	0.05	0	
Max	21.54	13.41	6.31	7.72	8.86	21.05	25.63	5.11	
IVIUA	21.34	13.41	0.51	1.12	0.00	21.03	25.05	5.11	

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings February 2022

			H ₂ S (ppb)				Comments
1	2	3	4	5	6	7	8	Comments
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
0	0	0	0	0	0	3.51	0	
0	0	0	0	0	0	0	0	
3.28	0	0	0	4.63	5.65	26.95	0	
0	0	0	0	0	6.94	0	3.28	
6.69	3.2	0	0	0	0	0.786	0	
9.99	3.43	3.83	0	0	0	5.1	0	
0	0	3.72	0	0	0	5.71	0	
0	0	3.12	0	0	0	0	0	
0	0	0	0	0	0	6.75	0	
0	3.78	0	0	0	0	0	0	
0	0	4.2	5.99	0	0	0	0	
0	0	0	0	0	0	0	0	
3.94	0	0	0	0	0	0	0	
6.58	0	0	0	0	0	0	0	
6.12	0	0	0	0	0	3.52	3.1	
0.15	0	0	0	0	0	0	0	
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
0	3.55	3.88	5.88	0	3.46	0	0	
5.02	3.03	3.32	3.11	3.29	7.47	0	3.02	
3.31	4.74	3.72	7.86	3.48	3.18	5.67	3.21	
0	0	0	0	0	0	0	4.33	
7	4.52	9.18	3.95	0	0	3.19	0	
2 48	1 25	1 67	1 28	0 54	1 27	2 91	ე Ջ1	1
0	0	0	0	0.54	0	0	0.01	
				4.63	7.47	26.95	4.33	
	#N/A #N/A #N/A #N/A #N/A 0 0 3.28 0 6.69 9.99 0 0 0 0 3.94 6.58 6.12 0.15 #N/A #N/A #N/A #N/A 7 2.48 0	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A	1 2 3 4 #N/A #N/A #N/A #N/A #N	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A	1 2 3 4 5 6 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A </td <td>1 2 3 4 5 6 7 #N/A #</td> <td>1 2 3 4 5 6 7 8 #N/A #N/A</td>	1 2 3 4 5 6 7 #N/A #	1 2 3 4 5 6 7 8 #N/A #N/A

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings March 2022

Date				H ₂ S (ppb)				Comments
Date	1	2	3	4	5	6	7	8	Comments
March 1, 2022	3.3	4.5	0	3.86	0	3.07	3.13	4.69	
March 2, 2022	9.25	4.13	3.61	3.34	0	0	0	6.79	
March 3, 2022	6.65	5.3	5.7	7.51	0	0	0	5.88	
March 4, 2022	4.22	4.46	4.29	4.23	3	0	0	3.08	
March 5, 2022	6.74	4.12	3.93	3.83	3.65	3.98	3.96	3.81	
March 6, 2022	11.36	7.98	3.41	3.08	3.51	3.26	4.83	0	
March 7, 2022	9.12	4.97	4.54	4.01	3.45	0	0	3.34	
March 8, 2022	12.35	4.04	4.61	4.66	3.08	0	3.92	0	
March 9, 2022	11.67	4.17	3.13	3.57	5.18	0	0	0	
March 10, 2022	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Temperature too low
March 11, 2022	16.81	0	0	0	0	0	6.55	7.18	
March 12, 2022	3.42	4.05	3.72	3.39	7.93	4.49	0	0	
March 13, 2022	21.51	0	3.24	4.68	0	0	0	3.79	
March 14, 2022	11.72	0	0	0	0	0	13.02	0	
March 15, 2022	15.94	12.078	10.69	11.51	7.75	8.32	13.78	9.59	
March 16, 2022	0	0	3.08	0	0	0	0	0	
March 17, 2022	0	0	0	0	0	0	5.4	0	
March 18, 2022	3.02	0	0	4.83	0	3.41	0	0	
March 19, 2022	0	0	0	0	0	0	0	0	
March 20, 2022	0	4.33	0	0	0	0	0	0	
March 21, 2022	0	0	3.83	0	4.27	0	0	0	
March 22, 2022	0	0	0	3.12	3.33	0	3.16	3.59	
March 23, 2022	3.64	0	0	0	0	0	0	0	
March 24, 2022	0	0	0	0	0	0	0	0	
March 25, 2022	28.54	0	0	0	0	0	0	3.62	
March 26, 2022	0	0	0	0	0	0	0	0	
March 27, 2022	0	0	0	0	0	0	0	0	
March 28, 2022	0	0	0	0	0	0	0	0	
March 29, 2022	15.5	0	0	0	7.13	7	0	0	
March 30, 2022	20.3	8.99	0	0	0	0		0	
March 31, 2022	0	0	0	0	0	0	0	0	
Δνα	7.17	2.44	1.93	2.19	1.74	1	1.93	1.85	1
Avg Min	7.17	2.44	1.93	2.19	1.74	0	1.93	1.85	
Max	28.54	12.078	10.69	11.51	7.93	8.32	-	9.59	
IVIdX	28.54	12.078	10.69	11.51	7.93	8.32	13./8	9.59	I

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings April 2022

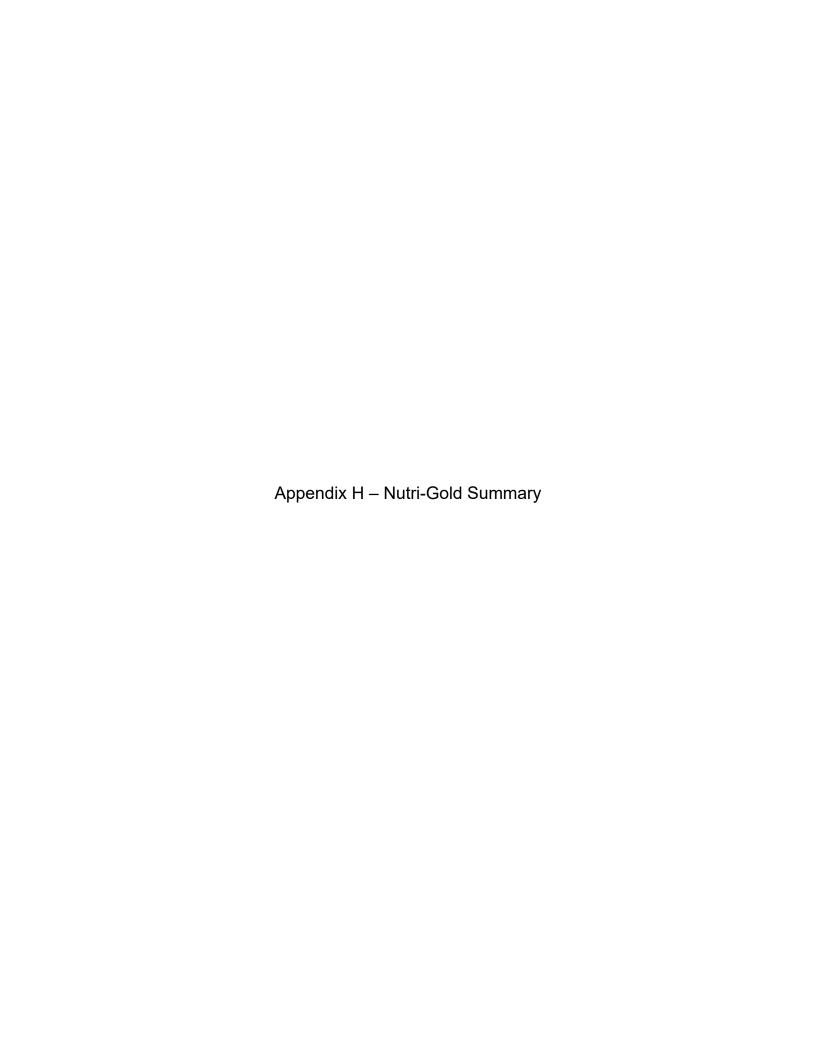
Date				H ₂ S (ppb)				Comments
Date	1	2	3	4	5	6	7	8	Comments
April 1, 2022	0	3.08	0	0	0	0	0	0	
April 2, 2022	0	0	0	0	0	0	4.05	0	
April 3, 2022	0	0	0	0	0	0	6.78	0	
April 4, 2022	0	0	0	0	0	0	5.11	3.16	
April 5, 2022	3.53	0	0	0	0	0	0	0	
April 6, 2022	0	0	0	0	0	0	0	0	
April 7, 2022	0	0	0	0	0	0	11.14	3.22	
April 8, 2022	0	0	0	0	0	3.55	0	3.46	
April 9, 2022	0	0	3.07	4.05	0	0	0	0	
April 10, 2022	0	0	0	0	0	0	0	0	
April 11, 2022	5.93	0	5.75	7.53	0	0	0	0	
April 12, 2022	3.59	3.26	0	0	0	0	0	0	
April 13, 2022	0	0	0	0	0	0	0	0	
April 14, 2022	5.93	0	0	0	0	0	0	0	
April 15, 2022	6.11	0	0	0	0	0	0	0	
April 16, 2022	35.13	0	0	0	0	0	0	0	
April 17, 2022	0	0	0	0	0	0	0	0	Measured by Odalog
April 18, 2022	40	10	10	10	10	10	10	20	Measured by Odalog
April 19, 2022	0	0	0	0	0	0	20	0	Measured by Odalog
April 20, 2022	10	10	0	0	0	0	10	10	Measured by Odalog
April 21, 2022	20	10	10	0	10	10	10	0	Measured by Odalog
April 22, 2022	4.45	0	0	0	0	0	3.66	0	
April 23, 2022	3.03	0	0	0	0	0	0	0	
April 24, 2022	12.43	6.49	6.78	6.87	5.1	6.07	5.58	6.79	
April 25, 2022	7.28	0	0	0	0	0	3.72	3.03	
April 26, 2022	9.44	0	5.46	0	0	0	0	11.19	
April 27, 2022	0	0	0	0	3.19	3.13	3.23	0	
April 28, 2022	0	3.03	0	6.37	0	0	0	0	
April 29, 2022	0	4.78	0	0	3.55	0	0	0	
April 30, 2022	11.91	3.6	6.29	6.53	0	0	0	4.07	
Avg	5.96	1.81	1.58	1.38	1	1.09	3.11	2.16	
Min	0	0	0	0	0	0	0	0	
Max	40	10	10	10	10	10	20	20	

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings May 2022

Date				H₂S (ppb)				Comments
Date	1	2	3	4	5	6	7	8	Comments
May 1, 2022	0	0	0	3.52	0	0	8.13	3.25	
May 2, 2022	8.92	0	3.07	3.37	0	0	0	0	
May 3, 2022	0	0	0	4.03	0	0	0	0	
May 4, 2022	3.71	14	11.45	4.77	0	3.01	0	0	
May 5, 2022	7.15	4.57	3.5	8.95	0	0	4.02	15.27	
May 6, 2022	6.98	3.01	0	0	9.44	4.7	0	0	
May 7, 2022	0	0	3.34	0	7.3	3.1	3.36	0	
May 8, 2022	3.02	5.63	3.08	5.95	3.78	0	0	0	
May 9, 2022	6.46	0	3.8	0	0	0	7.26	0	
May 10, 2022	22.05	30.76	3.25	10.16	0	0	0	0	
May 11, 2022	4.52	0	0	0	3.2	5.31	0	0	
May 12, 2022	6.57	7.75	9.76	6.17	7.72	5.06	4.87	0	
May 13, 2022	17.35	24.1	0	3.12	3.27	3.72	6.91	0	
May 14, 2022	3.46	4.71	6.64	3.8	0	0	0	0	
May 15, 2022	4.02	3.45	4.5	4.42	3.15	4.08	5.03	3.57	
May 16, 2022	3.87	0	0	0	0	0	6.48	5.04	
May 17, 2022	3.47	6.09	4.61	9.63	0	0	0	0	
May 18, 2022	5.46	0	0	0	3.39	0	5.06	0	
May 19, 2022	0	16.06	0	4	0	0	8.73	0	
May 20, 2022	0	0	3.23	0	0	0	0	0	
May 21, 2022	3.79	5.52	0	0	0	4.32	0	0	
May 22, 2022	7.19	0	0	0	0	11.12	0	0	
May 23, 2022	0	0	0	0	0	3.65	0	0	
May 24, 2022	11.62	0	4.3	14.02	0	0	0	0	
May 25, 2022	5.02	4.28	3.69	5.54	3.94	5.37	4.73	5.12	
May 26, 2022	4.26	0	8.3	6.23	5.5	0	0	0	
May 27, 2022	8.54	0	0	0	0	0	0	0	
May 28, 2022	0	3.73	0	8.74	0	0	0	0	
May 29, 2022	0	5.1	0	0	3.31	0	0	0	
May 30, 2022	0	3.11	0	3.13	0	0	0	0	
May 31, 2022	0		3.69	7.44	0	0	0	0	
Avg	4.76	4.70	2.59	3.77	2	2	2	1.04	
Min	0	0	0	0	0	0	0	0	
Max	22.05	30.76	11.45	14.02	9	11.12	8.73	15.27	

Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings June 2022

Date				H₂S (ppb)				Comments
Date	1	2	3	4	5	6	7	8	Comments
June 1, 2022	12.01	4.7	10.13	5.27	0	0	3.35	12.44	
June 2, 2022	10.84	15.36	10.69	10.45	7.44	6.53	5.08	4.5	
June 3, 2022	. 6	4.3	4.95	6.92	0	0	0	9.42	
June 4, 2022	6.36	3.58	5.52	5.28	0	0	4.71	5.41	
June 5, 2022	9.45	4.18	4.89	6.36	0	0	3.04	6.61	
June 6, 2022	8.55	4.09	5.5	5.83	0	0	0	7.88	
June 7, 2022	7.97	5.57	0	4.31	0	3.77	4.38	4.52	
June 8, 2022	. 0	0	0	0	3.75	0	3.29	0	
June 9, 2022	. 0	0	0	0	0	4.99	3.4	4.67	
June 10, 2022	. 0	3.74	0	5.91	0	0	0	0	
June 11, 2022	5.33	0	0	3.25	3.9	3.72	3.17	0	
June 12, 2022	9.02	6.1	3.92	6.41	0	3.03	0	0	
June 13, 2022	0	24.37	0	3.46	0	0	0	0	Grit bins being changed.
June 14, 2022	. 0	3.67	0	0	0	0	0	0	
June 15, 2022	0	0	0	0	0	0	0	0	
June 16, 2022	3.63	6.95	0	0	0	0	0	0	
June 17, 2022	0	0	0	0	0	4.31	0	0	
June 18, 2022	0	3.97	0	0	0	0	0	0	
June 19, 2022	. 0	0	0	0	0	0	0	0	
June 20, 2022	9.65	0	3.12	11.56	0	0	0	0	
June 21, 2022	. 0	0	0	4	0	3.28	3.28	0	
June 22, 2022	5.51	4.09	0	0	0	0	0	0	
June 23, 2022	0	0	0	0	0	0	0	0	
June 24, 2022	. 0	0	0	0	0	0	0	0	
June 25, 2022	. 0	0	0	0	0	0	0	0	
June 26, 2022	. 0	0	0	0	0	0	0	0	
June 27, 2022	36.74	0	3.05	3.78	0	0	0	0	Capital work at diversion structure.
June 28, 2022	3.75	0	3.82	9.6	0	0	3.16	0	
June 29, 2022	. 0	6.32	0	3.05	0	3.44	0	0	
June 30, 2022	. 0	0	0	0	0	0	0	0	
Ta	.1		4.65	2.40		اد	اد	4.05	1
Avg	4		1.85	3.18	1	1	1	1.85	
Min	0		0	0	0	0	0	0	
Max	36.74	24.37	10.69	11.56	7.44	6.53	5.08	12.44	



Appendix G - Odour Complaints

# Date Location	Complaint Description	Call Back Details	Wind Direction	Scrubber Status	Maintenance Activities	Action Taken	Is GBWWTP the Likely Source (Y/N)	Consistent with EnviroSuite Model?
2022-001 3/13/2022 South of GBWV	TP control room received a call from water dispatch at about 11 am indicating that they had received an odour complaint from a local resident. Normal emai protocol from drainage ops was not followed.	Called the customer back at 11 am Sunday. Caller was concerned there was a scrubber down or something. Caller I was informed that scrubbers were all operational, but the plant was receiving high flows from Saturday afternoon, and likely higher than normal levels of H2S were being brought in from the collection system and being discharged out OUTFALL 30.	N	Operational	N/A	Operators conducted fence line monitoring - observed 20ppb reading at main gate / diversion structure. This reading was generally confirmed by Envirosuite, and wind speed was low and direction was from the north. Scrubbers were all meeting ORP and pH set point. Plant was bypassing starting afternoon of Sat 12th into the morning	Y	Y
2022-02 3/15/2022 Beverley Area	water dispatch received an odour complaint at 7:56 am. Was forwarded to P&GA at 2:40 pm, who contacted Gold Bar ops at 3pm. standard email escalation through drainage ops was not followed. No information was initially provided. Caller info was	them know scrubbers were all working properly. gave them a direct number for a call back. Without talking to the customer, it was difficult to determine when they smelled	S	Operational	N/A	plant was was not under secondary bypass at the time (that morning) but was the night previously. without talking to the caller, it was difficult to determine when they smelled the	N	Y
2022-03 9/15/2022 4615 109A Ave	Details of customer odour complaint: strong outsid sewer odour last couple of nights, this morning it we extremely bad Odour inside or outside Outside Description of odour: Sewer smell Odour intensity (scale from 1-10): 10		Not identified	Operational	N/A	H2S exceedances measured at the Gold Bar AQMS Tuesday evening, Wednesday evening, and Thursday morning.	Y	N
2022-04 9/19/2022 10803 52 st	Details of customer odour complaint: sewer smell Odour inside or outside: outside Description of odour: see above Odour intensity (scale from 1-10):not given	Called back to get more info from the customer, she is not sure if it is Goldbar but would like us to investigate. Started to notice odor last Thursday and has been every evening since and described the odour like burning wood or t barbecue smell, I let her know we would look into the wind direction for those days to see if we may be a possible cause along with looking into any process issues, I will phone her back tomorrow with more info.	S, SE	Operational	N/A	Forwarded complaint to Drainage Ops: When we spoke with the caller this afternoon, they described the odour to us as more of a "Burn Wood / BBQ " smell . As you know these vague odour complaints can be difficult to investigate, but on the phone they specifically identified 10:45 pm last night (September 18th) as time when the odour was noticeable at their residence. When we ran an odour backtrack model (screenshots below), it indicates that based on the wind direction at that time, the odour was coming from the south / South East which is the opposite direction of Gold Bar.	N	N
2022-05 9/28/2022 5103 109A Ave	Details of customer odour complaint: Customer went outside to sit on deck and stated wind from coming from the north east and is getting a sewer odour outside Odour inside or outside Outside Description of odour: Sewer odour from treatment plant	Called back Sept 29 at 08:41. Let him know that we were not experiencing any irregular activites within the plant fence line and all scrubbers were working at that time. Wind direction was going his way northeast to southwest based on the modelling.	N	Operational	N/A	N/A	Y	Υ
2022-06 9/30/2022 10804 65 St NV	description: What is going on at the sewage treatment plant in Gold Bar? For the past week or so, we are getting a lot of sewage odor which is causing us to have to move indoors and close our windows at night. Please fix the problem. We are o St. Gabriel School Road NW. It is 4:15 pm on Friday September 30, 2022. Accessibility/disability issue?: no location: 10804 65 STREET NW on street: 65 STREET NW from: HARDISTY DRIVE NW		NE	Operational	N/A	shift crew checked scrubber status, and fenceline monitoring. No process upsets, so source of H2S coming from plant identified. Sent complaint back to Drainage Ops	N	N
2022-07 10/21/2022 3814 Ada Blvd	Details of customer odour complaint: its really bad	Call back and informed her that we do have a scrubber off is line for repair and should have back on line by end of day Saturday. She was very understanding about the situation and made note that it was not for the last 2 months but on and off within the last couple of months and not daily.	Not identified	Fermenter Scrubber offline	Media replacement in Fermenter Scrubber	N/A	Y	N

Appendix G - Odour Complaints

# Date Location	Complaint Description	Call Back Details	Wind Direction	Scrubber Status	Maintenance Activities	Action Taken	Is GBWWTP the Likely Source (Y/N)	Consistent with EnviroSuite Model?
2022-08 10/28/2022 3622 109 Ave	Details of customer odour complaint: Noticable odour in area for about the past month when wind comes from the west. He is with Beverly heights community league and has had others in area tell him the same thing. Odour inside or outside OUTSIDE Description of odour: SEWER FROM PLANT Odour intensity (scale from 1-10): 7 Time noticed odour and for how long: FOR PAST	Call back this morning, the gentleman was very understanding and indicated that some sewer work was going on in Beverly during the month of October that was part of the odours that they noticed at their hall. Recently it has been much better now that the work was done, he lives near the plant and only when the wind is from the west does he notice a bit of odor from the plant.	N/A	N/A	N/A	N/A	N	N
2022-09 10/30/2022 4428 109A Ave	Details of customer odour complaint: Odour is smelling bad today Odour inside or outside Outside Odour Description of odour: Smells like sewer Odour intensity (scale from 1-10): it's a 10 Time noticed odour and for how long: started at 16:30 tonight (Oct 30)	Call back to customer, received her voice mail and left a message that during the time of the complaint we did not notice and issues with odors or H2S coming from the south air quality monitoring station at that time. The plant was not experiencing any issues and all scrubbers were operating, mentioned that the wind was coming from the south west going north east most of the day but at the time	NW	Operational	N/A	checked Envirosuite, Scrubber status, AQMS, SIA. No obvious source of odour, but wind was high and blowing from the direction of the plant at the time of the complaint. No process upsets, everthing was running fine.	N	N
2022-10 11/1/2022 4816 109 Ave	Details of customer odour complaint: Odour is getting worse Odour inside or outside Outside odour Description of odour: Sewage Odour intensity (scale from 1-10): 7 or 8 Time noticed odour and for how long: Today (this	Call back to customer. He mentioned that he noticed the odor this morning and is still ongoing as of right now. The odor is coming from his back alley and is ongoing. With Operations having a couple of extra staff today I am sending a Operator to the back alley of the address with the Jerome meter to see if we are picking up and hits and to see if their	N	Operational	N/A	Operator went up to resident and measured in front of house and back alley with Jerome meter - all "zeros". Sam could not smell anything. NO odour of H2S detected.	N	N
2022-11 11/9/2022 4816 109 Ave	Details of customer odour complaint: Every time the go outside it smells like a dead skunk. The smell burns their throats and nasal passages. Odour inside or outside Odour Outside Description of odour: smells like a skunk that burns your throat Odour intensity (scale from 1-10): 15 Time noticed odour and for how long: last two	After talking to the customer she could not pin point which days this has been occurring and noted that it was on and off during a 2 month span. Goldbar is not experiencing and process issues at this time and mentioned that I would have Drainage follow up as well. The only thing she mentioned that at certain times she smelt sulfuric acid but let me know she will be more specific with the date and time so we can troubleshoot better. I	N/A	Operational	N/A	N/A	N	N

Substance Loading Rates on Nutrigold Fields - 2022

Nutrigold Field	#2022NE/N\	N0256204			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
6488	22.5	1461	191	77	19.0	TP	25900	37840	491				
						TN	35670	52114	677				
						NH4-N	10189	14886	193				
Landowner Neil W	Voitas	Neil Woitas				As	5.0	7.31	0.095				
Legal Description		NE-02-56-20-4				Cd	2.8	4.09	0.053	12739	1500	9250	600
Start Date		15-Jan-22				Cr	75	109.6	1.42	476	20	345	8
End Date		10-Feb-22				Cu	5.7	8	0.11	6258	15	4544	6
Soil Class		Class 1				Pb	34	49.7	0.645	1049	20	762	8
Biosolids Type		Digested				Mn	335	489	6.36				
		Centrifuge Dewate	ered			Hg	1.07	1.563	0.020	33336	3000	24206	1100
						Ni	33	48.2	0.626	1081	100	785	40
						Se	5.6	8.18	0.106				
						Zn	770	1125	14.6	46	10	34	4
						Со	5.7	8	0.1				

Nutrigold Field #	2022NE315	519			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
20978	5.60	1191	150	57	20.9	TP	27657	32939	578				
						TN	31581	37613	660				
						NH4-N	21100	25130	441				
Landowner		Kim Lopushinky				As	5.80	6.91	0.121				
Legal Description		NE-31-55-19-4				Cd	3.00	3.57	0.063	10527	1500	9219	600
Start Date		24-May-22				Cr	144	171.5	3.01	219	20	192	8
End Date		4-Jun-22				Cu	360	429	7.52	88	15	77	6
Soil Class		Class 1				Pb	49.0	58.4	1.024	645	20	564	8
Biosolids Type		Digested				Mn	310	369	6.48				
		Gravity Thickened				Hg	1.29	1.536	0.027	24481	3000	21440	1100
						Ni	52	61.9	1.087	607	100	532	40
						Se	25.3	30.13	0.529				
						Zn	702	836	14.7	45	10	39	4
						Со	10.40	12	0.2				

Nutrigold Field #	#2022SE3053	317			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
10533	5.80	620	74	30	20.7	TP	27657	17147	572				
						TN	31581	19580	653				
						NH4-N	21100	13082	436				
Landowner		Barry Piche				As	5.80	3.60	0.120				
Legal Description		SE-30-53-17-4				Cd	3.00	1.86	0.062	10527	1500	9219	600
Start Date		6-Jun-22				Cr	144	89.3	2.98	219	20	192	8
End Date		10-Jun-22				Cu	360	223	7.44	88	15	77	6
Soil Class		Class 1				Pb	49.0	30.4	1.013	645	20	564	8
Biosolids Type		Digested				Mn	310	192	6.41				
		Gravity Thickened				Hg	1.29	0.800	0.027	24481	3000	21440	1100
						Ni	52	32.2	1.075	607	100	532	40
						Se	25.3	15.69	0.523				
						Zn	702	435	14.5	45	10	39	4
						Со	10.40	6	0.2				

Nutrigold Field #	‡2022SE/SW	/015418			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
42948	5.80	2511	298	121	20.8	TP	27657	69447	574				
						TN	31581	79300	655				
						NH4-N	21100	52982	438				
Landowner		Al Gavinchuk				As	5.80	14.56	0.120				
Legal Description		SW/SE-01-54-18-4				Cd	3.00	7.53	0.062	10527	1500	9219	600
Start Date		21-Jun-22				Cr	144	361.6	2.99	219	20	192	8
End Date		19-Aug-22				Cu	360	904	7.47	88	15	77	6
Soil Class		Class 1				Pb	49.0	123.0	1.017	645	20	564	8
Biosolids Type		Digested				Mn	310	778	6.43				
		Gravity Thickened				Hg	1.29	3.239	0.027	24481	3000	21440	1100
						Ni	52	130.6	1.079	607	100	532	40
						Se	25.3	63.53	0.525				
						Zn	702	1763	14.6	45	10	39	4
						Со	10.40	26	0.2				

Nutrigold Field #	#2022SE155	519			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
10807	6.30	685	80	33	20.8	TP	27657	18945	574				
						TN	31581	21633	656				
						NH4-N	21100	14454	438				
Landowner		Rick Ruzyki				As	5.80	3.97	0.120				
Legal Description		SE-15-55-19-4				Cd	3.00	2.06	0.062	10527	1500	9219	600
Start Date		22-Aug-22				Cr	144	98.6	2.99	219	20	192	8
End Date		26-Aug-22				Cu	360	247	7.47	88	15	77	6
Soil Class		Class 1				Pb	49.0	33.6	1.017	645	20	564	8
Biosolids Type		Digested				Mn	310	212	6.43				
		Gravity Thickened				Hg	1.29	0.884	0.027	24481	3000	21440	1100
						Ni	52	35.6	1.079	607	100	532	40
						Se	25.3	17.33	0.525				
						Zn	702	481	14.6	45	10	39	4
						Со	10.40	7	0.2				

Nutrigold Field #	#2021NE255	116			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
3517	23.6	833	90	36	23.1	TP	25900	21575	599				
						TN	35670	29713	825				
						NH4-N	10189	8487	236				
Landowner		Ron Kozoway				As	5.0	4.17	0.116				
Legal Description		NE-25-51-17-4				Cd	2.8	2.33	0.065	12739	1500	9250	600
Start Date		18-Dec-21				Cr	75	62.5	1.74	476	20	345	8
End Date		12-Jan-22				Cu	5.7	5	0.13	6258	15	4544	6
Soil Class		Class 1				Pb	34	28.3	0.787	1049	20	762	8
Biosolids Type		Digested				Mn	335	279	7.75				
		Centrifuge Dewate	ered			Hg	1.07	0.891	0.025	33336	3000	24206	1100
						Ni	33	27.5	0.764	1081	100	785	40
						Se	5.6	4.66	0.130				
						Zn	770	641	17.8	46	10	34	4
						Со	5.7	5	0.1				

Nutrigold Field #	‡2021SW305	116			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
4602	23.9	1100	135	52	21.2	TP	25900	28490	548				
						TN	35670	39237	755				
						NH4-N	10189	11208	216				
Landowner		Ron Kozoway				As	5.0	5.50	0.106				
Legal Description		SW-30-51-16-4				Cd	2.8	3.08	0.059	12739	1500	9250	600
Start Date		29-Oct-21				Cr	75	82.5	1.59	476	20	345	8
End Date		16-Dec-21				Cu	5.7	6	0.12	6258	15	4544	6
Soil Class		Class 1				Pb	34	37.4	0.719	1049	20	762	8
Biosolids Type		Digested				Mn	335	369	7.09				
		Centrifuge Dewate	ered			Hg	1.07	1.177	0.023	33336	3000	24206	1100
						Ni	33	36.3	0.698	1081	100	785	40
						Se	5.6	6.16	0.118				
						Zn	770	847	16.3	46	10	34	4
						Со	5.7	6	0.1				

Nutrigold Field #	‡2021SW225	5117			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
3790	23.3	885	105	43	20.6	TP	25900	22922	533				
						TN	35670	31568	734				
						NH4-N	10189	9017	210				
Landowner		Ron Kozoway				As	5.0	4.43	0.103				
Legal Description		SW-22-51-17-4				Cd	2.8	2.48	0.058	12739	1500	9250	600
Start Date		9-Nov-21				Cr	75	66.4	1.54	476	20	345	8
End Date		6-Dec-21				Cu	5.7	5	0.12	6258	15	4544	6
Soil Class		Class 1				Pb	34	30.1	0.700	1049	20	762	8
Biosolids Type		Digested				Mn	335	296	6.89				
		Centrifuge Dewat	ered			Hg	1.07	0.947	0.022	33336	3000	24206	1100
						Ni	33	29.2	0.679	1081	100	785	40
						Se	5.6	4.96	0.115				
						Zn	770	681	15.8	46	10	34	4
						Со	5.7	5	0.1				

Nutrigold Field #	#2022NE324	92W5			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
6089	24.6	1498	144	58.3	25.7	TP	24473	36661	629				
						TN	34160	51172	878				
						NH4-N	6530	9782	168				
Landowner		Warburg Sylvis Pro	oject			As	4.5	6.7	0.12				
Legal Description		NE-32-49-2-5				Cd	3.25	4.87	0.0835	10511	1500	7530	600
Start Date		22-Apr-22				Cr	97.3	146	2.50	351	20	252	8
End Date		3-Oct-22				Cu	409	613	10.5	84	15	60	6
Soil Class		Class 4				Pb	40.7	61.0	1.05	839	20	601	8
Biosolids Type		Digested				Mn	316	473	8.12				
		Centrifuge Dewat	ered			Hg	1.3	1.9	0.033	26277	3000	18825	1100
						Ni	35.4	53.0	0.910	965	100	691	40
						Se	5.1	7.6	0.13				
						Zn	718	1076	18.4	48	10	34	4
						Со	5.5	8.2	0.14				

Nutrigold Field #	‡2022NW33	492W5			Loading Rate		Biosolids	Field Loading			Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
2593	24.6	638	65	26.5	24.1	TP	24473	15614	589				
						TN	34160	21794	822				
						NH4-N	6530	4166	157				
Landowner		Warburg Sylvis Pro	oject			As	4.5	2.9	0.11				
Legal Description		NW-33-49-2-5				Cd	3.25	2.07	0.0782	10511	1500	7530	600
Start Date		9-Jun-22				Cr	97	62	2.3	351	20	252	8
End Date		8-Oct-22				Cu	409	261	9.85	84	15	60	6
Soil Class		Class 4				Pb	40.7	26.0	0.980	839	20	601	8
Biosolids Type		Digested				Mn	316	202	7.61				
		Centrifuge Dewate	ered			Hg	1.3	0.83	0.031	26277	3000	18825	1100
						Ni	35.4	22.6	0.85	965	100	691	40
						Se	5.1	3.3	0.12				
						Zn	718	458	17.3	48	10	34	4
						Со	5.5	3.5	0.13				

Appendix H - Nutri-Gold Summary

Nutrigold Field #	#2022SW334	92W5			Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
8817	24.6	2169	220	89.0	24.4	TP	24473	53082	596				
						TN	34160	74093	833				
						NH4-N	6530	14164	159				
Landowner		Warburg Sylvis Pr	oject			As	4.5	9.8	0.11				
Legal Description		SW-33-49-2-5				Cd	3.25	7.05	0.0792	10511	1500	7530	600
Start Date		30-Aug-22				Cr	97	211	2.4	351	20	252	8
End Date		1-Nov-22				Cu	409	887	9.97	84	15	60	6
Soil Class		Class 4				Pb	40.7	88.3	0.992	839	20	601	8
Biosolids Type		Digested				Mn	316	685	7.70				
		Centrifuge Dewat	ered			Hg	1.3	2.8	0.032	26277	3000	18825	1100
						Ni	35.4	76.8	0.863	965	100	691	40
						Se	5.1	11.1	0.12				
						Zn	718	1557	17.5	48	10	34	4
						Со	5.5	11.9	0.13				

Substance Loading Rates on Olstad turnkey Fields - 2022

Olstad Field OC	-01				Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
29089	5.50%	1602	210	85	18.8	TP	27657	44307	521				
						TN	31581	50593	595				
						NH4-N	21100	33802	398				
Landowner		Craig Sime				As	5.80	9.29	0.109				
Legal Description	l	NE-07-57-23				Cd	3.00	4.81	0.057	10527	1500	9219	600
Start Date		5-May-22				Cr	144	230.7	2.71	219	20	192	8
End Date		19-May-22				Cu	360	577	6.78	88	15	77	6
Soil Class		Class 1				Pb	49.0	78.5	0.924	645	20	564	8
Biosolids Type		Digested				Mn	310	497	5.84				
		Gravity Thicker	ned			Hg	1.29	2.067	0.024	24481	3000	21440	1100
						Ni	52	83.3	0.980	607	100	532	40
						Se	25.3	40.53	0.477				
						Zn	702	1125	13.2	45	10	39	4
						Со	10.40	17	0.2				

Olstad Field OC	-02				Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
20280	5.80%	1175	140	56	21.0	TP	27657	32497	580				
						TN	31581	37108	663				
						NH4-N	21100	24793	443				
Landowner		Larry Olstad				As	5.80	6.82	0.122				
Legal Description		NE-24-54-19-4				Cd	3.00	3.53	0.063	10527	1500	9219	600
Start Date		11-Jun-22				Cr	144	169.2	3.02	219	20	192	8
End Date		29-Jul-22				Cu	360	423	7.55	88	15	77	6
Soil Class		Class 1				Pb	49.0	57.6	1.028	645	20	564	8
Biosolids Type		Digested				Mn	310	364	6.50				
		Gravity Thicken	ed			Hg	1.29	1.516	0.027	24481	3000	21440	1100
						Ni	52	61.1	1.091	607	100	532	40
						Se	25.3	29.73	0.531				
						Zn	702	825	14.7	45	10	39	4
						Со	10.40	12	0.2				

Substance Loading Rates on Olstad turnkey Fields - 2022

Olstad Field OC	-03				Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
39580	6.00%	2394	300	122	19.6	TP	27657	66211	543				
						TN	31581	75605	620				
						NH4-N	21100	50513	414				
Landowner		Tim Milligan				As	5.80	13.89	0.114				
Legal Description		SW/SE-16-56-2	3-4			Cd	3.00	7.18	0.059	10527	1500	9219	600
Start Date		26-Aug-22				Cr	144	344.7	2.83	219	20	192	8
End Date		17-Sep-22				Cu	360	862	7.06	88	15	77	6
Soil Class		Class 1/Class 2				Pb	49.0	117.3	0.962	645	20	564	8
Biosolids Type		Digested				Mn	310	742	6.08				
		Gravity Thicker	ied			Hg	1.29	3.088	0.025	24481	3000	21440	1100
						Ni	52	124.5	1.020	607	100	532	40
						Se	25.3	60.57	0.496				
						Zn	702	1681	13.8	45	10	39	4
						Co	10.40	25	0.2				

Olstad Field OC	C-04				Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
37433	6.10%	2303	285	110	20.9	TP	27657	63694	579				
						TN	31581	72731	661				
						NH4-N	21100	48593	442				
Landowner		Terry Vaculchik				As	5.80	13.36	0.121				
Legal Description	1	SW/SE-28-55-2	4-4			Cd	3.00	6.91	0.063	10527	1500	9219	600
Start Date		17-Sep-22				Cr	144	331.6	3.01	219	20	192	8
End Date		3-Oct-22				Cu	360	829	7.54	88	15	77	6
Soil Class		Class 1				Pb	49.0	112.8	1.026	645	20	564	8
Biosolids Type		Digested				Mn	310	714	6.49				
		Gravity Thicker	ied			Hg	1.29	2.971	0.027	24481	3000	21440	1100
						Ni	52	119.8	1.089	607	100	532	40
						Se	25.3	58.27	0.530				
						Zn	702	1617	14.7	45	10	39	4
						Со	10.40	24	0.2				

Substance Loading Rates on Olstad turnkey Fields - 2022

Olstad Field O	C- 0 5				Loading Rate		Biosolids	Field Lo	ading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
5055	6.30%	323	40	16	20.2	TP	27657	8933	558				
						TN	31581	10201	638				
						NH4-N	21100	6815	426				
Landowner		Jason Lamoure	XK			As	5.80	1.87	0.117				
Legal Description	n	SW-14-55-23-4				Cd	3.00	0.97	0.061	10527	1500	9219	600
Start Date		6-Oct-22				Cr	144	46.5	2.91	219	20	192	8
End Date		12-Oct-22				Cu	360	116	7.27	88	15	77	6
Soil Class		Class 1				Pb	49.0	15.8	0.989	645	20	564	8
Biosolids Type		Digested				Mn	310	100	6.26				
		Gravity Thicken	ed			Hg	1.29	0.417	0.026	24481	3000	21440	1100
						Ni	52	16.8	1.050	607	100	532	40
						Se	25.3	8.17	0.511				
						Zn	702	227	14.2	45	10	39	4
						Со	10.40	3	0.2				

EPCOR Water Services Inc.

Biosolids Land Application Annual Report

November 2022

Prepared for:

David Curran EPCOR Water Services Inc. 9504 49 St NW Edmonton, AB Canada, T6B 2M9

Prepared by:

SYLVIS Environmental 10171 Saskatchewan Dr NW Edmonton, AB Canada, T6E 4R5 Phone: 1.800.778.1377 Fax: 604.777.9791 www.SYLVIS.com

SYLVIS DOCUMENT 1559-22 © SYLVIS Environmental 2022

LIST OF TABLES

acceptable ratios of nitrogen (N) and phosphorus (P) to trace elements in EPCOR biosolids from February to October 2022.	2
Table 2: Biosolids application site details for 2022.	3
Table A 1: Trace element and nutrient loading rates for NE32-49-2-W5	1
Table A 2: Trace element and nutrient loading rates for NW33-49-2-W5	5
LIST OF FIGURES	
Figure B 1: Biosolids Application Areas	7
LIST OF PHOTOGRAPHS	
Photograph 1: Excavator digging soil pit for pre-application site assessments. (March	
2022)	3
Photograph 2: Construction of the berm for the NE32 stockpile area. (April 2022)	3
Photograph 3: Biosolids are delivered to the stockpile in NE32. (May 2022)	3
Photograph 4: Biosolids are loaded into the manure spreader. (October 2022)	9
Photograph 5: Spreader applying biosolids to SW33. (October 2022)	9
Photograph 6: Tractor with disc incorporating biosolids into NE32. (September 2022)	9

1 PROJECT OVERVIEW

Project Name:	Warburg Marginal Land Improvement
Authorization/Reference Number:	639-29175-SLU
Authorization Date:	April 19, 2022, revised September 20,2022
Project Start Date:	April 19, 2022
Project End Date:	October 31, 2022
Biosolids Type:	Anaerobically digested, dewatered
Total Solids Content (%):	24.50
Target Biosolids Utilization (dt):	6,080.00
Actual Biosolids Utilization (dt):	4,304.41
Agricultural (Thickened) – Nu Agricultural (Dewatered) Mine Reclamation Marginal Land Improvement Biomass Plantation Establish Off-spec Agricultural Land (i Other (please specify below) REGULATORY ADMINISTRATION Guideline Letter of Authorization Other (please specify below)	nment e., outside the purview of the guidelines)
EPEA Approval Number: 639-0	03-06

4 BIOSOLIDS QUALITY

SYLVIS completed due diligence for biosolids quality assurance by reviewing laboratory results from February through October 2022. Comparison of average concentrations to current regulatory criteria for biosolids quality is provided in Table 1. All biosolids samples met the minimum ratios for nitrogen and phosphorous to trace element concentrations.

Table 1: Average trace element (TE) and nutrient concentrations and minimum acceptable ratios of nitrogen (N) and phosphorus (P) to trace elements in EPCOR biosolids from February to October 2022.

Parameters	Concentration ^a (mg/kg)	N/TE	Guideline N/TE Minimum Ratio ^(b)	P/TE	Guideline P/TE Minimum Ratio ^b
Trace Elements					
Cadmium	3.25	10,511	1,500	7,530	600
Chromium	97.3	351	20	252	8
Copper	409	84	15	60	6
Lead	40.7	839	20	601	8
Mercury	1.27	26,277	3,000	18,825	1,100
Nickel	35.4	965	100	691	40
Zinc	718	48	10	34	4
Nutrients					
Total Nitrogen	34,160	-	-	-	-
Total Phosphorous	24,473	-	-	-	-

a Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of February through October in 2022. EPCOR lab reports 202202280015, 202205300032, 202206220021, 202207260030, 202209020010, 202209270017, and 202210210054.

5 APPLICATION AREAS

Name/Landowner: Warburg Colony Farms

Physical Address: NE32-49-2-W5 and W33-49-2-W5

Distance from EWMC: 93.9 km

Vegetation prior to biosolids application: canola, wheat, barley rotation

Vegetation following biosolids applications for next three growing seasons: canola, wheat,

barley rotation

Site Maps: See Figure B 1, Appendix B for a map of the applied areas.

6 HISTORIC BIOSOLIDS APPLICATIONS

No biosolids have been previously applied on these fields.

b Minimum Acceptable Ratios of Nitrogen and Phosphorous to Metals from Table 1 of the Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Land (2001).

7 BIOSOLIDS APPLICATION AND LOADING RATES

Biosolids were applied at a target of 25 dt/ha to each field. Application details are provided in Table 2. Loading rates of nutrients and trace elements are summarized in Tables A1, 2 and 3, Appendix A.

Table 2: Biosolids application site details for 2022.

				Biosolids	s Applicat	ion Details
Site Name/Legal Description	Site Class	Target Rate (dt/ha)	Area (ha)	Total Applied (dt)	Actual Rate (dt/ha)	Stockpiling and Application Dates
Warburg Colony	_					
NE32-49-2-W5	4	25	58.3	1,498	25.7	April 22 nd – June 9 th and September 20 th – October 3 rd
NW33-49-2-W5	4	25	26.5	638	24.1	June 9 th – July 29 th and October 4 th – 8 th
SW33-49-2-W5	4	25	89.0	2,169	24.4	July 30 th – October 20 th and October 8 th – November 1 st

8 POST APPLICATION MONITORING

Required? Post-application monitoring is required

Matrix (e.g., soil, crop, surface waste): Soil and vegetation.

Constituents: trace elements.

Frequency and duration: Monitoring will occur at the end of the first growing seasons following biosolids applications, in the fall of 2023.

Application of results: Monitoring results will be provided to AEP in the 2023 annual report.

APPENDIX A - TABLES

Table A 1: Trace element and nutrient loading rates for NE32-49-2-W5

Parameters	Biosolids ^b (mg/kg)	Loading Rate (kg/ha)	Guideline Limit ^a	% Of Guideline Limit
Trace Elements				
Arsenic	4.5	0.12	-	-
Cadmium	3.25	0.0835	1.5	5.6
Chromium	97.3	2.50	100	2.5
Copper	409	10.5	200	5.3
Lead	40.7	1.05	100	1.0
Manganese	316	8.12	-	-
Mercury	1.3	0.033	0.5	6.0
Nickel	35.4	0.910	25	3.6
Selenium	5.1	0.13	-	-
Zinc	718	18.4	300	6.1
Cobalt	5.5	0.14	-	-
Fertility Parameters	-			
Total Phosphorous	24,473	629	-	-
Total Nitrogen	34,160	878	900	97.5
Ammonia Nitrogen	6,530	168	450	37.3
Total Solids	24.6%	25.7 dt/ha	-	-

^a Maximum Cumulative Additions to Class 1 Sites for a single application from the *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Land* (2001). Where values are not provided, there is no applicable guideline

^b Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of February through October in 2022. EPCOR lab reports 202202280015, 202205300032, 202206220021, 202207260030, 202209020010, 202209270017, and 202210210054.

Table A 2: Trace element and nutrient loading rates for NW33-49-2-W5

Parameters	Biosolids ^b (mg/kg)	Loading Rate (kg/ha)	Guideline Limit ^a	% Of Guideline Limit
Trace Elements				
Arsenic	4.5	0.11	-	-
Cadmium	3.25	0.0782	1.5	5.2
Chromium	97.3	2.3	100	2.3
Copper	409	9.85	200	4.9
Lead	40.7	0.980	100	1.0
Manganese	316	7.61	-	-
Mercury	1.3	0.031	0.5	6.0
Nickel	35.4	0.85	25	3.4
Selenium	5.1	0.12	-	-
Zinc	718	17.3	300	5.8
Cobalt	5.5	0.13	-	-
Fertility Parameters				
Total Phosphorous	24,473	589	-	-
Total Nitrogen	34,160	822	900	91.4
Ammonia Nitrogen	6,530	157	450	34.9
Total Solids	24.6 %	24.1 dt/ha	-	-

^a Maximum Cumulative Additions to Class 1 Sites for a single application from the *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Land* (2001). Where values are not provided, there is no applicable guideline

^b Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of February through October in 2022. EPCOR lab reports 202202280015, 202205300032, 202206220021, 202207260030, 202209020010, 202209270017, and 202210210054.

Table A 3: Trace element and nutrient loading rates for SW33-49-2-W5.

Parameters	Biosolids ^b (mg/kg)	Loading Rate (kg/ha)	Guideline Limit ^a	% Of Guideline Limit
Trace Elements		<u> </u>		
Arsenic	4.5	0.11	-	-
Cadmium	3.25	0.0792	1.5	5.3
Chromium	97.3	2.4	100	2.4
Copper	409	9.97	200	5.0
Lead	40.7	0.992	100	1.0
Manganese	316	7.70		
Mercury	1.3	0.032	0.5	6.0
Nickel	35.4	0.863	25	3.5
Selenium	5.1	0.12	-	-
Zinc	718	17.5	300	5.8
Cobalt	5.5	0.13		
Fertility Parameters			-	
Total Phosphorous	24,473	596	-	-
Total Nitrogen	34,160	833	900	92.5
Ammonia Nitrogen	6,530	159	450	35.4
Total Solids	24.6 %	24.4 dt/ha	-	-

^a Maximum Cumulative Additions to Class 1 Sites for a single application from the *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Land* (2001). Where values are not provided, there is no applicable guideline.

^b Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of February through October in 2022. EPCOR lab reports 202202280015, 202205300032, 202206220021, 202207260030, 202209020010, 202209270017, and 202210210054.

APPENDIX B – FIGURES

2022 Biosolids Application Area: Warburg, AB Legend NW33 Application Area (173.8 ha) Wetland Intermittent Stream/Spillway Water Buffer (30 m) NE32 Edmonton SW33 Warburg CLIENT: EPCOR PROJECT: WARBURG COLONY METERS ALICE WANG DATE: 2022-11-15 Field Application Area (ha) Application Rate (dT/ha) MAP SCALE: NE32 58.3 25.7 COORDINATE SYSTEM: NAD 1983 3TM 114 26.5 24.1 NW33 **SYLVİS** 89.0 24.4 SW33

Figure B 1: Biosolids Application Areas

APPENDIX C - PHOTOGRAPHS

Photograph 1: Excavator digging soil pit for pre-application site assessments. (March 2022)

Photograph 2: Construction of the berm for the NE32 stockpile area. (April 2022)

Photograph 3: Biosolids are delivered to the stockpile in NE32. (May 2022)

Photograph 4: Biosolids are loaded into the manure spreader. (October 2022)

Photograph 5: Spreader applying biosolids to SW33. (October 2022)



Photograph 6: Tractor with disc incorporating biosolids into NE32. (September 2022)

		22NE32492W5			Loading Rate		Biosolids		oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
6089	24.6	1498	144	58.3	25.7	TP	24473	36661	629				
						TN	34160	51172	878				
						NH4-N	6530	9782	168				
Landowner		Warburg Sylvis Project				As	4.5	6.7	0.12				
Legal Descri	ption	NE-32-49-2-5				Cd	3.25	4.87	0.0835	10511	1500	7530	600
Start Date		22-Apr-22				Cr	97.3	146	2.50	351	20	252	8
End Date		3-Oct-22				Cu	409	613	10.5	84	15	60	6
Soil Class		Class 4				Pb	40.7	61.0	1.05	839	20	601	8
Biosolids Typ	pe	Digested				Mn	316	473	8.12				
		Centrifuge Dewatered				Hg	1.3	1.9	0.033	26277	3000	18825	1100
						Ni	35.4	53.0	0.910	965	100	691	40
						Se	5.1	7.6	0.13				
						Zn	718	1076	18.4	48	10	34	4
						Со	5.5	8.2	0.14				

Nutrigold	Field #20)22NW33492W5			Loading Rate		Biosolids	ield Loadin	g		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
2593	24.6	638	65	26.5	24.1	TP	24473	15614	589				
						TN	34160	21794	822				
						NH4-N	6530	4166	157				
Landowner	r	Warburg Sylvis Project				As	4.5	2.9	0.11				
Legal Descr	ription	NW-33-49-2-5				Cd	3.25	2.07	0.0782	10511	1500	7530	600
Start Date		9-Jun-22				Cr	97	62	2.3	351	20	252	8
End Date		8-Oct-22				Cu	409	261	9.85	84	15	60	6
Soil Class		Class 4				Pb	40.7	26.0	0.980	839	20	601	8
Biosolids Ty	ype	Digested				Mn	316	202	7.61				
		Centrifuge Dewatered				Hg	1.3	0.83	0.031	26277	3000	18825	1100
						Ni	35.4	22.6	0.85	965	100	691	40
						Se	5.1	3.3	0.12				
						Zn	718	458	17.3	48	10	34	4
						Со	5.5	3.5	0.13				

Nutrigold Field #2	2022SW33492W5			Loading Rate		Biosolids	Field L	.oading		Minimum		Minimum
Wet Tonne: Ave. %T	S Dry Tonnes	Ac	ha	Tonnes/ha	Substance	mg/Kg	Kg	Kg/ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
8817 24.6	2169	220	89.0	24.4	TP	24473	53082	596				
					TN	34160	74093	833				
					NH4-N	6530	14164	159				
Landowner	Warburg Sylvis Project				As	4.5	9.8	0.11				
Legal Description	SW-33-49-2-5				Cd	3.25	7.05	0.0792	10511	1500	7530	600
Start Date	30-Aug-22				Cr	97	211	2.4	351	20	252	8
End Date	1-Nov-22				Cu	409	887	9.97	84	15	60	6
Soil Class	Class 4				Pb	40.7	88.3	0.992	839	20	601	8
Biosolids Type	Digested				Mn	316	685	7.70				
	Centrifuge Dewatered				Hg	1.3	2.8	0.032	26277	3000	18825	1100
					Ni	35.4	76.8	0.863	965	100	691	40
					Se	5.1	11.1	0.12				
					Zn	718	1557	17.5	48	10	34	4
					Co	5.5	11.9	0.13				

EPCOR Water Services Inc. Edmonton, Alberta

2022 Annual Wastewater Collection System Report

Submitted to:

The Province of Alberta

Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

February 2023

TABLE OF CONTENTS

	Approval No. 639-03-06 Requirement	Page
2022 Overview	N/A	3
Table 1: 2022 Summary of Completed Projects and Planned Major Rehabilitation Projects	4.4.6 – Wastewater Collection System Operations Plan	7
Interconnection Control Strategy	4.4.6 (c) – Wastewater Collection System Operations Plan, Interconnection Identification and Control Strategy	10
Storm and CSO Volumes and Loadings	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	30
	6.3.3 (b) (v)– Annual Wastewater System Report	
Table 2: 2022 Annual Discharge Volumes	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	35
	6.3.3 (b) (v) – CSO Annual Discharge Volumes	
Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituents for 2022	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	36
Table 4: Constituent Loads for 2022	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	39
Table 5: 2022 Rat Creek CSO Concentration Statistics	6.3.3 (b)(i,ii) – CSO Monthly Mean Concentrations Release Events per	41
	Table 6-1	
Table 6: 2022 List of Certified Collection	4.5.2 – Certified Operator Requirements	42
System Operators	6.3.3 (b)(iv) – Wastewater Collection Supervising Operator	
Table 7: 2022 Annual Product Usage at Pump Stations	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	45
	6.3.3 (b)(iii) – summary of chemical added	
Table 8: 2022 Usage of Reward® Herbicide	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	45
	6.3.3 (b)(iii) – summary of chemical added	

Table 9: 2022 Usage of Bright Dyes®	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	46
	6.3.3 (b)(iii) – summary of chemical added	
Table 10: 2022 Usage of De-Icing Product	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	47
	6.3.3 (b)(iii) – summary of chemical added	
Table 11: 2022 List of Operational Issues	6.3.3 (b)(vii, viii) – List of Operation Problems and Incidents Per 2.1.1.	53

2022 Overview

EPCOR Drainage Services provides wastewater and stormwater drainage services to City of Edmonton (the 'City') residents by planning, building, operating, and maintaining the pipes, tunnels, pump stations, and stormwater management facilities that make up the drainage network.

One Water Planning provides capital planning and long term planning functions in line with integrated resource planning and asset management plans.

Project Management and Engineering are responsible for projects that are in the preliminary design or detailed design phase. They manage in-house engineering design, cost estimation, and drafting. Projects include new sewer infrastructure projects like tunnels, pipes, manholes, green infrastructure such as wetlands, dry ponds, Low Impact Development (LID) facilities and storage and the coordination of sewer rehabilitation work.

Drainage construction is responsible for the in-house construction and emergency repairs on the collection systems. The rehabilitation construction team uses a wide variety of construction methods to rehabilitate the system and build for growth using open-cut and trenchless techniques. The customer construction group completes service connections, renews existing drainage assets, and completes emergency and high priority repairs.

Infrastructure like sewers and structures in the drainage system require ongoing maintenance. Drainage Services Operations — which includes pipeline maintenance, flow-control facilities, monitoring and compliance, and operations engineering — inspect and monitor drainage systems to ensure service to customers is maintained and to optimize the short-term maintenance required. They also reduce the possibility of customer sewer back-ups caused by service connection blockages and minimize disruptions to the public.

Drainage Services are supported by a number of other groups throughout EPCOR such as Public and Governmental Affairs, Supply Chain Management, Fleet and Equipment, Facilities and Finance.

Collection and conveyance of wastewater and stormwater is carried out through the drainage system which consists of sanitary and stormwater collection infrastructure.

The sanitary collection infrastructure includes more than 2,800 km of sanitary sewer, over 800 km of combined sanitary and storm sewer that connect all customers to sanitary trunk sewers. Sanitary trunks then deliver wastewater directly to the Gold Bar Wastewater Treatment Plant (WWTP).

A portion of the conveyance of wastewater is covered under a Wastewater Exchange Agreement between EPCOR and the Alberta Capital Region Wastewater Commission (ACRWC). The ACRWC Treatment Plant takes wastewater from Clareview in northeast Edmonton and from the Clover Bar Industrial Area. In exchange, the sanitary collection system conveys wastewater from the south members (City and County of Leduc, and the Town of Beaumont) for treatment at the Gold Bar WWTP.

The stormwater collection infrastructure includes over 3,300 km of storm sewer, 62,000 catch basins, and 12,800 catch basin manholes. This stormwater collection infrastructure is connected to stormwater trunk sewers. Storm trunks then discharge stormwater to natural watercourses, i.e.

creeks and the North Saskatchewan River, through one of 258 outfalls. Strategically placed within the stormwater collection system are 310 stormwater management facilities which provide flood prevention, peak-flow attenuation, and treatment through stormwater retention.

Between the sanitary/combined sewer system and stormwater system there are 95 pump stations which ensure proper servicing to EPCOR's customers in Edmonton.

In 2022, EPCOR's Drainage capital and operational projects focused on the improvement and expansion of the underground infrastructure system, reduction of odour nuisances and protection of the drainage infrastructure due to corrosion.

In 2019, Edmonton City Council approved EPCOR's Stormwater Integrated Resource Plan (SIRP) to provide a risk-based approach to prioritize investments in stormwater infrastructure. SIRP was identified by the City as one of the action items to support the overall City ability to adapt to changing climate conditions and aligned with the City's Climate Change Adaptation and Resiliency Strategy.

The risk methodology captures capacity, condition, environmental, and social factors on a risk grid overlaid on a map of the City's neighborhoods. SIRP is organized in the following themes: Slow, Move, Secure, Predict, and Respond to flooding. Key actions in 2022 under the SIRP themes included:

Slow

- In 2022, three dry pond projects were initiated at the following locations; Lauderdale, Parkdale and Ottewell. Drainage continues to proactively engage with the City of Edmonton as dry pond projects are initiated through established development mechanisms to ensure alignment with SIRP.
- EPCOR built 37GHa (Green Hectares close to 5,600m3 of surface or underground storage in a form of green infrastructure or small storage). Low Impact Development (LID) has been successfully integrated in EPCOR capital projects (dry ponds – Kenilworth; Outfall rehab projects; Water Treatment Plant Flood Hardening Projects – Rossdale and E.L. Smith).
- EPCOR continued to work closely with COE and other stakeholders on the implementation of LID in conjunction with planned roadway construction and other infrastructure capital projects.

Move

o Incorporation of piping modifications required to accommodate approved dry ponds. In 2022 sewer separation and additional piping for Kenilworth dry pond has been initiated and partially completed. Each new dry pond adds approximately 300m of new underground infrastructure to convey surface runoff and separate portions of the system to better utilize gains in storage capacity.

Secure

- Continue the implementation of the maintenance program for Inflow/Infiltration reduction.
- O Phase I of Outfall Gates and Controls project has been completed with risk assessments having been completed for each outfall for risks associated with river flooding, surface flooding, sewer backup and customer surcharges. Outfall locations have been prioritized for the next phase of planning and capital project development.
- Implementation of the Enhanced Flood Proofing Program with targeted outreach to at risk private properties.

Predict

- Continue the implementation and enablement of improved situational awareness
 of the storm and sanitary collection system including tracking of performance
 during flooding events and overall system awareness. This is accomplished
 through the modernization of interface software platforms used to access data and
 increased in-line monitoring installations.
- o In 2022, the Federal Government announced the approval of 17 million in funding for the Smart Pond Project which when complete will consist of a network of automatic gates linked with stormwater management facilities to enhance storage, better manage flows in the collection system and further increase awareness of the operability of the collection systems.

Respond

- Continue to support capital emergency response improvements in identified at risk areas which includes targeted education on emergency preparedness and response with residential, industrial, commercial and institutional property owners and the City of Edmonton. And allow EPCOR to better utilize existing storage/system prior and during the storms and further mitigate flood risk.
- In 2022 EPCOR applied and was granted Disaster Mitigation and Adaptation Fund (DMAF), 2.0 funding. Projects included in application were the Gold Bar Waste Water Treatment Plant Flood Hardening and Drainage Smart Ponds Project (see above).

The formation and release of hydrogen sulphide (H2S) gas from the sewer system negatively impacts communities, corrodes infrastructure, and makes maintenance and inspection challenging. The Corrosion and Odour Reduction (CORe) Strategy continued in 2022 with primary focus on pumping optimization and trunk line cleaning as monitoring data on the work completed to date for CORe has shown this to be most impactful to the system. Key actions for each CORe theme included;

Prevent

- Continue the design and construction process on the Duggan bypass tunnel.
- Continue to construct access manholes and implement trunk inspection and cleaning activities.
- Continue to implement rehabilitation projects in emerging locations.

Optimize

- Continue to implement the improvements to pump stations with chemical treatment capability.
- Improved pumping performance at pump stations to reduce unnecessary wastewater stagnation

Monitor

- Completed city wide pump station monitoring
- o Designed permanent in-sewer monitoring stations for construction across the city.

Control

Continue to modify existing drop structures.

Drainage Services is fully committed to the protection of the environment and the health and safety of its employees, customers, and neighbors. Health and safety and the environment (HSE), including public health safety, is one of the top priorities of EPCOR. In order to continually improve our environmental performance, Drainage Services operates with an ISO 14001:2015 registered Environmental Management System (EMS). Following a successful surveillance audit in 2022, Drainage continued to maintain registration of an integrated management system that operates

according to the ISO14001:2015 standard and the ISO 45001:2014 standard for Safety Management Systems.

As required by Approval #639-03-06, EPCOR - Drainage Services is submitting the 2022 Annual Wastewater Collection System Report.

This Annual Wastewater Collection System Report submission includes: 2022 Drainage Services Capital Program summary, Interconnection Control Strategy Annual Report, Environmental Monitoring results, Chemical usage, and Collection System Operational details.

TABLE 1: Summary of 2022 Completed Projects and Planned Major Rehabilitation Projects

Program/Project	Completion
Drainage System Expansion	
SWMF Safety Review	Aug-2022
50 Street Wide & CPR Sewer Relocate	Dec-2022
Servicing for Downtown Intensification (105 Sewer Lateral Project)	Dec-2023
Freeway Relocates (YHT)	Dec-2024
Drainage System Rehabilitation	
Dunluce Pump Station Upgrade	Aug-2022
Larkspur Pond Pump Replacement	Aug-2022
SAN-11 Double Barrel Rehab Phase 2: Install 3 Access MHs	Aug-2022
Kaskitayo Carma-2C Pump Station Upgrade	Sep-2022
2020 Drill Drop Manhole (DDMH) Rehabilitation/Replacement Projects	Sep-2022
Outfall 80 Rehab	Nov-2022
Gold Bar Utilidor (PW552 and 147) Rehabilitation	Dec-2022
NL1 Sanitary Chamber Rehabilitation	Dec-2022
2021 Pump Station Rehabilitation	Dec-2022
Pump Station #159 (Dunluce)	Dec-2022
2019-2020 Pump Station Rehabilitation	Jun-2023
2021 Drill Drop Manholes (DDMH) Rehabilitation	Jun-2023
Capital Line South LRT – Sewer Relocation	Dec-2023
Laurier Heights and Buena Vista Pump Station	Dec-2023
Whitemud Drive &106 Street - Pump Station Upgrade	Dec-2023
2019-2020 Outfall Rehabilitation	Dec-2023
151 South Large Trunk Rehab	Dec-2023
Pump Station #171 (Walterdale)	Dec-2023
Large Trunk Sewer - NL2 Rehab	Dec-2023
San-11 Double Barrel Rehab	Dec-2023
Storm Trunk 85547 Rehabilitation	Dec-2023
Outfall 154 Rehabilitation	Jan-2024
2022-2023 Small Trunk Rehabilitation	Jan-2024
2022 Drill Drop Manholes (DDMH) Rehabilitation	Jan-2024
Trestle #5	Jul-2024
99 Avenue & 151 Street Sanitary - Trunk Rehab Phase II	Dec-2024

West Valley Line LRT Sewer Relocations	Dec-2024
2019 Trunk Sewer Rehabilitation - Area C-2	Dec-2024
2022 Outfall Rehabilitation	Dec-2024
Drill Drop Manhole 262262 Replacement	Dec-2024
Mill Creek Combined Trunk Rehabilitation	Dec-2026
Environmental Quality Enhance	
2020 Environmental Monitoring	Jul-2022
2019 - 2021 Drop Shaft Modifications	Aug-2022
2019 - 2021 Drop shaft Modification	Aug-2022
2021 Budget LID on PLC	Oct-2022
2021 Ventilation Control Program	Dec-2022
2021 Environmental Enhancement Program	Dec-2022
Kinnaird Opportunistic Sewer Separation	Dec-2022
2021 Environmental Monitoring	Dec-2022
2021 CORe Monitoring Control Equipment	Dec-2022
Pump Station Optimization CapEx	Apr-2023
2022 Access Manhole	Apr-2023
2021 Drop Structure Modifications	Jun-2023
2022 CORe Odour Monitoring	Jun-2023
2022 Drop Structure Modifications	Aug-2023
LID on Commercial/Industrial Sites	Sep-2023
2022 Environmental Monitoring	Oct-2023
2020 Pump Station Treatment	Dec-2023
Sanitary Catch Basin Lead Removal	Dec-2023
Brintnell Bannerman Syphon Ventilation	Dec-2023
2022-2023 Low Impact Development - Public Land	Dec-2023
2022-2023 Low Impact Development - Commercial	Dec-2023
2022 Environmental Enhancement Program	Dec-2023
2021 Pump Station Enhancements	Feb-2024
Duggan Tunnel Replacement	Aug-2025
Flood Mitigation	
2021 SIRP Monitoring and Control	Mar-2022
2021 Emergency Response Equipment	Aug-2022
Ermineskin / Steinhauer Flood Mitigation	Oct-2022
Rideau Park, Empire Park, Duggan Upgrade	Dec-2022
2020 Overland Drainage	Dec-2022

2021 Overland Drainage	Dec-2022
2021-2022 Proactive Manhole Sealing	Dec-2022
2022 Culvert Replacements	Dec-2022
2021 Outfalls and Automatic Gates	Jan-2023
2021-2022 Proactive Pipe Relining - Sanitary and Combined	Apr-2023
Gateway Boulevard Geyser Mitigation - Ventilation Manhole Installation	May-2023
2022 SIRP Monitoring and Controls	Jun-2023
North Griesbach Pump Station	Nov-2023
Malcolm Tweddle & Edith Rogers Dry Ponds	Dec-2023
Parkdale Dry Pond	Dec-2023
2022 Emergency Response Equipment	Dec-2023
2022 Overland Drainage	Dec-2023
2022-2023 Proactive Manhole Sealing	Dec-2023
2022-2023 Proactive Pipe Relining-Sanitary & Combined	Dec-2023
Kenilworth Dry Pond	Dec-2024
Lauderdale West Dry Pond	Jan-2025
Ottewell Dry Pond and Sewer Separation	Dec-2025
SSSF Projects	
NEST NC2 & NC3	Aug-2022
SESS SA10A	Aug-2022
SESS SW4	Dec-2023
	•

Interconnection Control Strategy

SUMMARY

In response to a requirement in the 1995 Approval to Operate (No. 95-MUN-117), Drainage Services prepared an Interconnection Control Strategy. Through this Strategy, EPCOR embarked on its mitigation and monitoring program in the context of "perpetual monitoring and assessment" (Figure 1).

An interconnection is designed to allow sanitary or combined sewage to overflow into the storm system, in order to relieve the sewer system under high flow conditions. Since 1998, a program has been in place to minimize the contamination of stormwater with sanitary sewage by monitoring, assessing and eliminating or mitigating all interconnections between the two systems. This will reduce the total loading of contaminants to the North Saskatchewan River.

Under the current Approval (639-03-06), issued in 2020, EPCOR intends to continue with the existing processes and reporting through the Wastewater System Operations Plan. This report presents summaries of: status and mitigation activities for known and newly discovered interconnections (I/Cs); results of the 2022 monitoring program; and status of the Interconnection Rectification Assessment project.

Interconnection Status

During 2022, one interconnection was found and closed, another was found to be closed and a third was closed. The I/C count for December 31, 2022 stands at 115 open I/Cs and 289 corrected sites (total 404).

The total monies spent on remedial work for I/C control in 2022 was \$197,000.

Interconnection Monitoring

As of December 31, 2022, 106 of the 115 open I/Cs had monitoring devices. No dry weather overflows (DWO) were discovered in 2022.

Interconnection Rectification Assessment Project

Two consultants were hired in 2002 and 2003 to carry out the rectification assessment of about 90 and 40 sites, respectively. Their work focused mainly on active I/Cs and I/Cs with DWOs. Previous studies and monitoring data were utilized to quantify I/Cs activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. These assessment studies were completed in 2004 and EPCOR has been following up with the recommended mitigation work since. New focused, detailed assessment projects are ongoing as rectification projects are defined.

1.0 INTRODUCTION

An Interconnection Control Strategy was prepared by EPCOR in response to a requirement by Alberta Environment, as part of the 1995 Approval. This program to minimize the contamination of stormwater by sanitary sewage, has been in effect since 1998.

A key commitment of the Interconnection Control Strategy is perpetual monitoring and assessment for all unmitigated interconnections (see Figure 1). This consists of identification, maintenance of data, evaluation, monitoring, correction, elimination and mitigation.

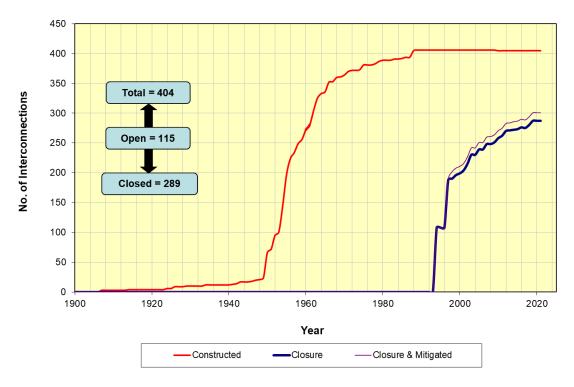
The focus of interconnection monitoring activities is to collect information on the frequency and duration of discharges from all interconnection (I/C) sites. The evaluation of the data for all sites is the core component of the assessment. All sites are to be evaluated annually for further action. More detailed monitoring will be conducted at highly active sites. Corrective measures will be taken at inactive sites or active sites where sufficient data has been collected and analyzed indicating that they can be safely closed. Monitoring information will be used as the basis for decisions in terms of remedial activity.

As part of the current Approval (639-03-06) issued in 2020, the *Interconnection Identification and Control Strategy* is continuing to be a component of the *Wastewater Collection System Operations Plan.* The *Wastewater Collection System Monitoring Protocol* includes the collection of overflow data from open (active) interconnection sites. This Protocol was submitted to Alberta Environment in 2007 and has been maintained since.

Through the *Wastewater Collection System Operations Plan*, EPCOR has committed to continue with the Interconnection Control Strategy and annual reporting of the I/C status by February 28 of each year. The intent of the annual report is to document changes and status of the I/Cs, including any corrections or closures, and to provide an updated I/C database. The following documents the I/C status for 2022.

Figure 1 Interconnection Control Strategy Perpetual Monitoring and Assessment

2.0 MITIGATION MEASURES


On January 1, 2022 there were a total of 403 I/Cs. This consisted of 117 open I/Cs and 286 corrected (closed) I/Cs. One interconnection was found and closed in 2022, another was found to be closed and a third was closed. The I/C count for December 31, 2022 stands at 115 open I/Cs and 289 corrected sites (total 404).

The enclosed plan "2022 Status and DWO Locations" shows the locations of all of the open I/Cs in the city. A database of I/C sites is also included. Figure 2 shows the cumulative number of I/Cs over time.

2.1 CONSTRUCTION

The mitigation measures undertaken in 2022 include;

- An interconnection was closed in Callingwood.
- An interconnection was closed in Queen Mary Park.
- Conceptual design for abandonment of 6 interconnection locations in the Rossdale and Cloverdale areas was completed.

Figure 2 Cumulative Number of Interconnections

2.2 COSTS

In 2022, the amount spent was \$144,805 on construction work as well as \$47,598 for monitoring the network.

In summary, the expenditures for the Interconnection Control Strategy eachyear from 1994 to 2022 include:

- Monitoring program approximately \$97,000 annually.
- Investigations consisting of inspection of the sewers to confirm or refute the occurrence of overflows – approximately \$9,000 annually, paid for under regular operating budget (repair, blockage removal or bypass pumping costs are not included).
- Correcting the interconnections based on I/C monitoring and assessment. This can involve closure of an interconnection to eliminate overflow or raising the weir to reduce overflow frequency approximately \$497,000 annually.
- Assessing I/C sites for possible closure approximately \$59,000 annually (although the assessments are conducted on an intermittent basis).

Table 1 Interconnection Control Strategy Expenditure Summary

	imection Contro	Dollars Spent								
Year	Monitoring	Investigation	Correcting	Assessing	Total					
1994	\$0	\$0	\$195,000	\$50,000	\$245,000					
1995	\$40,000	\$0	\$0	\$960,000	\$1,000,000					
1996	\$50,000	\$0	\$30,000	\$0	\$80,000					
1997	\$213,000	\$0	\$634,000	\$0	\$847,000					
1998	\$140,000	\$2,205	\$197,500	\$0	\$339,705					
1999	\$104,600	\$5,760	\$762,200	\$0	\$872,560					
2000	\$103,000	\$8,100	\$834,000	\$0	\$945,100					
2001	\$122,000	\$5,265	\$319,000	\$168,000	\$614,265					
2002	\$149,204	\$3,360	\$210,000	\$133,319	\$495,883					
2003	\$145,047	\$2,340	\$1,055,000	\$367,897	\$1,570,284					
2004	\$97,910	\$3,350	\$1,221,300	\$1,033	\$1,323,593					
2005	\$91,280	\$3,600	\$1,067,400	\$16,896	\$1,179,176					
2006	\$92,871	\$2,600	\$350,000	\$0	\$445,471					
2007	\$137,920	\$3,197	\$100,259	\$0	\$241,376					
2008	\$124,345	\$3,329	\$1,505,424	\$0	\$1,633,098					
2009	\$128,668	\$3,570	\$740,507	\$0	\$872,746					
2010	\$134,362	\$5,300	\$29,931	\$0	\$169,594					
2011	\$105,796	\$7,950	\$122,210	\$0	\$235,955					
2012	\$90,512	\$11,918	\$193,000	\$0	\$295,430					
2013	\$85,936	\$21,491	\$539,171	\$0	\$646,598					
2014	\$97,713	\$23,606	\$1,750,427	\$0	\$1,871,747					
2015	\$127,257	\$22,507	\$1,022,873	\$0	\$1,172,636					
2016	\$98,399	\$11,338	\$688,140	\$0	\$797,877					
2017	\$66,869	\$8,884	\$304,455	\$0	\$380,208					
2018	\$70,803	\$15,907	\$108,640	\$0	\$195,349					
2019	\$59,305	\$29,360	\$130,000	\$0	\$218,665					
2020	\$44,696	\$40,056	\$145,548	\$0	\$230,299					
2021	\$39,225	\$10,919	\$22,500	\$0	\$72,644					
2022	\$47,598	\$4,215	\$144,805	\$0	\$196,617					
Total	\$2,808,315	\$260,127	\$14,423,290	\$1,697,145	\$19,188,877					
Annual										
Avg.	\$96,838	\$8,970	\$497,355	\$58,522	\$661,685					
Proportion	14.6%	1.4%	75.2%	8.8%						

3.0 MONITORING AND ASSESSMENT RESULTS

In 2017, a project was initiated to replace the loggers at all monitored interconnection sites. Data collection from the old style of logger was completed by driving a vehicle past each site, sometimes having to stop in traffic and place an antenna through the manhole cover. The new loggers are now equipped with cellular communication and no longer require a 'drive-by' to retrieve data.

Benefits to upgrading the loggers include;

- Decrease the safety risk exposure of the contractor by not requiring vehicle based data collection
- Increased data collection frequency from weekly to every 6 hours
- More data streams collected including battery voltage, signal strength, and temperature.
- Cost reduction by using cellular technology. Labour costs of collecting data are eliminated which were more than cellular service fees.
- Improved asset management as battery replacement can be planned to occur at the correct time, not too early or too late. Other data streams will help diagnose other problems as well.
- Sites not accessible by vehicle can now have sensors and loggers installed.

In the Interconnection Control Strategy, EPCOR committed to perpetual monitoring and assessment of all I/Cs. As of December 31, 2022, 106 of the 115 I/Cs had crest gauge type monitors equipped with cellular data loggers.

The rectification studies completed in the past, alongside the historical activity data for the I/C sites sets a well-defined history to draw on to inform management decisions on a go forward basis.

3.1 DRY WEATHER OVERFLOWS (DWOS)

In 2022, 22 investigations of possibly overflowing sites were made with 0 Dry Weather Overflows discovered.

3.2 INTERCONNECTION SITE ACTIVITY CHARACTERISTICS SUMMARY

As shown in Table 2 below, about 3% of the sites were found to have dry weather overflows each year during monitoring from 1997 to 2021, with an average of 2% over the past 5 years. These are the events of critical concern to the environment. Although only 2% of the sites experience dry weather overflow in a given year, different sites overflow each year. A total of 29% of the known open I/Cs (34 sites) have had a dry weather overflow event.

Table 2 Interconnection Site Activity Characteristics Summary

Table 2 in	terconne	ction Site A	ctivity Una	racteristics	Summar	y
Year	Known	I/C Sites	Dry	Rainfall	Inactive	Unverified
	I/C	Monitored	Weather	Correlated	Sites	Overflows
	Sites		Overflow			
1997	186	182	N/A	65	109	8
1998	188	179	3	72	64	43
1999	188	176	6	48	92	29
2000	186	173	6	36	76	56
2001	185	174	7	37	75	55
2002	179	161	6	29	110	16
2003	167	153	5	34	102	12
2004	155	139	5	64	51	19
2005	150	131	9	16	88	18
2006	151	131	5	39	70	17
2007	142	126	2	21	87	16
2008	142	126	3	25	75	24
2009	141	127	2	10	81	28
2010	133	118	3	17	72	26
2011	129	118	3			
2012	121	113	4			
2013	121	113	1			
2014	124	113	2			
2015	123	112	0			
2016	120	112	0			
2017	121	68	4			
2018	116	93	4			
2019	117	103	3			
2020	117	110	2			
2021	117	110	1			
2022	115	106	0			
Average	144	130	4	37	82	26
Proportion	on of Mon	itored Sites	2.8%	28%	64%	20%

4.0 RECTIFICATION ASSESSMENT PROJECT SUMMARY

Two consultants were hired in 2002 and 2003 to carry out the second phase of a large-scale Interconnection Rectification Assessment project. The first project included about 90 I/C sites and the second included about 40 sites. Their work was focused mainly on active and DWO I/Cs. This work identified many I/Cs that could be closed if funds are available.

Previous studies and monitoring data collected between 1998 and 2003 were utilized to quantify interconnection activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. Major work requirements for this rectification assessment included:

- Perform sewer system data collection and field surveys
- Carry out sewer condition and hydraulic assessment
- Evaluate various remedial measures
- Develop conceptual and preliminary design plans
- Provide Cost estimates

A computer model called MOUSE (Model For Urban Sewers) developed by DHI (Danish Hydraulics Institute) was employed in these studies to simulate the existing system and recommend remedial measures under various wet weather flow conditions. Simulation results such as hydraulic grade line and by-pass volume were summarized and evaluated to ensure that an improved level of control can be achieved, and that proposed improvements would not cause other system problems.

These two assessment projects were completed in 2004 and we have been following up with construction of the recommended mitigation works since that time. The assessments identified a long list of construction works that will absorb the funding for the next several years. New assessment projects will commence once this construction is largely complete.

In 2018, a review of select neighbourhoods was done in addition to the rectification detailed design works. Further recommendations for interconnection closure work has been developed beyond the conceptual design phase. EPCOR will evaluate these recommendations alongside infrastructure plans of other programs such as neighborhood rehab and the Stormwater Integrated Resource Plan (SIRP).

Interconnection Database December 31, 2022

				T		1		T					1		1			
IC Site#	Plan	IC MH#	CADAS- TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM		_	STRM_ AGE ICTYPE	Delete date	COR- RECTED	OF_LOC1	OF_ LOC2	OF_ DIA	NHOOD	COUNT
ACTIVE IN	ITERCON	NECTION	S					_										
12	97-177	241869	313225	046	T3	146	SUMMIT [30	71	30	49 HIGH PIPE		FALSE	RIVER	LEFT	1650	Crestwood	1
14	96-041	315813	313224	803		W142	S. SUMMI	30	61	55	61 OVERFLOW		FALSE	RIVER	LEFT	1650	Glenora	2
15	97-174	256174	343204	880		136	S102	138	43	43	OVERFLOW		FALSE	CREEK	LEFT	375	Glenora	3
16	96-040	239447	313223	801		ST GEORGE		122	55	29	55 LOW PIPE		FALSE	RIVER	LEFT	200	Glenora	4
17	97-176	239449	313223	802		E135	SVICTOR	123	43				FALSE					5
18	96-085	255955		813	435	134	ST GEOR	124	64	29	64 HIGH PIPE		FALSE	CREEK	LEFT		Glenora	6
19	96-084	255954	343203	812	404	133	ST GEOR	126	55	55	55 OVERFLOW		FALSE	CREEK	LEFT	200	Glenora	7
20	96-086	316420		826		132	TWEEDS	-	49	29	49 OVERFLOW/WE	IR	FALSE	CREEK	LEFT	200	Glenora	8
21	96-088	255983	343203	839		E132	S103	273	54				FALSE				Glenora	9
25	97-128	255832		820	445	W123	102	46	50	52	50 LOW PIPE			RIVER	LEFT		Oliver	10
26	97-127	255697	343202	827	456	W122	102	46	50	9	50 LOW PIPE			RIVER	LEFT		Oliver	11
27	97-126	255840		832	506	W121	102	46	50	78	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	12
28	97-125	255512	343201	805	402	W120	102	46	50	90	50 LOW PIPE			RIVER	LEFT	1275	Oliver	13
29	97-124	255520	343201	816	411	W119	102	46	50	13	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	14
30	97-123	255525	343201	830	416	W118	102	46	50	12	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	15
31	97-120	255534	343201	843	425	W117	102	46	50	11	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	16
32	97-119	255539		855	431	W116	102	46	50	11	50 LOW PIPE			RIVER	LEFT		Oliver	17
33	97-118	255562	343201	884	448	W114	102	46	50	8	50 LOW PIPE			RIVER	LEFT		Oliver	18
34	97-117	265676		805	805	W113	102	46	50	8	50 LOW PIPE			RIVER	LEFT		Oliver	19
35	97-116	265685	343605	817	430	W112	102	46	50	8	50 LOW PIPE			RIVER	LEFT		Oliver	20
36	97-115	265684			412	112	102	46	50	30	50 LOW PIPE			RIVER	LEFT		Oliver	21
37	97-114	265754		833	414	111	102	46	50	46	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	22
38	97-113	265728	343605	801	405	114	N101	46	50	7	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	23
39	97-112	245736		803	406	114	S101	46	50	7	50 LOW PIPE			RIVER	LEFT		Oliver	24
41	97-142	245620	313625	871		W113	99	46	50	10	50 LOW PIPE			RIVER	LEFT		Oliver	25
46	97-141	245582	313625	839	410	113	S99	46	50	13	50 LOW PIPE		FALSE	RIVER	LEFT		Oliver	26
48	97-145	255558	343201	869	440	116	S101	46	54	7	54 LOW PIPE		FALSE	RIVER	LEFT		Oliver	27
49	97-122	257004		803		114	104	46	50	27	50 LOW PIPE/WEIF	₹	FALSE	RIVER	LEFT		Oliver	28
50	97-109	256913		835	404	W116	106	54	64	64	64 LOW PIPE		FALSE	RIVER	LEFT	3000	Queen Mary Park	29
53	96-090	266055	343625			110 ST	N111 AVE	54	55				FALSE				Prince Rupert	30
60	97-129	272723	373220		401	W120	129	31	55	55	55 OVERFLOW			RIVER	LEFT	2400	Calder	31
75	97-099	263753	343622		416	W87	114	56	56	56	13 OVERFLOW		FALSE				Parkdale	32
76	97-098	263758	343622		422	W86	114	56	56	56	13 OVERFLOW		FALSE				Parkdale	33
78	97-096	263708	343621		401	W83	114	56	56	56	13 OVERFLOW		FALSE				Parkdale	34
79	97-095	263716	343621		406	W82	114	56	56	56	13 OVERFLOW		FALSE				Parkdale	35
80	97-080	261662	343621		423	W80	113	56	56	56	13 OVERFLOW		FALSE				Cromdale	36
81	97-078	261672	343621		430	W79	113	56	56	56	13 OVERFLOW		FALSE				Cromdale	37
83	97-081	261660	343621	-	422	W80	114	56	56	56	13 OVERFLOW		FALSE				Edmonton Northlar	n 38

IC Site#	Plan	IC MH#	CADAS- TRAL	SAN MH	STRM MH	STREET	AVENUE	OF NUM	IC AGE	SAN	_		Delete date	COR-	OF LOC1	OF_ LOC2	OF_ DIA	NHOOD	COUNT
94	96-008	227272		_	412	110	57	22	52	_	46	52 LOW PIPE			RIVER	RIGHT		Pleasantview	39
95	96-010	227234	283615	000	420	111	S61	22	54		54	54 OVERFLOW			RIVER	RIGHT		Pleasantview	40
106		224867	283221		445	112	N76	22	54		47	54 OVERFLOW			RIVER	RIGHT		Parkallen	41
107	96-007	224927		813	448	112	N75	22	86		48	54 LOW PIPE			RIVER	RIGHT		McKernan	42
110	97-021	242851	313212	009	471	SASK DR	89	23D	53	_	48	50 LOW PIPE/WEIF	3		RIVER	RIGHT		Windsor Park	43
111	97-022	242711	313212	008	443	W120	89	23D	53		49	50 LOW PIPE		FALSE	RIVER	RIGHT	375	Windsor Park	44
113	97-029	228112	283625		429	109	73	22	54	ļ.	14	54 OVERFLOW		FALSE	RIVER	RIGHT		McKernan	45
114	96-018	227757	283616	842		109	67	22	51		46	51 OVERFLOW		FALSE	RIVER	RIGHT	1500	Parkallen	46
116	96-009	227604	283615		406	109	65	22	54	l .	49	54 OVERFLOW		FALSE	RIVER	RIGHT		Parkallen	47
119	96-013	227636			431	109	62	22	54		49	54 OVERFLOW			RIVER	RIGHT		Parkallen	48
120	97-045	227702				109	61	22	54	_	54	54 DUAL			RIVER	RIGHT		Pleasantview	49
134	97-195	229993	313601	861	473	89	S77	44	55		49	55 LOW PIPE			RIVER	RIGHT		King Edward Park	
135	96-059	246571	313601	859	471	91	S77	44	55	_	28	55 LOW PIPE/WEIF			RIVER	RIGHT		King Edward Park	
139	96-053	229990	313601	828	435	91	S80	44	55	_	28	55 LOW PIPE/WEIF			RIVER	RIGHT		King Edward Park	
143	96-064	243161	313610	859		93	S83	116	55		39	55 OVERFLOW/WE			CREEK	RIGHT		Bonnie Doon	53
147	96-066	243180	313610	867	437	87	S83	116	50		50	50 LOW PIPE/WEIF	₹		CREEK	RIGHT		Bonnie Doon	54
149	96-051	243858		802	403	89	82	254	52		50	52 LOW PIPE			CREEK	RIGHT		Bonnie Doon	55
151	97-004	246539		820		89	S81	44	55		46	55 LOW PIPE		FALSE	RIVER	RIGHT		King Edward Park	
153	97-003	246506			460	89	S78	44	55		28	55 LOW PIPE			RIVER	RIGHT		King Edward Park	
154	96-025	229777	283621	804	436	87	76	44	55	_	49	54 LOW PIPE/WEIF		FALSE	RIVER	RIGHT		King Edward Park	
155	96-060	246574	313601	864	477	87	S77	44	55		49	55 LOW PIPE/WEIF			RIVER	RIGHT		King Edward Park	
156	96-058	246570		857		87	77	44	55		49	55 LOW PIPE/WEIF	₹	_	RIVER	RIGHT		King Edward Park	
159	97-211	251618			423	85	S80	44	55	_	55	49 OVERFLOW		FALSE				King Edward Park	
161	97-210	251792			432	85	S79	44	55	_	55	49 OVERFLOW		FALSE				King Edward Park	
162	97-209	251797	314005		437	85	S78	44	55		55	49 OVERFLOW		FALSE				King Edward Park	
164	97-205	251779			408	83	S82	44	55		49	55 OVERFLOW/WE	:IR		RIVER	RIGHT		King Edward Park	
176	97-001	244348		811	409	87	98	52	52		52	52 OVERFLOW			RIVER	RIGHT		River Valley Rivers	
177	97-218	244318		809	406	88	98	52	52	_	52	52 HIGH PIPE			RIVER	RIGHT		River Valley Rivers	
178	97-217	244347	313621	804	401	92	98	256	52	_	52	52 OVERFLOW			RIVER	RIGHT		Cloverdale	67
179	97-214	244406		807	420	97	N97	50	69	_	68	69 OVERFLOW			RIVER	RIGHT		Cloverdale	68
180 (n/m)	97-161	244671	313617	808	418	103	97	46	50	_	5	50 LOW PIPE			RIVER	LEFT		Rossdale	69
181	97-159	245429		869	447	104	S98	46	41 50		7 5	41 LOW PIPE			RIVER	LEFT		Rossdale	70
182 (n/m)	97-158 97-157	245174 245040		807	416	104	97 97	46			5	50 LOW PIPE			RIVER	LEFT	12/5	Downtown	71
183 (n/m) 184	97-157	245040		805		105 106	97	46 46	50 70					FALSE FALSE				Rossdale Rossdale	72 73
184 185	97-138	262096		913	442	99	101	243	50		8	LOW PIPE			RIVER	LEFT	1000	Downtown	73
185 191	97-138	246377		813	442	100	SASK DR		50		12	52 CHAMBER			RIVER	RIGHT		Strathcona	74 75
193	97-002	246787		848	405	100	85	37	79	_	13	79 HIGH PIPE			RIVER	RIGHT		Strathcona	75 76
193	97-014	246808		863	406	102	83	37	79	_	35	79 HIGH PIPE			RIVER	RIGHT		Strathcona	76
194	97-013	246799			406	102	84	37	79		35	79 HIGH PIPE			RIVER	RIGHT		Strathcona	78
130	91-012	240799	313008	010	407	102	04	JI	79	וי	აა	19 NIGH FIFE		FALSE	LIVER	NIGHT	900	Suaurcona	/ 0

C Site#	Plan	IC MH#	CADAS- TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	SAN_ AGE	STRI AGE	_	Delete date	COR- RECTED	OF_LOC1	OF_ LOC2	OF_ DIA	NHOOD	COUNT
	97-																		
98	152a	244681		024	818	105	S96	47	52			52 DUAL		FALSE		LEFT		Rossdale	
99	97-151 97-146	245068 245204		818	502	105	96	47	52			52 LOW PIPE 52 LOW PIPE		FALSE	RIVER	LEFT		Rossdale	
200	97-146	245204		821	443	101	94	188	52				ID.	FALSE	RIVER	RIGHT		Rossdale	
01	97-148	245209		802	416	101	S94	145	52		I	52 OVERFLOW/WE	IK	FALSE	RIVER	LEFT	300	Rossdale	
02	97-163	245209 245216	313618	805		100A	97	46 45	50					FALSE				Rossdale	
04	96-006	245216	313201	007	400	E101	96		57 54		7	EA LOW DIDE		FALSE	DIV/ED	DIOLIT	4500	Rossdale	
20	96-006			807	438	113	L. N. 79					54 LOW PIPE	ID.		RIVER	RIGHT	1500	Parkallen	-
21		227702 243209	283615		+	109	61 83	116	54 56		+	54 OVERFLOW/WE LOW PIPE	IK	FALSE FALSE	RIVER	RIGHT		Pleasantview Bonnie Doon	
24 26		243209	313625	801		111	97	46	50		=	50 HIGH PIPE			RIVER	LEFT		Oliver	-
34		246738	313625	001		102 (Tommy Ban		1.0	71)	30 NIGH PIPE		FALSE	RIVER	LEFI	1273	Strathcona	
35		262142	343603			102 (Tommy Ban			26					FALSE					
38		262142				100	S. Jasper	37	79					FALSE				Downtown Ritchie	
			313008			1119	81 S102							FALSE				Oliver	
40 (n/m)		255527						46	71										
44 (n/m)		263246				102	110	54	68					FALSE				Central McDougall	
45 (n/m)		263247	040040			102	110	54	68					FALSE				Central McDougall	
49		242945	313218			Hawrelak Park		27	66					FALSE				Hawrelak Park	
50 (03,n/m)		255647				W114	N101	46	88					FALSE				Oliver	
54 (03,n/m)		245584				112	98	46	50					FALSE				Oliver	
55 (03)		245344				104	98	46	50					FALSE				Downtown	
58 (03)		247763	313614			103	Sask. Dr	37	71					FALSE				River Valley Walte	
265 (06, n/m)		240896				137	82	21	65			DUAL		FALSE				Laurier Heights	1
66 (08)		244346	313621	814	401	92	S98	256	46	46	3	46 LOW PIPE			RIVER	RIGHT	500	Cloverdale	1
67 (09)		243667				92	98	256						FALSE	RIVER	RIGHT		Cloverdale	1
68 (09)		244163				Mill Creek		44						FALSE				Mill Creek Ravine I	
69 (13, n/m)		261579				78	111	203				LOW PIPE		FALSE				River Valley Kinnai	
73		330340				122	39A	2				DUAL			Whitemud	RIGHT		Aspen Gardens	1
74		258480				123	112	31				LOW PIPE		FALSE				Inglewood	1
75		282732				37	122	88				LOW PIPE		FALSE				Beacon Heights/Be	
76 (19)		243786	9343602			96A	98	51				TRANSVERSE W		FALSE				Cloverdale	1
77 (19)		231393				111A	50	2				Dual MH with WE	:IR		Whitemud			Malmo Plains	•
78 (19)		287019				W71	130	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	
79 (19)		287020				W70	130	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	
80 (19)		287021				W69	130	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	
81 (19)	·	286503				W70	129	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	
82 (19)		286554				W69	129	74			-	LOW PIPE		FALSE	RIVER	LEFT		Balwin	•
83 (19)		286508				70	N127	74			-	LOW PIPE		FALSE	RIVER	LEFT		Balwin	1

			CADAS-							SAN_ S	TRM_	Delete	COR-		OF_	OF_		
C Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE A	GE ICTYPE	date	RECTED	OF_LOC1	LOC2	DIA	NHOOD	COU
LOSED	INTERC	ONNECTIO	ONS															
			344416	809		E34	N102	71	66	66	66 COMMON		TRUE	RIVER	LEFT	1200	Rundle Heights	1
			344416	808		35	102	71	66	66	66 COMMON		TRUE	RIVER	LEFT	1200	Rundle Heights	
			344416	807		36	102	71	66	66	66 COMMON	######	TRUE	RIVER	LEFT	1200	Rundle Heights	
			344020		411	37	103	71	66	66	66 COMMON	######		RIVER	LEFT	1200	Rundle Heights	
			344416	803		E34	103	71	66	66	66 COMMON		TRUE	RIVER	LEFT		Rundle Heights	
				011	420	W38	123	88	80	80	80 HIGH PIPE	######		CREEK	LEFT	1350	Bergman	
			374414	PW		HOOKE RD	HERMITA	(74	64	64	64 PUMPWELL		TRUE	RIVER	LEFT		Canon Ridge	
				869		55	S ADA BL	62	65	65	65 OVERFLOW	######		RIVER	LEFT	1200	River Valley Highla	а
			343621		417	W81	114		56	56	13 OVERFLOW		TRUE					
				832		94	CAMERO		51	51	51 DUAL	######		RIVER	LEFT	450	Riverdale	
				831		W94	CAMERO		51	51	51 DUAL	######		RIVER	LEFT		Riverdale	
				830		E95	CAMERO		51	51	51 DUAL	######		RIVER	LEFT		Riverdale	
			343602	829		E95	CAMERO	148	51	51	51 DUAL	######	TRUE	RIVER	LEFT	450	Riverdale	
			343610	804	404	88	102	53	52	50	52 LOW PIPE	######	TRUE	RIVER	LEFT	675	Riverdale	
			343610	810	405	87	102	53	67	52	67 LOW PIPE	######		RIVER	LEFT	675	Riverdale	
			343609	868	411	89	ROWLAN	152	43	11	42 LOW PIPE	######	TRUE	RIVER	LEFT		Riverdale	
			343609	874		88	104	155B	24	10	24 LOW PIPE	######		RIVER	LEFT		Riverdale	
				873		88	104	155A	24	10	24 HIGH PIPE	######		RIVER	LEFT		Riverdale	
			343602	858	435	94	ROWLAN	148	42	11	42 LOW PIPE	######	TRUE	RIVER	LEFT	450	River Valley Kinna	ai i
			373602	835	411	89	117	56	14	14	14 CHAMBER	######	TRUE	RIVER	LEFT	1950	Parkdale	
			373601		429	N RACE TRK	NORTHLA	56	64	64	64 OVERFLOW	######	TRUE	RIVER	LEFT	1950	Edmonton Northla	ın
			373601		411	E80	S116	56	57	57	57 OVERFLOW CH	1/ ######	TRUE	RIVER	LEFT	1950	Edmonton Northla	ın
			373619	802		86	127	74	58	58	58 DROP MANHOL	E ######	TRUE	RIVER	LEFT	7620	Killarney	
			373919	410		90	127	74	58	58	58 LOW PIPE TEE	######	TRUE	RIVER	LEFT	7620	•	
			373601	870	411	E80	116	56	57	57	57 CHAMBER	######	TRUE	RIVER	LEFT	1950	Parkdale	
			343617	835		105	KINGSWA	54	68	68		######	TRUE	RIVER	LEFT	3000	Central McDougal	d
			343211		418	116	107	54	72	72	72 MEMBRANE HO)I ######	TRUE	RIVER	LEFT	3000	Queen Mary Park	
			343605	811		113	102	46	50	30	50 OVERFLOW	######	TRUE	RIVER	LEFT		Oliver	
			343201	874	441	W115	102	46	50	8	50 LOW PIPE	######	TRUE	RIVER	LEFT	1275	Oliver	
			343605	001	T1	114	N103	46	64	64	50 LOW PIPE TEE	######	TRUE	RIVER	LEFT	1275	Oliver	
			343223	007		E133	S116	31	54	54	54 COMMON		TRUE	RIVER	LEFT		Woodcroft	
			373215	802		143	N YELLO	/30	61	61	61 COMMON		TRUE	RIVER	LEFT	1650	Brown Industrial	
				007		ST ALBERT	130	31	66	66	66 COMMON		TRUE	RIVER	LEFT	2400	Bonadventure Indi	u
				801		149	SYELLOV		63	63	63 COMMON		TRUE	RIVER	LEFT		Brown Industrial	1
			373219		427	W124	129	31	55	55	55 OVERFLOW	######	TRUE	RIVER	LEFT		Calder	1
			373219		417	W126	129	31	55	55	55 OVERFLOW	######		RIVER	LEFT		Calder	
				PW		E DUNLUCE	161	75	78	78	78 PUMPWELL	######		RIVER	LEFT		Calder	1
			343603	854	417	100	101	48	26	5	26 LOW PIPE	######		RIVER	LEFT		Downtown	+
				049		96	GRIERSO		62	62	62 OVERFLOW CH			RIVER	LEFT		Downtown	+

																		T
			CADAS-							SAN STR	М	Delete	COR-		OF	OF_		
Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE AGE	ICTYPE	date	RECTED	OF_LOC	1 LOC2	DIA	NHOOD	CO
			343603	862		100	101	48	70	66	50 OVERFLOW	######	TRUE	RIVER	LEFT	1500	Downtown	
			313613	PW		101	S94	145	52	11	52 PUMPWELL	######	TRUE	RIVER	LEFT	300	Rossdale	
			313618	821	443	101	94	145	52	11	52 LOW PIPE	######	TRUE	RIVER	LEFT	300	Rossdale	
			313618	836	OF	E100	95	241	57	57	57 OVERFLOW		TRUE	RIVER	LEFT		Rossdale	
			313617	007	479	106	95	42	85	85	58 LOW PIPE	######	TRUE	RIVER	LEFT		Downtown	
			313617	504		103	96	47	52	33	52 OVERFLOW	######	TRUE	RIVER	LEFT		Rossdale	
			313616	803	402	110	97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Oliver	
			313617	805	414	106	97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Downtown	
			313617	806	415	105	97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Downtown	
			313624	905	417	BELLAMY H	N97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Rossdale	
			313617	838	419	102	97	46	50		50 LOW PIPE		TRUE	RIVER	LEFT		Rossdale	
			313618	802	402	101	97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Rossdale	
			313618	805	405	100A	97	46	50		50 LOW PIPE	######	TRUE	RIVER	LEFT		Rossdale	
			313618	806	OF	100	97	45	50		50 OVERFLOW/WE		TRUE	RIVER	LEFT		Rossdale	
			313625	843		112	98	46	50		50 LOW PIPE TEE	######	TRUE	RIVER	LEFT		Downtown	
			313623	827		W100	99	109	7		7 LOW PIPE TEE	######	TRUE	RIVER	RIGHT		Rossdale	
			313623	828	511	100	99	109	7		7 LOW PIPE	######	TRUE	RIVER	RIGHT		Rossdale	
			313623	828	511	100	99	109	7		7 LOW PIPE	######	TRUE	RIVER	RIGHT		Rossdale	
			313623	831	OF	SW LOW LVL		48	29		29 HOLE		TRUE	RIVER	LEFT		Rossdale	
				873	417	BELLAMY RD	97	46	62		50 LOW PIPE	######	TRUE	RIVER	LEFT		Rossdale	
				819	497	E100	MCDONAL		57		29 LOW PIPE		TRUE	RIVER	LEFT	1500	Downtown	
			343214	801		137		31	53		53 DUAL		TRUE	RIVER	LEFT	2400	North Glenora	
			343213	4		133	N109A	31	52		52 HIGH PIPE		TRUE					
			343218			133		31	52		52 LOW PIPE		TRUE					
				29		139	N107A	31	52	52	52 LOW PIPE		TRUE					
			343214	56		135	N107A	31	52	52	52 LOW PIPE		TRUE					
			343213	18		133	107A	31	52	52	52 LOW PIPE		TRUE					
			343208	826		E132	STONY PI	_AIN RD	48	48	15		TRUE					
				17		125	SJASPER	46	34		PUMPWELL	######	TRUE					
			313224	811		W139	RAVINE D	30	61	55	61 OVERFLOW		TRUE	RIVER	LEFT	1650	River Valley Capit	.0
			313223	PW		ST GEORGE	VICTORIA	123	64	29	55 PUMPWELL	######	TRUE	CREEK	LEFT	200	Glenora	
			343203	SOF		W132	TWEEDS	135	50	50	50 OUTFALL		TRUE	CREEK	LEFT	100	Glenora	
			343203	839		E132	S103	125	54	54	DUAL	######	TRUE	CREEK	LEFT	200	Glenora	
			343204	841		139	101		65	65	51	######	TRUE					
			342823	PW		163	116	18	75	74	75 PUMPWELL	######	TRUE	RIVER	LEFT	2400	Norwester Industri	ia
			372810	PW		154	123	18	80	80	80 PUMPWELL	######	TRUE	RIVER	LEFT	2400	Mitchell Industrial	
			342807	014		170	105	18	75	75	75 OVERFLOW	######	TRUE	RIVER	LEFT	2400	McNamara Industr	.ri
			312820	PW		151	N94	29	58		PUMPWELL	######	TRUE	RIVER	LEFT	1650	Sherwood	1
			282819	PW		WOLF WIL R	WOLF WII	13	75	75	75 PUMPWELL	######	TRUE	RIVER	LEFT		Westridge	
			252420	PW		E WEDGEWOO	WEAVER	257	88		PUMPWELL	######	TRUE	CREEK	LEFT		Wedgewood Heigl	h
			313204	075		BV RD	81	21	59	57	58 LOW PIPE TEE	######	TRUE	RIVER	LEFT		Laurier Heights	
			313204	PW		BV RD	VAL VIEW	21	58		58 PUMPWELL	######	TRUE	RIVER	LEFT		Parkview	1

· · · · ·	ъ.	10 1411//	CADAS-		07014	otpet.	A)/E)//E	05 11111		SAN_	STRM_	IOTYPE	Delete	COR-	05 1004	OF_	OF_	NUCCE	001111
Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET		OF_ NUM		AGE	AGE	ICTYPE	date		OF_LOC1	+	DIA	NHOOD	COUN
				803		N BV RD	VAL VIEV		60	60		COMMON	######		RIVER	LEFT		Parkview	
			313207	085		VAL VIEW C		21	60	60		COMMON		TRUE	RIVER	LEFT		Parkview	
				511		VAL VIEW C		21	60	60		COMMON		TRUE	RIVER	LEFT		Parkview	_
			313207	087		VAL VIEW C		21	60	60		COMMON		TRUE	RIVER	LEFT		Parkview	
			313208	003		VAL VIEW C		21	60	60		COMMON		TRUE	RIVER	LEFT		Parkview	_
			313208	002		VAL VIEW C		21	60	60		COMMON		TRUE	RIVER	LEFT		Parkview Parkview	-
			313208	001		VAL VIEW C	\/A \/IE\/	21	60	60		COMMON		TRUE	RIVER	LEFT			_
				088		E136	VAL VIEV		60	60		COMMON		TRUE	RIVER	LEFT		Parkview	_
			313204 313204	077 076		VAL VIEW C	86 86	21	60 60	60 60		COMMON COMMON		TRUE	RIVER RIVER	LEFT		Parkview Parkview	_
			344018	076	414	W65A	109	65	57	56		FLOW SPLIT		TRUE	RIVER	RIGHT		Capilano	-
				850	714	W FULTON D	109	58	59	59		DROP MANHOLE	######	TRUE	RIVER	RIGHT		Fulton Place	_
			344007	467		E CAPILANO	106	58	59	59		CHAMBER	######	TRUE	RIVER	RIGHT		Capilano	-
				858		85	82	254	52	49		-	######	TRUE	CREEK	RIGHT		Bonnie Doon	-
				819	408	96A	98	51	60	26		OVERFLOW/WE		TRUE	RIVER	RIGHT		Cloverdale	-
				802	401	92	98	256	59	46		LOW PIPE	######	TRUE	RIVER	RIGHT		Cloverdale	_
			313602	848	701	W94	S81	254	83	58		B DROP MANHOLE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283620	0.10	436	91	70	92B	54	- 00		OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283620		457	90	70	192	54			OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283621		415	91	72	191	54		54	OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
		229761?	283621		450	W87	73	93	56			OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283620		420	91	66	91	54	54		OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283611		419	92	63	194	54	54		OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
			283611		423	91	63	193	61			OUTFALL - NEVE	ER WAS	TRUE	CREEK	RIGHT		Mill Creek Ravine	
		229112?	283611		416	90	65	91B	54	54		OUTFALL - NEVE		TRUE	CREEK	RIGHT		Mill Creek Ravine	
		229130?	283611		433	90	65	91A	54	54	54	OUTFALL - NEVE	R WAS	TRUE	CREEK	RIGHT	900	Mill Creek Ravine)
			283621		413	W93	67	195	54			OUTFALL - NEVE	R WAS	TRUE	CREEK	RIGHT	750	Mill Creek Ravine	
			283610	004	403	92	60	90	68	68	68	LOW PIPE	######	TRUE	CREEK	RIGHT	750	Coronet Industrial	1
			283610		403	92	60	90	68	68	68	LOW PIPE	######	TRUE	CREEK	RIGHT	750	Coronet Industrial	1
			313609	867	TUN	92	84	116	55	30	55	OUTFALL	######	TRUE	CREEK	RIGHT	750	Mill Creek Ravine	•
			313614	835	463	N QE RD		39	55	55	55	LOW PIPE	######	TRUE	RIVER	RIGHT	600	River Valley Walte	er
			313614	PW		E104	N SASK [37	56	56	51	PUMPWELL	######	TRUE	RIVER	RIGHT	900	River Valley Walte	
			313614	PW		E104	N SASK [37	56	56		PUMPWELL	######	TRUE	RIVER	RIGHT		River Valley Walte	
			313614			102	SASK RI\		56	56		CHECK VALVE	######		RIVER	RIGHT		River Valley Walte	
			313613	424		LAVIGNE RD	91	188	88	90				TRUE	RIVER	RIGHT		River Valley Walte	er
			313219	PW		118	SASK DR		53	53		PUMPWELL	######		RIVER	RIGHT		Windsor Park	
			313219		446	116	N SASK [55	40		LOW PIPE TEE	######	TRUE	RIVER	RIGHT		Windsor Park	
			283619		403	97	S71	92B	60	50		LOW PIPE	######	TRUE	CREEK	RIGHT		Hazeldean	
			283625	840	428	E111	73	22	54	48		LOW PIPE/WEIR		TRUE	RIVER	RIGHT		McKernan	
				818		112	74	22	54	49		OVERFLOW	######		RIVER	RIGHT		McKernan	\perp
			283221	808		112	N76	22	47	47		OVERFLOW	######	TRUE	RIVER	RIGHT		McKernan	
			283219	801		BELGRAVIA	N68	22	59	59	59	COMMON	######	TRUE	RIVER	RIGHT	1500	Lendrum Place	

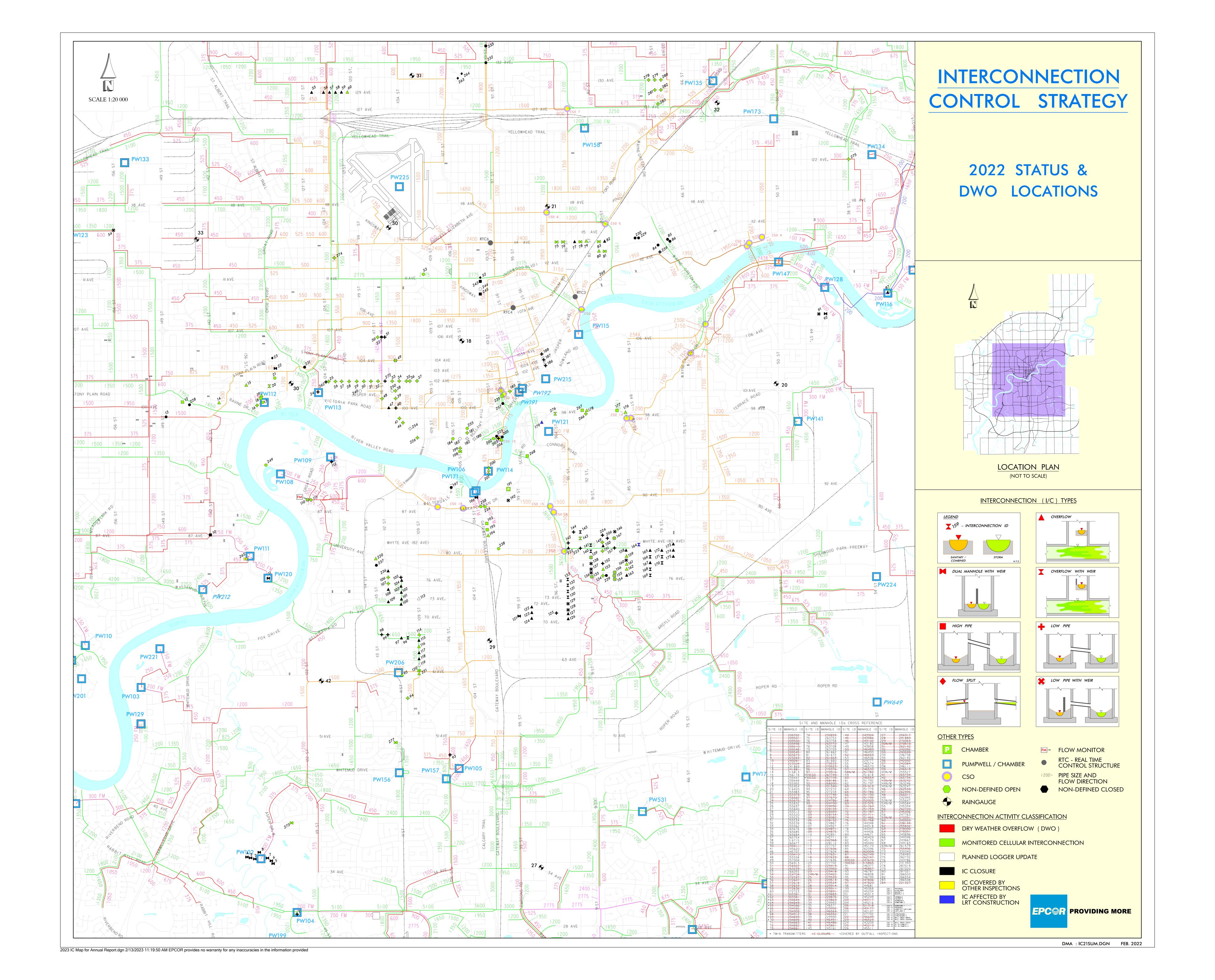
																		\top
014-#	Diam	IC M11#	CADAS-	CAN MII	стри ин	STREET	AV/FAULE	OF NUM	IC ACE	SAN_ AGE	STRM_ AGE ICTYPE	Delete	COR-	05 1004	OF_	OF_ DIA	NUCCD	CC
Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	_	OF_ NUM	IC_ AGE			date	RECTED	OF_ LOC1			NHOOD	
			253221	038		113A	46	2	63			######		CREEK	RIGHT		Malmo Plains	+
			253221 253221	502 040		112 111A	46 46	2	63 63				TRUE	CREEK CREEK	RIGHT		Malmo Plains Malmo Plains	-
			253221	505		111A 111A	N46	2	63				TRUE	CREEK	RIGHT		Malmo Plains	
			253221	022		111A	S48	2	63				TRUE	CREEK	RIGHT		Malmo Plains	_
			253625	022	496	111A	N48	2	63		+		TRUE	CREEK	RIGHT		Malmo Plains	+
			253221	806	400	W111A	48	2	63			######		CREEK	RIGHT		Malmo Plains	+
			253221	807		W111A	48	2	63			######	TRUE	CREEK	RIGHT		Malmo Plains	+
			253221	808		W111A	48	2	63			######	TRUE	CREEK	RIGHT		Malmo Plains	
				504		113A	46	2	63		+		TRUE	CREEK	RIGHT		Malmo Plains	+
			253212	051		E121	FAIRWAY	2	66	66	66 COMMON		TRUE	CREEK	RIGHT	2100	Aspen Gardens	
			253212	489		E121	FAIRWAY	2	66	66			TRUE	CREEK	RIGHT	2100	Aspen Gardens	
			253212	053		E121	FAIRWAY	2	66	66	66 COMMON		TRUE	CREEK	RIGHT	2100	Aspen Gardens	
			253219	808		ASPEN DR	40	2	63	63	63 COMMON	######	TRUE	CREEK	RIGHT	2100	Aspen Gardens	
			253219	055		ASPEN DR	N40	2	63	63			TRUE	CREEK	RIGHT	2100	Aspen Gardens	
				056		ASPEN DR	N40	2	63	63			TRUE	CREEK	RIGHT		Aspen Gardens	
			253219	054		ASPEN DR	S41A	2	63				TRUE	CREEK	RIGHT		Aspen Gardens	
			253219	053		ASPEN DR	S41A	2	63				TRUE	CREEK	RIGHT		Aspen Gardens	
			253219		480	ASPEN DR	41A	2	63				TRUE	CREEK	RIGHT		Aspen Gardens	
				052		ASPEN DR	N41A	2	63				TRUE	CREEK	RIGHT		Aspen Gardens	
			253219	057		ASPEN DR	N41A	2	63				TRUE	CREEK	RIGHT		Aspen Gardens	
			253202		466	WESTBRK DR		1	62		+		TRUE	CREEK	RIGHT		Westbrook Estate	
			253202		465	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253202		468	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	_
			253202		464	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253202	0.10	467	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	_
				018	40.4	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	_
			253203	000	424	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253203 253203	022 021		WESTBRK DR WESTBRK DR		1	62				TRUE	CREEK CREEK	RIGHT		Westbrook Estate	_
								1	62		+			CREEK	RIGHT		Westbrook Estate	
			253203 253203	020 019		WESTBRK DR WESTBRK DR		1	62 62				TRUE	CREEK	RIGHT		Westbrook Estate Westbrook Estate	_
			253203	019	423	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253203	019	423	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253208	013	417	WESTBRK DR		1	62		+		TRUE	CREEK	RIGHT		Westbrook Estate	_
		+	253208		416	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
				016	1.10	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253208	015		WESTBRK		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
			253208		413	WESTBRK DR		1	62				TRUE	CREEK	RIGHT		Westbrook Estate	
		1	253208	013	1	WESTBRK	FAIRWAY	1	62		+		TRUE	CREEK	RIGHT		Westbrook Estate	
			253208	012		WESTBRK	W FAIRW		62				TRUE	CREEK	RIGHT		Westbrook Estate	_

								T										П	
			CADAS-								STRM_		Delete	COR-		OF_	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	+	OF_ NUM	IC_ AGE	-	AGE	ICTYPE	date	RECTED	OF_LOC		DIA	NHOOD	COUNT
			253208		410	WESTBRK	W FAIRW	// 1	62			COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	
			253208	010		WESTBRK DR		1	62			COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	
			253208	001	401	WESTBRK	MARLBO	F1	64			HIGH PIPE	######	TRUE	CREEK	RIGHT		Westbrook Estate	
			253213	000	422	MARLBORO R		1	66			COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	
			253214	006		MARLBORO R		1	66			COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	
			253214 253214	005 004		MARLBORO R MARLBORO R		1	66			COMMON		TRUE	CREEK CREEK	RIGHT		Westbrook Estate Westbrook Estate	
			253214	038		MARLBORO R		1	66			COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	
			282810	002	403	E WHITEMUD	58	12	74			COMMON HIGH PIPE	######	TRUE	RIVER	RIGHT		River Valley White	
			282811	011	405	FORT EDM	50	14	74			PUMPWELL	######	TRUE	RIVER	RIGHT		River Valley White	
			252819	PW	700	RODNEY CR		101	80		70	PUMPWELL	######	TRUE	RIVER	RIGHT		Rhatigan Ridge	174
			253613	801		101	N39	9	75		66	6 COMMON	######	TRUE	RIVER	RIGHT		Strathcona Industr	
			253618	801		101	S41	9	66			COMMON	######	TRUE	RIVER	RIGHT		Strathcona Industr	
			253602	012		W97	30	9	75			MEMBRANE HO		TRUE	RIVER	RIGHT		Parsons Industrial	
			253602	013		97	30	9	75			MEMBRANE HO		TRUE	RIVER	RIGHT		Parsons Industrial	
			253602	014		E97	30	9	75			MEMBRANE HO		TRUE	RIVER	RIGHT		Parsons Industrial	
			253603		445		30	9	71			MEMBRANE HO		TRUE	RIVER	RIGHT	5100	Parsons Industrial	181
			253203		412	E125	29A	9	78	78	78	3	######	TRUE	RIVER	RIGHT	5100	Blue Quill Estates	182
						E101	96		57				######	TRUE					183
						100	90		52					TRUE					184
							n. Borden	Park	56					TRUE					185
146 (98)	97-207	243102	313610	856	438	87	S84	116	56			LOW PIPE/WEIF		TRUE	CREEK	RIGHT		Bonnie Doon	186
160 (98)	96-054		313601	836	424	85	79	44	55			LOW PIPE/WEIF	₹	TRUE	RIVER	RIGHT		King Edward Park	
152 (98)	96-048		313601	842	447	89	S79	44	55			LOW PIPE		TRUE	RIVER	RIGHT		King Edward Park	
222 (98)		246649	313602	876		94	81	254	55			OVERFLOW		TRUE	CREEK	RIGHT		Mill Creek Ravine	
137 (99)	96-056		313601	850	457	91	S78	44	55			LOW PIPE/WEIF		TRUE	RIVER	RIGHT		King Edward Park	
138 (99)	96-055		313601	840	445	91	S79	44	55			LOW PIPE/WEIF		TRUE	RIVER	RIGHT		King Edward Park	191
145 (99)	96-063		313610	852		93	S84	116	55		50	OVERFLOW/WE	:IR	TRUE	CREEK	RIGHT	750	Bonnie Doon	192
231 (99)		255784	343209			127	Villa Ave		88				1	TRUE					193
232 (99)		278099	403604	-		101	132		54				1	TRUE					194
233 (99)	06.000	293599	403604	000		101	134	000	54			OVEDEL OW		TRUE	ODEEK	DIOLIT	750	1111	195
127 (00)	96-022 96-024		283619	809		95 95	S71	92B	60			OVERFLOW	1	TRUE	CREEK	RIGHT		Hazeldean	196 197
126 (00)	96-024	229513	283619	817 883	121	95	S70	92B	60			OVERFLOW	1	TRUE	CREEK	RIGHT		Hazeldean	
142 (00)	96-061		313602 343208	826	431	132	82 S. Stony I	245	52 50			LOW PIPE FLOW SPLIT	1	TRUE	RIVER CREEK	RIGHT LEFT		Mill Creek Ravine Glenora	198 199
23 (01) 115 (01)	96-089		283616	0∠0	437	109	S. Stony I	22	50			OVERFLOW	1	TRUE	RIVER	RIGHT		Parkallen	200
123 (01)	96-017			815	431	98	LS. 71	92B	61	50		OVERFLOW	1	TRUE	CREEK	RIGHT		Hazeldean	200
129 (01)	96-020	229911	283621	856	448	95	72	191	54			LOW PIPE/WEIF	5	TRUE	CREEK	RIGHT		Hazeldean	201
197 (01)	97-020		200021	820	504	Walterdale Rd.		izabeth Hill	52		J4	F LOVVIII L/VVLII	`	TRUE	JILLI	1110111	525	River Valley Walte	
112 (02)	97-020		313219	006	304	118	EDINBOF		53		53	B LOW PIPE	1	TRUE	RIVER	RIGHT	1200	Windsor Park	204
237 (02)	07 024	242084	313201	000		113	N78		54		- 00	2011111	1	TRUE	. SIVEIX		1200	TTINGOOT I GIR	205
2 (02)	97-051	209501		801		WESTBRK DR	1110	1	88		62	DUAL	1	TRUE	CREEK	RIGHT	900	Westbrook Estate	

Ir-	11																		
			CADAS-							SAN_	STI	RM_	Delete	COR-		OF_	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE	AG	E ICTYPE	date	RECTED	OF_LOC	1 LOC2	DIA	NHOOD	COUNT
3 (02)	97-052	209500	253207	802		WESTBRK DR		1	88		62	62 DUAL		TRUE	CREEK	RIGHT	900	Westbrook Estate	207
4 (02)	97-053	209498	253207	801		WESTBRK DR		1	88		62	62 DUAL		TRUE	CREEK	RIGHT		Westbrook Estate	208
5 (02)	97-055	209510	253208	804		MARLBORO R		1	88		66	66 DUAL		TRUE	CREEK	RIGHT		Westbrook Estate	209
6 (02)	97-056	209548	253208	803		MARLBORO R		1	88		66	66 DUAL		TRUE	CREEK	RIGHT		Westbrook Estate	210
7 (02)	97-057	209545	253208	802		MARLBORO R		1	88		66	66 DUAL		TRUE	CREEK	RIGHT		Westbrook Estate	211
8 (02)	97-058	303873 229869	253213	801	400	MARLBORO R	70	1	88		66	66 DUAL	ID.	TRUE	CREEK	RIGHT		Westbrook Estate	212 213
133 (02) 196 (02)	96-026 97-224	247806	283622 313614	806 006	409	95 E104	76 N SASK D	100	55 56		14 56	55 OVERFLOW/WE 51 DUAL	:IK	TRUE	CREEK	RIGHT		Ritchie River Vallev Walte	
10 (03)	97-224	247606	313207	013		142	BUENA V		58		56 57	58 HIGH PIPE		TRUE	RIVER	LEFT		Parkview	214
22 (03)	96-087	255979	343203	836		E132	N103	130	54		54	54 DUAL		TRUE	CREEK	LEFT		Glenora	216
24 (03)	97-171	255675		16		125	SJASPER		34		J -1	LOW PIPE		TRUE	UNLLIN	LLI I	300	Oiciloia	217
55 (03)	97-136	272597	373219	10	421	W125	129	31	55		55	55 OVERFLOW		TRUE	RIVER	LEFT	2400	Calder	218
56 (03)	97-133	272607	373219		433	W123A	129	31	55		55	55 OVERFLOW		TRUE	RIVER	LEFT		Calder	219
58 (03)	97-131	272633	373219		449	W122	129	31	55		55	55 OVERFLOW		TRUE	RIVER	LEFT		Calder	220
77 (03)	97-097	263772	343622		433	W84	114		56	į	56	13 OVERFLOW		TRUE					221
82 (03)	97-079	261664	343621		429	W79	114		56	į	56	13 OVERFLOW		TRUE					222
91 (03)	97-194	268186	344011	801	412	43	106B	105	58	ţ	58	58 LOW PIPE/WEIF	₹	TRUE	RIVER	RIGHT	1500	Gold Bar	223
92 (03)	97-193	268200	344011	802		E42	106B	105	58	į	58	58 DUAL		TRUE	RIVER	RIGHT	1500	Gold Bar	224
93 (03)	97-069	231340	253624	005	405	106	N47	2	63		61	63 LOW PIPE		TRUE	CREEK	RIGHT	2100	Empire Park	225
40 (03)	97-143	239392	313625	816	402	114	100	46	50		7	50 LOW PIPE		TRUE	RIVER	LEFT	1275	Oliver	226
229 (03)		270363	344005				n. Borden		56					TRUE					227
257 (03)		245306				100	McDonald		57					TRUE				Downtown	228
260 (03)		240920				Buena Vista Rd	81		58					TRUE					229
84 (05)	97-225	270533		207533		W72	113		57					TRUE					230
96 (05)	97-030	227748	283616		425	110	N66	22	54		50	54 OVERFLOW/WE	:IR	TRUE	RIVER	RIGHT		Parkallen	231
97 (05)	96-015	227670	283616		415	111	L. S. 67	22	54		50	54 OVERFLOW		TRUE	RIVER	RIGHT		Parkallen	232
100 (05)	96-034 96-036	228096 228103	283625 283625		415	111	72	22	54 54		47	54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan	233 234
101 (05)	97-033	228099	283625		421 420	111	73 74	22	54		48 48	54 OVERFLOW 54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan McKernan	234
102 (05) 103 (05)	97-033	228154	283625		407	111	75	22	54		46 48	54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan	236
103 (05)	97-035	228082	283625		426	111	76	22	54		47	54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan	237
261 (05)	01-000	238144	200020		120	151	95		58		71	OT OVERNIEOVV	1	TRUE	INVEIN	INIGITI	1300	Imortonian	238
130 (07)	96-029	229891	283622	829	470	95	73	100	55		47	55 OVERFLOW/WE	IR	TRUE	CREEK	RIGHT	300	Ritchie	239
166 (07)	97-199	251790	314005	817	430	81	S80	44	55		49	55 OVERFLOW/WE		TRUE	RIVER	RIGHT		King Edward Park	240
105 (07)	96-038	228152	283625	802	401	111	N76	22	54		47	54 LOW PIPE	-	TRUE	RIVER	RIGHT		McKernan	241
108 (07)	96-004	224871	283221		451	112	N73	22	54		47	54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan	242
109 (07)	96-005	224875	283221		454	112	N72	22	54	4	49	54 OVERFLOW		TRUE	RIVER	RIGHT		McKernan	243
236 (07)		242092	313201			112	S78		86			OVERFLOW		TRUE				Parkallen	244
263 (07)		278090				105	130		59					TRUE				Lauderdale	245
121 (07)	96-019	229419	283618			99	70	92B	61		50	61 DUAL		TRUE	CREEK	RIGHT		Hazeldean	246
54 (07)	97-180	254704	342821	025	410	156	116	18	75	į	58	75 LOW PIPE/WEIF	₹	TRUE	RIVER	LEFT	2400	Alberta Park Indus	
264 (05, n/m)		278091				105	130		59					TRUE				Lauderdale	248
206 (09)	97-213	243177	313610	866		W87	S83		49			LOW PIPE		TRUE				Bonnie Doon	249
168 (03)	97-197	252003	314005	828	438	81	S78	44	55		49	55 OVERFLOW/WE	IR	TRUE	RIVER	RIGHT		King Edward Park	
174 (03)	97-203	251466	314004	816	412	77	S81	44	56		50	56 OVERFLOW		TRUE	RIVER	RIGHT	3800	King Edward Park	251
158 (10)	97-212	251782	314005	045	416	85	S81	40	55		55	49 OVERFLOW		TRUE	חוויירם	LEET	4075	Oliver	252
47 (10)	97-144	239410	313221	815	1	115	100	46	54		30	54 OVERFLOW		TRUE	RIVER	LEFT	12/5	Oliver	253

			CADAS-							SAN S	TRM Delet	e COR-		OF	OF_		
C Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET A	AVENUE	OF_ NUM	IC_ AGE		GE ICTYPE date	RECTED	OF_LOC1		DIA	NHOOD	COU
22 (10)	97-027	229960	283623	833		98 S	672	92B	61	49	61 OVERFLOW	TRUE	CREEK	RIGHT	750	Hazeldean	
25 (10)	96-023	229520	283619	806	402	96 S	S71	92B	60	50	60 LOW PIPE	TRUE	CREEK	RIGHT	750	Hazeldean	
31 (10)	96-028	229883		821	426	95 7	' 4	100	55	14	55 OVERFLOW/WEIR	TRUE	CREEK	RIGHT		Ritchie	
32 (10)	96-027	229875		812	420		' 5	100	55	14	55 OVERFLOW/WEIR	TRUE	CREEK	RIGHT		Ritchie	
24 (n/m) (10)	97-028	229422		819			370	92B	61	50	61 OVERFLOW	TRUE	CREEK	RIGHT		Hazeldean	
65 (11)	97-200	251786	314005	813	459		S81	44	55	50	55 OVERFLOW	TRUE	RIVER	RIGHT		King Edward Park	
71 (11)	96-075	251791	314005	818	431		S80	44	56	50	56 OVERFLOW/WEIR	TRUE	RIVER	RIGHT		King Edward Park	
72 (11)	97-201	251787	314005	813	422		S81	44	56	50	56 OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	
30 (n/m) (12)		270510	344005				. Borden	Park	56			TRUE				Edmonton Northlar	
243 (n/m) (12)	07.400	263242	244005	004	425		11	4.4	68	40	FF OVERELOW	TRUE	חווירם	DICLIT	2000	Central McDougall	1
67 (12)	97-198 97-196	251795		824 832	435 443		879 877	44	55 55	49 52	55 OVERFLOW 55 OVERFLOW/WEIR	TRUE	RIVER	RIGHT		King Edward Park King Edward Park	
69 (12) 70 (12)	96-078	231975 251796	314005	826	436	-	679	44	56	49	56 OVERFLOW/WEIR	TRUE TRUE	RIVER	RIGHT		King Edward Park	
73 (12)	97-204	251790		808	404		882	44	56	50	56 OVERFLOW/WEIR	TRUE	RIVER	RIGHT		King Edward Park	
75 (12)	97-202	251758		826	415		S80	44	56	50	56 OVERFLOW	TRUE	RIVER	RIGHT		King Edward Park	
28 (13) OF 2010-	31-202	231730	314004	020	413	11	500	44	30	30	30 OVERTEOW	IKUL	KIVLIX	NIGITI	3000	King Lawara Fark	
03	96-030	229914	283622	855	457	95 7	' 1	92B	60	50	60 LOW PIPE/WEIR	TRUE	CREEK	RIGHT	750	Hazeldean	
	00 000	220011	LOUGLE	000	101		·	020		00	00 2011 11 27112111	INGL	ORLER	racini	100	riazoiadari	-
72 (14) RPN 001	3	255496				W115 1	02					TRUE				Oliver	
57	96-045	246533	313601	815	421	87 8	31	44	55	49	55 LOW PIPE	TRUE	RIVER	RIGHT	3800	King Edward Park	
40 (16) OF 2011-											· ·						
				818	425	91	381	44	55		55 OVERFLOW/WEIR		DI /ED	RIGHT	2000	King Edward Park	
23	96-046	246491	313601	010	423	31			00	22	33 OVERFLOW/WEIK	TRUE	RIVER	KIGHI	3000	rang zamara r am	
	96-046		313601	010	423				00	22	33 OVERFLOW/WEIK		RIVER	RIGHT	3600	rang Zamara rank	
23 262 (05, closed 16)		255832	313601	010	423	W123 1	02	46	47	22	33 OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	Oliver	
262 (05, closed 16) 259 (03, closed '1	6)	255832 270391		010		W123 1	N112	56	47 56			TRUE TRUE				Oliver Virginia Park	
262 (05, closed 16) 259 (03, closed '1 57 (18)	6) 97-132	255832 270391 272618	373219	010	440	W123 1 73 N W123 1	N112 29	56 31	47 56 55	55	55 OVERFLOW	TRUE TRUE TRUE	RIVER	LEFT	2400	Oliver Virginia Park Calder	
262 (05, closed 16) 259 (03, closed '1 77 (18) 99 (18)	97-132 97-130	255832 270391 272618 272636	373219 373219		440 452	W123 1 73 N W123 1 W121 1	N112 29 29	56 31 31	47 56 55 55	55 55	55 OVERFLOW 55 OVERFLOW	TRUE TRUE TRUE TRUE	RIVER RIVER	LEFT LEFT	2400 2400	Oliver Virginia Park Calder Calder	
262 (05, closed 16) 259 (03, closed '1 67 (18) 69 (18) 136 (18)	97-132 97-130 96-057	255832 270391 272618 272636 229992	373219 373219 313601	856	440 452 464	W123 1 73 N W123 1 W121 1 91 7	N112 29 29 7	56 31 31 44	47 56 55 55 55	55 55 28	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR	TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER	LEFT LEFT RIGHT	2400 2400 3800	Oliver Virginia Park Calder Calder King Edward Park	
262 (05, closed 16) 259 (03, closed '1 57 (18) 59 (18) 136 (18) 141 (18)	97-132 97-130 96-057 97-005	255832 270391 272618 272636 229992 246486	373219 373219 313601 313601	856 806	440 452	W123 1 73 N W123 1 W121 1 91 7 91 8	N112 29 29 77 582	56 31 31 44 44	47 56 55 55 55 55	55 55 28 31	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR	TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT	2400 2400 3800 3800	Oliver Virginia Park Calder Calder King Edward Park King Edward Park	
262 (05, closed 16) 259 (03, closed '1 37 (18) 39 (18) 36 (18) 41 (18) 59 (18)	97-132 97-130 96-057 97-005 96-044	255832 270391 272618 272636 229992 246486 246489	373219 373219 313601 313601 313601	856 806 809	440 452 464 415	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S	N112 29 29 7 582 582	56 31 31 44 44 44	47 56 55 55 55 55 55	55 55 28 31 46	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park	
262 (05, closed 16) 259 (03, closed '1 57 (18) 59 (18) 136 (18) 141 (18) 150 (18) 18 (19)	97-132 97-130 96-057 97-005 96-044 96-002	255832 270391 272618 272636 229992 246486 246489 224786	373219 373219 313601 313601 313601 283220	856 806 809 807	440 452 464 415	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6	N112 29 29 7 682 682 67	56 31 31 44 44 44 22	47 56 55 55 55 55 55 55 55	55 55 28 31 46 54	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Farkallen	
62 (05, closed 16) 59 (03, closed '1 7 (18) 9 (18) 36 (18) 41 (18) 50 (18) 8 (19) 9 (19)	97-132 97-130 96-057 97-005 96-044 96-002 96-001	255832 270391 272618 272636 229992 246486 246489 224786 224790	373219 373219 313601 313601 313601 283220 283220	856 806 809	440 452 464 415 418 421	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 66 112 66	N112 29 29 77 582 582 57	56 31 31 44 44 44 22 22	47 56 55 55 55 55 55 55 55 55	55 55 28 31 46 54 51	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 51 LOW PIPE	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Farkallen Parkallen	
62 (05, closed 16) 59 (03, closed '1 7 (18) 9 (18) 36 (18) 41 (18) 50 (18) 8 (19) 9 (19) 17 (19)	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631	373219 373219 313601 313601 313601 283220 283220 283615	856 806 809 807	440 452 464 415 418 421 428	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 109 6	N112 29 29 77 682 682 67 67	56 31 31 44 44 44 22 22 22 22	47 56 55 55 55 55 55 55 55 55 54 51	55 55 28 31 46 54 51	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 51 LOW PIPE 54 OVERFLOW	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800 1500 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Parkallen Parkallen Parkallen	
62 (05, closed 16) 159 (03, closed '1 17 (18) 19 (18) 36 (18) 41 (18) 50 (18) 8 (19) 9 (19) 17 (19) 18 (19)	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011 96-012	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631 227633	373219 373219 313601 313601 313601 283220 283220 283615 283615	856 806 809 807 811	440 452 464 415 418 421 428 429	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 109 6	N112 29 29 77 582 682 67 67 64	56 31 31 44 44 44 22 22 22 22 22	47 56 55 55 55 55 55 55 55 54 51 54	55 55 28 31 46 54 51 50 49	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 51 LOW PIPE 54 OVERFLOW 54 OVERFLOW	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 1500 1500 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Parkallen Parkallen Parkallen Parkallen	
62 (05, closed 16) 159 (03, closed '1 17 (18) 19 (18) 36 (18) 41 (18) 50 (18) 88 (19) 9 (19) 17 (19) 18 (19) 44 (19)	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011 96-012 96-062	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631 227633 243904	373219 373219 313601 313601 313601 283220 283220 283615 283615 313609	856 806 809 807	440 452 464 415 418 421 428 429 870	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 109 6 W93 L	N112 29 29 77 682 682 67 67 64 63 S. 84	56 31 31 44 44 44 22 22 22 22 22 22 116	47 56 55 55 55 55 55 55 54 51 54 54 54	55 55 28 31 46 54 51 50 49	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 51 LOW PIPE 54 OVERFLOW 55 OVERFLOW 55 LOW PIPE	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 1500 1500 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Allen Parkallen Parkallen Parkallen Parkallen Bonnie Doon	
162 (05, closed 16) 159 (03, closed '1 17 (18) 19 (18) 36 (18) 41 (18) 50 (18) 18 (19) 19 (19) 17 (19) 18 (19) 44 (19) 63 (19)	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011 96-012	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631 227633 243904 231913	373219 373219 313601 313601 313601 283220 283220 283615 283615 313609 314005	856 806 809 807 811	440 452 464 415 418 421 428 429	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 109 6 W93 L 85 S	N112 29 29 77 682 682 67 67 64 63 S. 84	56 31 31 44 44 44 22 22 22 22 22 22 22 44	47 56 55 55 55 55 55 54 51 54 54 54 55	55 55 28 31 46 54 51 50 49	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 54 LOW PIPE 54 OVERFLOW 54 OVERFLOW 55 LOW PIPE 49 OVERFLOW	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 1500 1500 1500	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Allen Parkallen Parkallen Parkallen Parkallen Parkallen Bonnie Doon King Edward Park	
162 (05, closed 16) 159 (03, closed '1 17 (18) 19 (18) 36 (18) 41 (18) 50 (18) 18 (19) 19 (19) 17 (19) 18 (19) 44 (19) 63 (19) 123	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011 96-012 96-062 97-208	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631 227633 243904 231913 246523	373219 373219 313601 313601 313601 283220 283220 283615 283615 313609 314005 313601	856 806 809 807 811	440 452 464 415 418 421 428 429 870	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 109 6 W93 L 85 S 93 8	N112 129 129 17 682 682 67 64 63 S. 84	56 31 31 44 44 44 22 22 22 22 22 22 21 116 44 22	47 56 55 55 55 55 55 54 51 54 54 55 55	55 55 28 31 46 54 51 50 49 30 55	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 51 LOW PIPE 54 OVERFLOW 55 LOW PIPE 49 OVERFLOW LOW PIPE	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER CREEK	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800 1500 1500 1500 750	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Parkallen Parkallen Parkallen Parkallen Bonnie Doon King Edward Park Bonnie Doon	
262 (05, closed	97-132 97-130 96-057 97-005 96-044 96-002 96-001 96-011 96-012 96-062	255832 270391 272618 272636 229992 246486 246489 224786 224790 227631 227633 243904 231913	373219 373219 313601 313601 313601 283220 283220 283615 283615 313609 314005	856 806 809 807 811	440 452 464 415 418 421 428 429 870	W123 1 73 N W123 1 W121 1 91 7 91 S 89 S 112A 6 112 6 1109 6 W93 L 85 S 93 88 102 1	N112 29 29 77 682 682 67 67 64 63 S. 84	56 31 31 44 44 44 22 22 22 22 22 22 22 44	47 56 55 55 55 55 55 54 51 54 54 54 55	55 55 28 31 46 54 51 50 49	55 OVERFLOW 55 OVERFLOW 55 LOW PIPE/WEIR 55 OVERFLOW/WEIR 55 LOW PIPE 54 LOW PIPE 54 LOW PIPE 54 OVERFLOW 54 OVERFLOW 55 LOW PIPE 49 OVERFLOW	TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER RIVER	LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT	2400 2400 3800 3800 3800 1500 1500 1500 750	Oliver Virginia Park Calder Calder King Edward Park King Edward Park King Edward Park Allen Parkallen Parkallen Parkallen Parkallen Parkallen Bonnie Doon King Edward Park	

IC Database Page 10


			CADAS-							SAN	STRM		Delete	COR-		OF	OF_		
C Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE	AGE	ICTYPE	date	RECTED	OF_LOC1			NHOOD	COU
emoved from dat	abase (e	mergency pum	p overflov	/)															
(02)	97-070	208392	253203	007	412	125	29A	1	76			LOW PIPE			CREEK	RIGHT	900	Blue Quill Estates	
	97-059	223283	282810	PW	403	E WHITEMUD	58	12	72	70	7	72 PUMPWELL			RIVER	RIGHT	750	River Valley White	mud
	97-187	223504	283223	006		S133	BV RD	21	58	59		58 DUAL			RIVER	LEFT		Laurier Heights	
	97-072	270916	344416	053	469	29	102	71	66	66	6	66 OVERFLOW			RIVER	LEFT		Rundle Heights	
emoved from dat	tabase (d	loes not exist)																_	
27 (03)		256917	343211		407	116	106	54	72	72	7	72 DROP MANHOL	E STRUC	TURE	RIVER	LEFT	3000	Queen Mary Park	
28 (03)		241889	343205		436	145	SUMMIT I	30	50						RIVER	LEFT	1650	Crestwood	
9 (03)		246519				89	S77												
11 (03)		265734				113	102												
12 (03)		265734				113	102												
	97-226	270523		270523		E71	113		51										
6 (04)	97-227	270376		270376		E71	113		51										
03 (04)	97-170	244717	313618	806	407	100	97	45	50	5	Ę	50 LOW PIPE			RIVER	LEFT	600	Rossdale	
05 (04)	97-220	321318				E101	96		85										
25 (n/m) (04)		245210	313623			100	97		50										
48 (n/m) (04)		266011				W109	111		68										
56 (03,n/m) (04)		262720				96	103		49										
						<u> </u>	1					<u> </u>							
emoved from dat	abase (d	lischarge back	to combin	ed system)															
36 (04)	97-082	262009	343609	815	814	95	101	152	49	7	4	49 LOW PIPE			RIVER	LEFT	450	Boyle Street	
	97-083	262749	343609	810	402	95	102A	152	49	7	4	49 LOW PIPE			RIVER	LEFT		Boyle Street	
	97-084	262747	343609	809	401	95	103	152	49	7	4	49 LOW PIPE			RIVER	LEFT		Boyle Street	
6 (n/m) (04)		262534				W105	106		69										
17 (n/m) (04)		262495				W106	106		69										
	97-015	246867	313613	843	412	100	89	188	53	53	Ę	53 LOW PIPE/WEI	R		RIVER	RIGHT	1200	River Valley Walte	rdale
70 (13)		270548				60E	112											Highlands	
71 (13)		284287				57E	112							1				Highlands	1

Notes

(n/m) = not monitored

(xx) indicates the year of discovery or closure of the I/C (if known)

IC Database Page 11

Storm and CSO Volumes and Loadings

This section is submitted in compliance with Section 4.4.10 and 6.3.3 of the Approval No. 639-03-06 for the one year period ending December 31, 2022. The monthly volumes discharged to the North Saskatchewan River (NSR) are indicated in Figures 1 and 2 for the following locations:

- 30 Avenue Storm Outfall
- Groat Road Storm Outfall
- Quesnell Storm Outfall
- Kennedale Storm Outfall
- Rat Creek CSO
- Highlands CSO
- Capilano CSO
- Cromdale CSO
- Strathearn CSO

Estimated and measured storms volumes are indicated on Figure 3. Total monitored CSO volumes are indicated on Figure 4. A tabular summary of the flow volumes and estimations of total monthly volumes discharged is also included (Table 2). Of the sites reported, the storm and combined system contribute 99.8% and 0.2% of the volume, respectively.

The total (measured and estimated) flow volume discharged from the storm sewer system to the NSR in 2022 was 126.0 million m³ - an 31.3% increase compared to the 2021 volume of 96.0 million m³. This large increase is the result of a particularly dry year in 2021. The 2022 flow volumes from the 30th Avenue, Groat Road, Quesnell, and Kennedale storm outfalls were 6.0, 3.8, 13.7, and 14.9 million m³, respectively. The volume of flows from Mill Creek originating inside the City limits was 13.3 million m³.

For the combined sewer system, the total CSO flow volume discharged to the NSR in 2022 was 247,514 m³ - a 353.7% increase compared to the 2021 volume of 54,560 m³. Again, this large increase is the result of a particularly dry year in 2021. The 2022 flow volumes from the Rat Creek, Highlands, Capilano, Cromdale, and Strathearn CSOs, were 187,754; 56,147; 2,251; 1,362; and 0 m³, respectively.

Water quality samples were obtained for the majority of the significant discharge events during the year. As well, a total of 66 dry-weather (baseflow) water quality samples were obtained from the storm sewer system. Table 3 provides a tabular summary of calculated flow-weighted mean monthly and annual concentrations for different constituents and the number of events sampled for water quality analysis.

In accordance with our Approval requirements, total monthly loadings to the North Saskatchewan River have been calculated for the above sites. Summaries of measured loads and estimated total loads for the City of Edmonton's storm and combined sewer system are included in Table 4. The reported loads were calculated using daily constituent concentrations, including storm sewer baseflow data, and the measured or estimated flow volumes. The combined storm and CSO total loading to the NSR consists of about 12,886 tonnes of total suspended solids (TSS), 1,264 tonnes of biochemical oxygen demand (BOD), 43 tonnes of total phosphorous (TP), 148 tonnes of nitrite and nitrate (NO₂ + NO₃), 73 tonnes of ammonia (NH₃), and 259 tonnes of total Kjeldahl nitrogen (TKN). Summaries of the Rat Creek CSO concentration statistics are shown in Table 5.

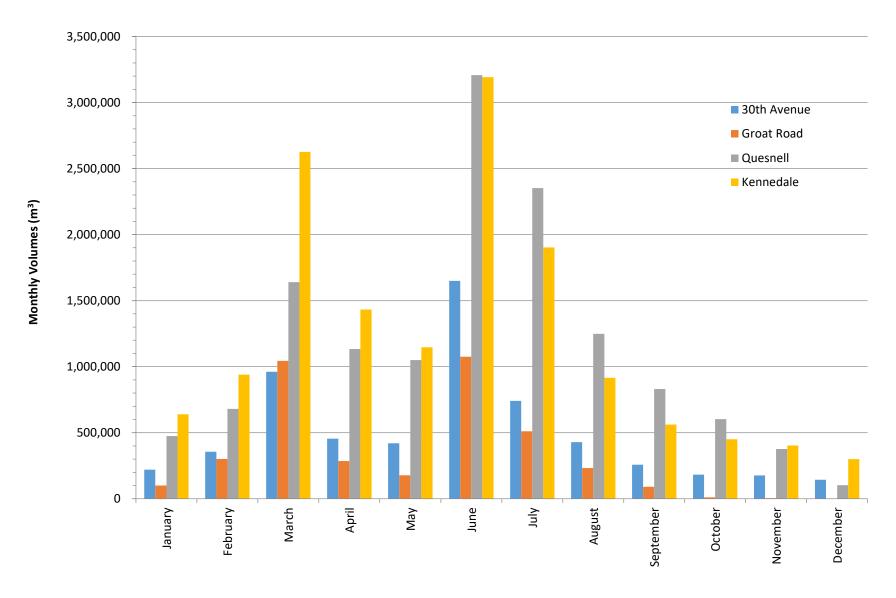


Figure 1: Total (Measured + Estimated) Storm Volume in 2022

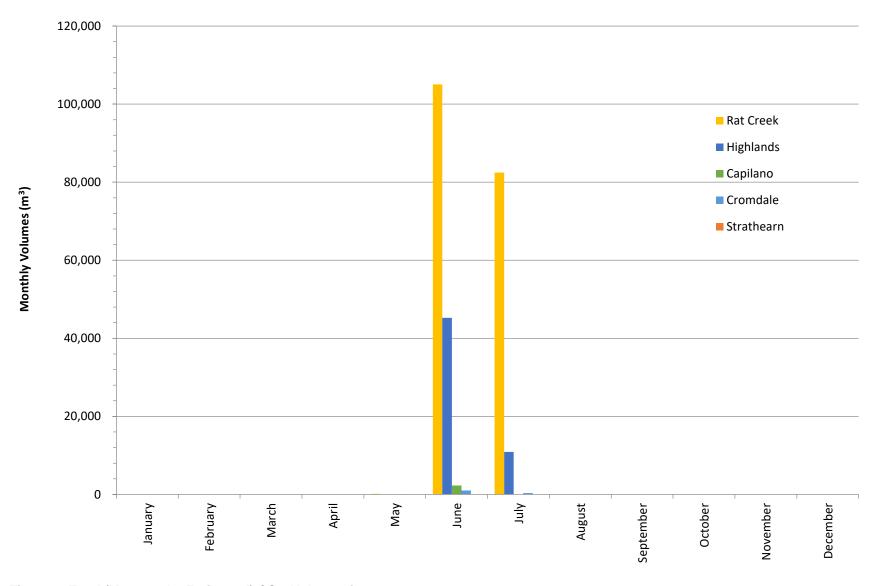


Figure 2: Total (Measured + Estimated) CSO Volumes in 2022

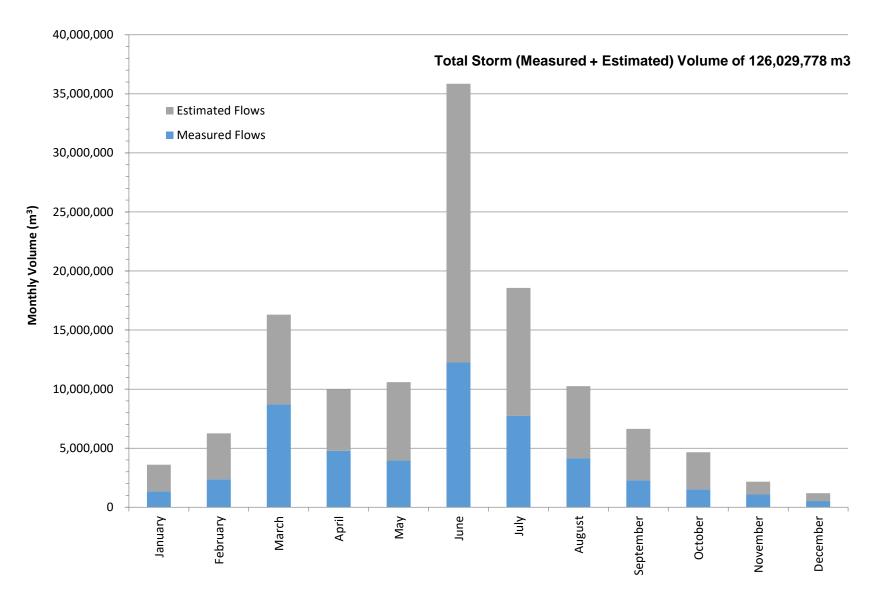


Figure 3: Total Storm (Measured + Unmonitored) Volumes in 2022 (All Storm Outfalls and Creeks)

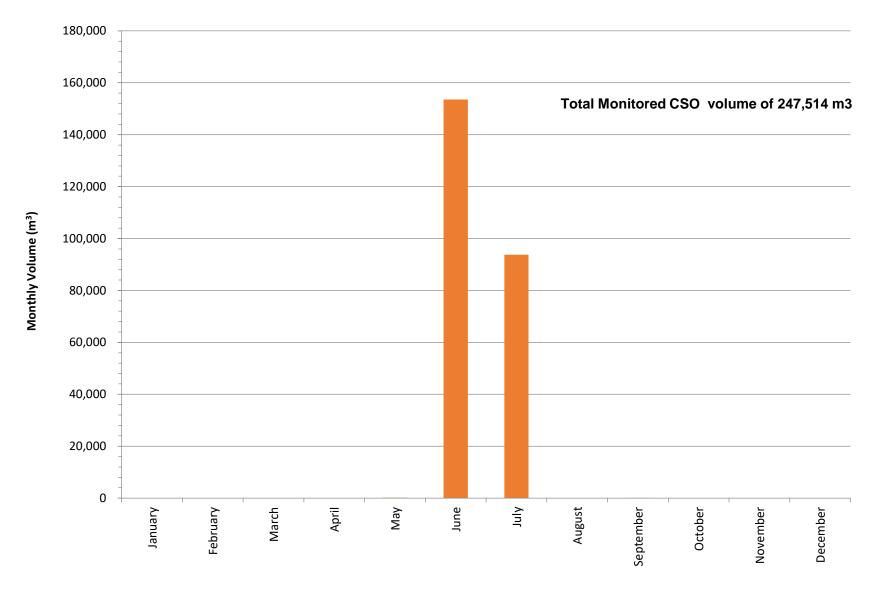


Figure 4: Total Monitored CSO Volume in 2022

Table 2: 2022 Annual Discharge Volumes (in Cubic Meters)

		Storm Ou	tfalls			С	SO Outfalls		
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Cromdale	Strathearn
January	220,565	99,967	475,176	638,959	0	0	0	0	0
February	355,540	301,930	680,092	939,221	0	0	0	0	0
March	961,526	1,044,028	1,640,443	2,625,681	0	0	0	0	0
April	455,327	286,145	1,133,796	1,432,288	0	0	0	0	0
May	420,360	177,915	1,050,497	1,147,006	136	0	0	9	0
June	1,649,396	1,075,313	3,207,881	3,191,706	105,069	45,258	2,251	994	0
July	741,057	510,757	2,352,657	1,903,409	82,487	10,889	0	360	0
August	428,099	232,653	1,248,621	915,910	0	0	0	0	0
September	258,033	90,870	830,600	561,588	62	0	0	0	0
October	182,791	10,147	602,905	450,883	0	0	0	0	0
November	176,421	5,029	377,049	403,291	0	0	0	0	0
December	143,398	2,551	102,570	299,732	0	0	0	0	0
Total	5,992,513	3,837,304	13,702,287	14,509,674	187,754	56,147	2,251	1,362	0

	Measured	d Flows	³ Unmonitored	Flows	Total Flo	ow
Month	¹ Storm Outfalls	² CSO Outfalls	Storm Outfalls CS	SO Outfalls	Storm Outfalls C	SO Outfalls
January	1,358,150	0	2,237,512	0	3,595,661	0
February	2,363,898	0	3,889,244	0	6,253,142	0
March	8,710,295	0	7,600,938	0	16,311,233	0
April	4,776,219	0	5,198,557	0	9,974,776	0
May	3,948,523	145	6,634,637	0	10,583,159	145
June	12,261,753	153,573	23,589,151	0	35,850,905	153,573
July	7,725,010	93,735	10,842,598	0	18,567,609	93,735
August	4,150,320	0	6,100,017	0	10,250,338	0
September	2,266,039	62	4,366,906	0	6,632,945	62
October	1,510,730	0	3,140,447	0	4,651,177	0
November	1,078,043	0	1,087,831	0	2,165,874	0
December	520,285	0	672,675	0	1,192,960	0
Total	50,669,265	247,514	75,360,513	0	126,029,778	247,514

Note: 1 Measured Storm flows are actual flow volumes measured from Storm outfalls: 30th Ave, Quesnell, Groat Road, Kennedale Storm/STS/Wetland, Belgravia, Mill Creek (factored).

²Measured CSO flows are actual flow volumes measured from CSOs: Rat Creek, Capilano, Highlands, Cromdale, and Strathearn.

³Unmonitored flow volumes include estimates from monitored sites when measurements not available in addition to other remaining sites.

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2022

Total Suspended Solids (mg/L)

_		Storm Outfa	alls			CSO Outfalls		No. of Sam	ples
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	59	195	63	9	-	-	-	7	0
February	116	269	123	27	-	-	-	10	0
March	98	221	133	69	-	-	-	54	0
April	42	289	56	29	-	-	-	24	0
May	220	500	200	49	1,334	-	-	21	2
June	102	217	81	49	742	550	370	64	4
July	44	270	72	28	734	381	-	36	4
August	107	434	111	36	-	-	-	25	0
September	116	214	138	61	2,110	-	-	19	1
October	36	11	44	26	-	-	-	12	0
November	24	40	51	7	-	-	-	11	0
December	21	26	2	4	-	-	-	7	0
Mean Annual FWC =	92	259	97	41	740	517	370	290	11

Mean Annual FWC for all Storm = 91

Mean Annual FWC for all CSO = 686

Biochemical Oxygen Demand (mg/L)

_		Storm Outf	alls			CSO Outfalls		No. of Sam	ples
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	8	14	8	4	-	-	-	7	0
February	14	24	12	6	-	-	-	10	0
March	12	17	9	10	-	-	-	54	0
April	5	14	5	7	-	-	-	23	0
May	16	24	12	9	290	-	-	21	2
June	6	15	6	6	104	99	92	63	3
July	6	16	4	5	103	87	-	35	2
August	11	59	7	7	-	-	-	24	0
September	19	23	8	14	139	-	-	19	0
October	14	5	8	11	-	-	-	12	0
November	13	17	9	5	-	-	-	10	0
December	11	10	3	3	-	-	-	7	0
Mean Annual FWC =	10	20	7	7	104	97	92	285	7

Mean Annual FWC for all Storm = 9

Mean Annual FWC for all CSO = 102

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2022 (Cont.)

Total Phosphorus (mg/L)

		Storm Outfa	alls			CSO Outfalls		No. of Sam	ples
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	1.0	0.5	0.3	0.3	-	-	-	7	0
February	1.7	0.7	0.5	0.4	-	-	-	10	0
March	0.1	0.8	0.6	0.6	-	-	-	54	0
April	0.5	0.6	0.2	0.3	-	-	-	25	0
May	1.0	0.8	0.4	0.2	5.8	-	-	22	3
June	0.1	0.4	0.2	0.2	2.1	1.9	1.6	64	1
July	0.2	0.4	0.2	0.1	3.2	2.5	-	40	2
August	0.3	0.3	0.3	0.2	-	-	-	26	1
September	0.2	0.5	0.4	0.4	9.6	-	-	19	1
October	0.3	0.1	0.3	0.3	-	-	-	13	0
November	0.3	0.3	0.3	0.2	-	-	-	11	0
December	15.5	0.3	0.3	0.2	-	-	-	7	0
Mean Annual FWC =	0.4	0.6	0.3	0.3	2.6	2.0	1.6	298	8

Mean Annual FWC for all Storm = **0.3**

Mean Annual FWC for all CSO = 2.4

Nitrite + Nitrate (mg/L)

		Storm Outf	alls			CSO Outfalls		No. of Sam	ples
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	2.1	0.9	1.2	2.1	-	-	-	7	0
February	1.4	0.7	0.8	1.3	-	-	-	10	0
March	0.9	0.7	0.6	0.7	-	-	-	54	0
April	1.8	1.1	0.9	1.3	-	-	-	25	0
May	2.4	1.0	1.2	1.3	0.3	-	-	22	3
June	1.2	1.1	0.8	0.8	0.8	1.0	0.8	64	1
July	1.6	0.7	0.8	1.4	0.3	0.4	-	40	2
August	1.7	0.7	0.9	1.0	-	-	-	26	1
September	2.1	0.7	1.0	0.5	0.4	-	-	19	1
October	2.2	0.4	0.9	1.0	-	-	-	13	0
November	1.9	1.0	1.5	1.5	-	-	-	11	0
December	2.1	1.2	1.6	2.2	-	-	-	7	0
Mean Annual FWC =	1.5	0.8	0.9	1.1	0.6	0.9	0.8	298	8

Mean Annual FWC for all Storm = 1.1

Mean Annual FWC for all CSO = 0.7

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2022 (Cont.)

Ammonia Nitrogen (mg/L)

		Storm Outfa	alls			CSO Outfalls		No. of Sam	ples
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	1.9	1.1	1.4	1.1	-	-	-	7	0
February	2.7	1.2	2.5	1.3	-	-	-	10	0
March	1.7	1.0	1.4	0.8	-	-	-	54	0
April	0.6	0.7	0.6	0.7	-	-	-	25	0
May	0.7	0.6	0.6	0.1	18.9	-	-	22	3
June	0.2	0.2	0.2	0.1	3.8	4.1	2.9	64	1
July	0.3	0.2	0.1	0.1	5.5	3.8	-	40	2
August	0.5	0.2	0.3	0.2	-	-	-	26	1
September	0.5	0.6	0.6	0.3	18.8	-	-	19	1
October	0.5	0.7	0.7	0.5	-	-	-	13	0
November	0.5	0.7	0.7	0.8	-	-	-	11	0
December	0.9	0.7	0.8	0.7	-	-	-	7	0
Mean Annual FWC =	0.8	0.6	0.6	0.5	4.6	4.0	2.9	298	8

Mean Annual FWC for all Storm = 0.6

Mean Annual FWC for all CSO = 4.4

Total Kjeldahl Nitrogen (mg/L)

		Storm Outf	alls			CSO Outfalls		No. of Sam	ples
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	2.4	3.5	1.9	2.3	-	-	-	7	0
February	3.4	3.8	2.7	3.0	-	-	-	10	0
March	2.9	3.4	2.6	3.0	-	-	-	54	0
April	1.5	3.9	1.8	1.9	-	-	-	25	0
May	3.2	4.5	2.5	1.7	39.9	-	-	22	3
June	1.4	2.1	1.3	1.3	13.0	12.5	10.2	64	1
July	1.6	2.0	1.2	1.3	17.3	14.5	-	40	2
August	2.0	1.8	1.6	1.7	-	-	-	26	1
September	2.5	4.7	2.3	3.3	55.3	-	-	19	1
October	1.9	1.5	2.0	3.3	-	-	-	13	0
November	2.1	2.2	2.5	2.5	-	-	-	11	0
December	2.2	2.4	1.8	1.8	-	-	-	7	0
Mean Annual FWC =	2.1	2.9	1.8	2.1	14.9	12.9	10.2	298	8

Mean Annual FWC for all Storm = 2.1

Mean Annual FWC for all CSO = 14.4

Water quality monitoring sites include: 30th Ave, Quesnell, Groat Road and Kennedale Storm outfalls; and Rat Creek and Capilano CSOs.

 $FWC \ (mg/L) = Flow \ weighted \ concentration = 1000 \ x \ Constituent \ load \ (kg) \ / \ Volume \ (m3) \ per \ site \ for \ a \ monthly \ or \ annual \ period \ period \ (m3/L) \ period \ (m3/L) \ period \$

Concentrations for unsampled flows were estimated or interpolated

No. of samples includes wet-weather and baseflow sampling. QA/QC samples not included in totals.

^{&#}x27;-' - Concentration could not be calculated due to no flow present.

Table 4: Constituent Loads for 2022

Total Suspended Solids (kg)

	Storm Outfalls									Creeks					CSO O	utfalls		
	30th Ave	Groat Rd.	Quesnell	Kennedale	Monitored Storm	Remaining	Total	Mill	Whitemud	Horsehills	Wedgewood	Total	Rat Creek	Highlands	Capilano	AEP CSO	Remaining	Total
Month	Storm	Storm	Storm	Storm	Sub-Total	Storm	Storm	Creek	Creek	Creek	Creek	Creek	CSO	CSO	CSO	Sub-Total	CSO	CSO
January	12,930	19,455	29,724	6,008	68,116	77,334	226,986	20,997	42,088	14,367	9,291	81,536	0	0	0	0	0	0
February	41,348	81,246	83,889	25,387	231,870	271,081	804,706	86,082	151,732	51,795	33,494	301,755	0	0	0	0	0	0
March	94,575	230,380	218,487	180,058	723,500	760,036	2,011,213	432,066	129,380	44,493	28,890	527,677	0	0	0	0	0	0
April	19,282	82,656	63,140	41,721	206,799	206,201	677,389	92,945	124,508	42,502	27,485	264,389	0	0	0	0	0	0
May	92,677	88,921	209,955	55,941	447,494	821,424	2,177,247	285,832	456,386	174,366	62,631	908,329	182	0	0	182	2	183
June	167,783	232,904	259,012	156,011	815,710	1,299,482	3,480,615	406,877	704,855	207,247	147,351	1,365,424	77,982	24,893	833	103,707	3,111	106,818
July	32,530	137,676	169,862	53,081	393,149	413,636	1,285,177	200,670	211,356	68,450	47,683	478,393	60,582	4,147	0	64,729	647	65,376
August	45,830	100,890	138,252	33,298	318,270	292,967	1,147,810	213,292	238,725	97,133	40,318	536,573	0	0	0	0	0	0
September	29,874	19,468	114,284	34,028	197,655	169,301	654,990	65,504	173,289	36,643	28,843	288,034	131	0	0	131	1	132
October	6,545	115	26,774	11,684	45,118	43,169	159,090	13,617	39,093	10,781	10,690	70,803	0	0	0	0	0	0
November	4,239	199	19,085	2,927	26,450	23,750	75,183	6,428	12,898	4,403	2,847	24,983	0	0	0	0	0	0
December	3,056	67	229	1,161	4,514	4,836	13,147	295	2,289	781	505	3,797	0	0	0	0	0	0
Total	550.670	993.977	1.332.693	601.307	3,478,646	4.383.215	12.713.553	1.824.606	2.286.598	752.962	440.028	4.851.693	138.876	29.040	833	168.749	3,762	172.510

Biochemical Oxygen Demand (kg)

Storm Outfalls Creeks **CSO Outfalls** 30th Ave Groat Rd. Quesnell Kennedale Monitored Storm Remaining Total Mill Whitemud Horsehills Wedgewood Total Rat Creek Highlands Capilano AEP CSO Remaining Total Storm Storm Storm Storm Sub-Total Creek Creek Creek Creek CSO CSO CSO Sub-Total CSO cso Month Storm Storm Creek 9,643 1,763 1,420 3,623 2,838 8,518 27,367 2,491 4,694 1,602 1,036 9,206 January 5,044 7,120 7,898 5,690 25,753 26,946 82,609 8,490 15,060 5,141 3,324 29,910 February March 11,240 17,356 15,568 27,335 71,499 65,992 182,170 35,967 11,251 3,869 2,512 44,680 April 2,103 4,030 6,191 9,371 21,695 16,386 62,999 10,461 10,916 3,726 2,410 24,919 May 6,678 4,353 13,056 10,014 34,101 51,415 143,205 18,839 28,392 10,785 4,347 57,690 39 40 10,233 16,570 19,381 19,664 65,848 96,026 263,861 29,381 53,284 15,585 11,023 101,987 10,960 4,498 207 15,665 470 16,135 June 4,782 8,839 30,953 41,534 22,370 22,475 4,491 8,472 948 9,420 9,515 July 8,270 9,063 122,620 6,345 50,133 4,742 13,760 6,235 33,068 44,935 32,643 12,581 6,393 August 8,331 150,890 28,286 72,888 September 4,842 2,087 6,888 7,660 21,477 43,484 120,125 13,833 30,436 8,495 5,830 55,164 12,547 October 2,635 52 4,628 5,111 12,426 19,277 54,940 5,123 3,689 3,148 23,236 2,348 84 3,366 1,996 7,794 6,038 20,120 1,584 3,263 1,114 720 6,288 November 1,617 296 769 2,707 2,801 175 1,327 453 2,205 December 7,713 293 176,998 Total 58,028 75,126 98,288 105,521 336,962 423,352 1,238,620 226,288 73,386 45,529 478,305 19,480 5,447 207 25,134 565 25,698

Total Phophorus (kg)

	Storm Outfalls									Creeks					CSO O	utfalls		
	30th Ave	Groat Rd.	Quesnell	Kennedale	Monitored Storm	Remaining	Total	Mill	Whitemud	Horsehills	Wedgewood	Total	Rat Creek	Highlands	Capilano	AEP CSO	Remaining	Total
Month	Storm	Storm	Storm	Storm	Sub-Total	Storm	Storm	Creek	Creek	Creek	Creek	Creek	CSO	CSO	CSO	Sub-Total	CSO	CSO
January	105	54	163	166	488	411	1,342	120	226	77	50	443	0	0	0	0	0	0
February	223	198	363	337	1,121	1,088	3,421	347	609	208	135	1,213	0	0	0	0	0	0
March	603	846	943	1,686	4,078	3,693	10,222	1,994	607	209	136	2,451	0	0	0	0	0	0
April	123	169	248	430	970	728	2,803	463	484	165	107	1,105	0	0	0	0	0	0
May	213	151	436	243	1,042	1,673	4,645	637	965	347	139	1,930	1	0	0	1	0	1
June	410	476	656	538	2,081	3,117	8,503	950	1,726	508	358	3,306	216	86	4	306	9	315
July	148	211	504	242	1,106	1,241	3,875	653	674	213	151	1,529	266	27	0	293	3	296
August	131	66	426	197	820	952	2,981	473	540	201	112	1,208	0	0	0	0	0	0
September	115	45	326	229	716	835	2,601	264	590	151	111	1,051	1	0	0	1	0	1
October	45	1	176	135	357	367	1,171	88	243	77	62	448	0	0	0	0	0	0
November	56	1	130	75	262	194	659	52	105	36	23	203	0	0	0	0	0	0
December	50	1	27	54	132	112	332	7	53	18	12	88	0	0	0	0	0	0
Total	2,222	2,219	4,398	4,333	13,173	14,410	42,557	6,046	6,823	2,209	1,395	14,973	483	114	4	600	12	612

Total Load From Storm and CSO = 43,169

Total Load From Storm and CSO = 12,886,064

Total Load From Storm and CSO = 1,264,318

Table 4: Constituent Loads for 2022 (Cont.)

Nitrite + Nitrate (kg)

				Storm O	utfalls			Creeks					CSO Outfalls					
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Monitored Storm	Remaining	Total	Mill	Whitemud	Horsehills	Vedgewood	Total	Rat Creek	Highlands	Capilano	AEP CSO	Remaining	Total
Month	Storm	Storm	Storm	Storm	Sub-Total	Storm	Storm	Creek	Creek	Creek	Creek	Creek	CSO	CSO	CSO	Sub-Total	CSO	CSO
January	453	94	578	1,355	2,479	1,496	5,632	469	834	285	184	1,656	0	0	0	0	0	0
February	497	204	545	1,200	2,447	1,790	6,217	559	998	341	220	1,980	0	0	0	0	0	0
March	901	700	1,050	1,795	4,445	3,940	12,535	2,547	1,426	490	318	4,150	0	0	0	0	0	0
April	798	316	1,051	1,866	4,031	2,799	11,968	2,480	2,095	715	462	5,138	0	0	0	0	0	0
May	1,018	176	1,250	1,436	3,880	5,105	15,206	2,263	3,037	988	494	6,221	0	0	0	0	0	0
June	1,970	1,193	2,441	2,638	8,242	11,088	31,506	3,702	6,257	1,890	1,245	12,176	85	44	2	131	4	135
July	1,173	340	1,912	2,616	6,041	7,240	22,755	4,264	4,027	1,309	932	9,474	25	4	0	29	0	30
August	730	157	1,110	918	2,915	6,799	17,348	3,280	3,312	1,232	623	7,634	0	0	0	0	0	0
September	544	59	792	263	1,659	5,488	12,388	1,461	2,657	891	594	5,242	0	0	0	0	0	0
October	404	4	562	450	1,420	2,687	6,882	610	1,491	480	345	2,775	0	0	0	0	0	0
November	332	5	582	608	1,527	966	3,493	249	520	178	115	1,000	0	0	0	0	0	0
December	307	3	162	657	1,129	692	2,368	45	328	112	72	547	0	0	0	0	0	0
Total	9,129	3,251	12,034	15,803	40,216	50,088	148,297	21,929	26,984	8,911	5,607	57,993	110	48	2	160	4	165
															Total Loa	ad From Stor	m and CSO = 1	48,462

Ammonia Nitrogen (kg)

				Storm Out	tfalls			Creeks				CSO Outfalls						
	30th Ave	Groat Rd.	Quesnell	Kennedale	Monitored Storm	Remaining	Total	Mill	Whitemud	Horsehills	Wedgewood	Total	Rat Creek	Highlands	Capilano	AEP CSO	Remaining	Total
Month	Storm	Storm	Storm	Storm	Sub-Total	Storm	Storm	Creek	Creek	Creek	Creek	Creek	CSO	CSO	CSO	Sub-Total	CSO	CSO
January	420	107	673	685	1,885	1,514	5,045	451	837	286	185	1,646	0	0	0	0	0	0
February	962	351	1,669	1,205	4,187	3,874	12,426	1,272	2,182	745	482	4,365	0	0	0	0	0	0
March	1,619	1,011	2,256	2,064	6,951	6,503	19,059	3,827	1,741	599	389	5,606	0	0	0	0	0	0
April	273	193	666	1,033	2,166	1,479	6,370	1,319	1,110	379	245	2,725	0	0	0	0	0	0
May	297	112	649	148	1,207	2,157	5,954	932	1,257	424	207	2,590	3	0	0	3	0	3
June	281	204	497	382	1,364	2,115	5,778	697	1,180	360	235	2,299	396	185	7	587	18	605
July	223	98	308	271	900	1,273	3,836	769	710	220	154	1,662	455	41	0	496	5	501
August	204	36	418	170	827	1,964	4,968	887	972	337	201	2,178	0	0	0	0	0	0
September	130	55	488	152	825	879	2,949	324	697	172	132	1,245	1	0	0	1	0	1
October	99	7	409	216	732	1,001	2,807	213	581	191	142	1,074	0	0	0	0	0	0
November	82	4	254	333	672	367	1,419	94	198	67	44	380	0	0	0	0	0	0
December	135	2	79	198	414	310	968	20	147	50	32	245	0	0	0	0	0	0
Total	4,727	2,181	8,366	6,855	22,129	23,435	71,578	10,805	11,612	3,830	2,448	26,015	855	226	7	1,087	23	1,110

Total Kjeldahl Nitrogen (kg)

_	Storm Outfalls							Creeks				CSO Outfalls						
	30th Ave	Groat Rd.	Quesnell	Kennedale	Monitored Storm	Remaining	Total	Mill	Whitemud	Horsehills	Wedgewood	Total	Rat Creek	Highlands	Capilano	AEP CSO	Remaining	Total
Month	Storm	Storm	Storm	Storm	Sub-Total	Storm	Storm	Creek	Creek	Creek	Creek	Creek	CSO	CSO	CSO	Sub-Total	CSO	cso
January	529	353	894	1,466	3,243	2,286	8,008	676	1,262	431	279	2,479	0	0	0	0	0	0
February	1,195	1,134	1,812	2,831	6,972	5,775	19,177	1,835	3,233	1,104	714	6,430	0	0	0	0	0	0
March	2,783	3,595	4,226	7,970	18,574	16,548	47,301	9,264	3,326	1,144	743	12,179	0	0	0	0	0	0
April	701	1,118	2,016	2,790	6,624	4,943	19,627	3,583	3,435	1,173	758	8,060	0	0	0	0	0	0
May	1,344	807	2,650	1,985	6,786	9,939	28,321	3,916	5,723	2,058	869	11,596	5	0	0	5	0	5
June	2,348	2,290	4,168	4,192	12,998	18,522	51,397	5,853	10,301	3,067	2,108	19,877	1,363	566	23	1,952	59	2,011
July	1,200	1,018	2,762	2,514	7,495	8,752	27,212	4,756	4,770	1,531	1,088	10,965	1,429	158	0	1,587	16	1,603
August	853	430	2,052	1,582	4,918	7,109	20,328	3,303	3,698	1,365	755	8,301	0	0	0	0	0	0
September	650	424	1,894	1,864	4,832	5,302	17,073	1,709	3,871	1,050	733	6,939	3	0	0	3	0	3
October	354	15	1,200	1,501	3,070	3,046	9,568	697	1,866	596	466	3,452	0	0	0	0	0	0
November	364	11	936	1,003	2,314	1,380	5,136	366	747	255	165	1,442	0	0	0	0	0	0
December	309	6	184	550	1,049	718	2,334	46	341	116	75	567	0	0	0	0	0	0
Total	12,632	11,200	24,795	30,248	78,875	84,319	255,481	36,004	42,572	13,888	8,753	92,288	2,801	724	23	3,548	75	3,623

Total Load From Storm and CSO = 259,104

Total Load From Storm and CSO = 72,688

Table 5: 2022 Rat Creek CSO Concentration Statistics

			TSS			BOD			TP		E. coli
Month	CSO Events	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Mean (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Geometric Mean (MPN/100 mL)
January	0	(mg/L) -	(mg/L) -	(IIIg/L) -	(1119/12)	(mg/L) -	- (mg/L)	(mg/L) -	(mg/ =)	- (1119/12)	- (1011101112)
February	0	-	-	_	-	-	-	-	-	_	-
March	0	-	-	-	-	-	-	-	-	-	-
April	0	-	-	-	-	-	-	-	-	-	-
May	2	1365.0	1430.0	1300.0	312.0	358.0	266.0	6.6	8.1	5.0	3,766,364
June	6	864.3	2340.0	370.0	108.5	152.0	92.0	2.8	5.2	1.6	1,788,250
July	4	718.0	1330.0	282.0	94.4	139.0	77.0	3.4	3.9	2.3	2,623,013
August	0	-	-	-	-	-	-	-	-	-	-
September	1	2110.0	2110.0	2110.0	139.0	139.0	139.0	9.6	9.6	9.6	3,970,000
October	0	-	-	-	-	-	-	-	-	-	-
November	0	-	-	-	-	-	-	-	-	-	-
December	0	-	-	-		-	-	-	-	-	<u>-</u>

			NH_3			NO ₃ +NO ₂			TKN	
	_	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum
Month	CSO Events	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
January	0	-	-	-	-	-	-	-	-	-
February	0	-	-	-	-	-	-	-	-	-
March	0	-	-	-	-	-	-	-	-	-
April	0	-	-	-	-	-	_	-	-	-
May	2	18.4	19.4	17.3	0.2	0.3	0.2	43.3	50.2	36.3
June	6	6.2	15.2	2.9	0.8	1.5	0.3	18.4	36.7	10.2
July	4	6.5	9.1	3.1	0.3	0.4	0.1	20.0	26.4	13.6
August	0	-	-	-	-	-	_	-	-	-
September	1	18.8	18.8	18.8	0.4	0.4	0.4	55.3	55.3	55.3
October	0	-	-	-	-	-	-	-	-	-
November	0	-	-	-	-	-	-	-	-	-
December	0	-	-	-	-	-	-	-	-	

Note: Number of samples might not equal to number of CSO events due to sampler malfunction and extended sampling event.

TABLE 6: List of Certified Wastewater Collection System Operators

Certified Wastewater Collection System Operators per Level of WWC Certification:

- (1) Operators Level IV WWC Certified
- (6) Operators Level III WWC Certified
- (51) Operators Level II WWC Certified
- (27) Operators Level I WWC Certified

Name	Title	WWC Certification Level
Fechner, Frank	Senior Manager, Operational Strategies	IV
Bertin, Wendy	Engineering Technologist	III
Gunderson, John	Engineering Technologist	III
L'Heureux, Robin	Engineering Technologist	III
Lukenbill, Durward (Dylan)	Tradesman (Millwright 2)	III
McConnell, Peter	Drainage System MTV Operator	III
Powell, Ryan	Tradesman (Millwright 2)	III
Acker, Timothy	Drainage System MTV Operator	II
Ambrosio, Jeffrey	Sewer Substructure Inspector	II
Aniskou, Evgeni	Engineering Technologist	II
Benson, Leon	Drainage System Combo Operator	II
Bishop, Shawn	Drainage System Combo Operator	11
Branicki, Roman	Labour Foreman 1	II
Bronca, Robert	Labour Foreman 3	II
Brownoff, Nicholas	Tradesman (Millwright)	II
Charrupi, Carlos	Maintenance Repairman I	II
Coburn, Arthur	Labourer 3	II
Cuglietta, Carmine	Labour Foreman 1	11
Dowds, Alexander	Drainage System Combo Operator	II
Ewing, Nicole	Engineering Technologist	II
Ferenac, Nikola	Labour Foreman 3	II
Forrest, Scott	Water System Technical Support / Special	II
Fraser, Gordon	Labourer 2	II
Gawreletz, Kevin	Labour Foreman 1	II
Goodine, John	Tradesman (Millwright 2)	II
Goonewardane, Anton	Equipment Operator 3	II
Guidoccio, Natalino	Drainage System Serviceman	II
Guidoccio, Nicholas	Drainage System Serviceman	II
Hajar, Norm	Millwright Foreman	II
Hammond, Richard	Labourer 3	II
Hao, Yufu (Owen)	Industrial Wastewater Inspector	II

Lillian Danis	Foreman (Dual Trada)	11
Hillier, Denis	Foreman (Dual Trade)	II II
Lawson, Linsey	Engineering Technologist	
Ledl, Ryan	Industrial Wastewater Investigator	II II
Lirazan, Warren	Labourer 3	II
Macrury, Robert	Labour Foreman 1	II
Manao, Manuel	Sewer Substructure Inspector	II
Marcoux-Mansbridge, Nikita	Tradesman (Millwright)	II
McKay, Brandy	Engineering Technologist	II
Miller, Wade	Tradesman (Millwright 2)	П
Montague, Thomas (lan)	Labour Foreman 3	II
Murphy, Steven	Drainage System Combo Operator	II
Nelson, Tim	Environmental Specialist	II
Perron, Clayton	Tradesman (Millwright 2)	II
Persaud, Shawna	Equipment Operator 3	П
Rivard, Shaune	Drainage Network Specialist	II
Samarasinghe, Kalutota	Labourer 2	II
Schlacht, Shawn	Labour Foreman 3	П
Sedurante, Benjamin	Sewer Substructure Inspector	II
Sigstad, Lane	Tradesman (Millwright 2)	II
Slonetzky, Tyler	Sewer Substructure Inspector	II
Soni, Rohit	Planner (FCF Maintenance)	П
Sorenson, Melvin	Labour Foreman 1	П
Sorenson, Tim	Labour Foreman 3	П
Underhay, Dominic	Labourer 3	II
Ursuliak, Wes	Labour Foreman 3	П
Webster, Kenneth	Labour Foreman 3	П
Yang, Guang	Drainage System Combo Operator	П
Bellerose, Richard	Tradesman (Millwright 2)	I
Burns, Russel	Labourer 3	I
Byrne, Philip	Maintenance Repairman I	I
Campbell, Brent	Sewer Substructure Inspector	I
Casella, Carmen	Labourer 3	I
Clark, Daniel	Drainage Network Specialist	I
Dilts, Scott	Drainage System Combo Operator	I
Divino, Patrick	Drainage System Serviceman	I
Draghici, Courtney	Drainage System Combo Operator	I
	-	-

Engineering Technologist	Ι
Drainage System Combo Operator	Ι
Electrician 1	Ι
Industrial Wastewater Inspector	Ι
Labour Foreman 1	Ι
Tradesman (Millwright)	Ι
Drainage System Combo Operator	Ι
Drainage Network Specialist	I
Engineering Technologist	I
Industrial Wastewater Investigator	I
Engineering Technologist	Ι
Drainage System Combo Operator	I
Tradesman (Millwright)	I
Drainage Network Specialist	Ι
Labour Foreman 3	Ι
Drainage Network Specialist	l
Industrial Wastewater Investigator	I
Maintenance Repairman 1	l l
	Drainage System Combo Operator Electrician 1 Industrial Wastewater Inspector Labour Foreman 1 Tradesman (Millwright) Drainage System Combo Operator Drainage Network Specialist Engineering Technologist Industrial Wastewater Investigator Engineering Technologist Drainage System Combo Operator Tradesman (Millwright) Drainage Network Specialist Labour Foreman 3 Drainage Network Specialist Industrial Wastewater Investigator

TABLE 7: 2022 Annual Product Usage at Pump Stations

The Biomaxx Canada OXYN8 solution is used for odor control at sanitary pump stations.

Pump Station	Month	Product	Total Addition (L)
PW213 Trumpeter	June	Biomaxx Canada OXYN8	2,382
PW213 Trumpeter	July	Biomaxx Canada OXYN8	3,628
PW227 Chappelle Garden	July	Biomaxx Canada OXYN8	111
PW213 Trumpeter	August	Biomaxx Canada OXYN8	3,177
PW227 Chappelle Garden	August	Biomaxx Canada OXYN8	2,200
PW233 Edgemont II	August	Biomaxx Canada OXYN8	1,465
PW213 Trumpeter	September	Biomaxx Canada OXYN8	2,548
PW227 Chappelle Garden	September	Biomaxx Canada OXYN8	1,862
PW233 Edgemont II	September	Biomaxx Canada OXYN8	669
PW213 Trumpeter	October	Biomaxx Canada OXYN8	3,135
PW227 Chappelle Garden	October	Biomaxx Canada OXYN8	2,216
PW233 Edgemont II	October	Biomaxx Canada OXYN8	644
PW213 Trumpeter	November	Biomaxx Canada OXYN8	2,707
PW227 Chappelle Garden	November	Biomaxx Canada OXYN8	2,674
PW233 Edgemont II	November	Biomaxx Canada OXYN8	1,173
PW213 Trumpeter	December	Biomaxx Canada OXYN8	2,315
PW227 Chappelle Garden	December	Biomaxx Canada OXYN8	5,515
PW233 Edgemont II	December	Biomaxx Canada OXYN8	1,584

Total Usage (L): 40,005

TABLE 8: 2022 Annual	Usage of	Reward® Herbicide
----------------------	----------	-------------------

Date of Application	Stormwater Management Facility	Quantity Used (L)
21-Jun-22	Ambleside #4 (3604-Allan Drive SW)	11
21-Jul-22	Uplands #2 (20220-27 Avenue NW)	8
26-Jul-22	Bearspaw Creek (1115-109 Street NW)	8
28-Jul-22	Paisley #1 (3040-Paisley Green SW)	23
08-Aug-22	Windermere #4 (5109-Woolsey Link NW)	2
23-Aug-22	Ambleside #4 (3604-Allan Drive SW)	11

Total Number of Applications: 6

Total Usage (L): 62

TABLE 9: 2022 Usage of Bright Dye

The use of Bright Dye in the **Field Operations** section is related to the identification of cross-connections in the collection system. The **Monitoring & Compliance** usage supports enforcement activities associated with Drainage By-law 19627 (EPCOR) and Drainage By-Law 18093 (City of Edmonton) and investigations of industrial and commercial customers.

Date Tested	Location of Test	Department / Section	Tests per Location	Bright Dye Usage (ml)
13-Jan-22	14715-116 Avenue NW	Monitoring & Compliance	3	75
13-Apr-22	6545-99 Street NW	Monitoring & Compliance	2	100
14-Apr-22	6545-99 Street NW	Monitoring & Compliance	1	25
30-May-22	122-Avenue & 47-Street NW	Field Operations	1	30
30-May-22	42-Avenue & 98-Street NW	Field Operations	1	30
7-June-22	146-Avenue & 50-Street NW	Field Operations	1	30
13-June-22	11305-164 Avenue NW	Field Operations	1	30
18-July-22	23-Avenue & 111-Street NW	Field Operations	2	60
19-July-22	10230-Jasper Avenue NW	Field Operations	1	30
19-July-22	7904-118 Avenue NW	Field Operations	1	30
27-July-22	6-Willow Way NW	Field Operations	1	90
23-Aug-22	14715-116 Avenue NW	Monitoring & Compliance	1	25
25-Aug-22	4160-97 Street NW	Monitoring & Compliance	8	200
25-Aug-22	9815-42 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11208-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11212-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11220-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11224-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11228-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11232-48 Avenue NW	Monitoring & Compliance	1	25
29-Nov-22	11234-48 Avenue NW	Monitoring & Compliance	1	25
30-Nov-22	11216-48 Avenue NW	Monitoring & Compliance	1	25
30-Nov-22	11204-48 Avenue NW	Monitoring & Compliance	1	25
30-Nov-22	11140-48 Avenue NW	Monitoring & Compliance	1	25
30-Nov-22	11136-48 Avenue NW	Monitoring & Compliance	1	25
30-Nov-22	11128-48 Avenue NW	Monitoring & Compliance	1	25
12-Dec-22	4160-97 Street NW	Monitoring & Compliance	2	50
29-Dec-22	7611A-150 Street NW	Monitoring & Compliance	1	25
29-Dec-22	7611A-150 Street NW	Monitoring & Compliance	1	25

Total Number of Tests: 41

Total Usage (mL): 1180

TABLE 10: 2022 Usage of De-Icing Product

Date	Outfall Number	Directly Affected Watercourse	Number of Applications	Total Amount of De-Icing Product Applied (Kg)
05-Jan-22	265	Whitemud Creek	1	60
05-Jan-22	277	Blackmud Creek	1	70
06-Jan-22	4	Whitemud Creek	1	40
06-Jan-22	3	Whitemud Creek	1	40
06-Jan-22	1	Whitemud Creek	1	40
07-Jan-22	23D	North Sask. River	1	40
07-Jan-22	23C	North Sask. River	1	50
11-Jan-22	120	North Sask. River	1	80
11-Jan-22	101	North Sask. River	1	110
11-Jan-22	52	North Sask. River	1	60
11-Jan-22	57	North Sask. River	1	130
12-Jan-22	25	North Sask. River	1	40
12-Jan-22	314	North Sask. River	1	70
12-Jan-22	274	Blackmud Creek	1	40
12-Jan-22	263	Blackmud Creek	1	70
12-Jan-22	65	North Sask. River	2	170
12-Jan-22	121	North Sask. River	1	20
13-Jan-22	65	North Sask. River	1	100
13-Jan-22	207	Blackmud Creek	1	50
13-Jan-22	264	Blackmud Creek	1	70
13-Jan-22	5	Whitemud Creek	1	80
14-Jan-22	109	North Sask. River	1	30
14-Jan-22	47	North Sask. River	1	50
14-Jan-22	108	North Sask. River	1	30
14-Jan-22	31	North Sask. River	2	70
14-Jan-22	298	North Sask. River	1	70
14-Jan-22	257	Wedgewood Creek	2	150
17-Jan-22	275	Blackmud Creek	1	50
17-Jan-22	119	Westridge Ravine	1	80
17-Jan-22	15	North Sask. River	1	80
18-Jan-22	118	Big Lake	1	20
18-Jan-22	29	North Sask. River	1	100
18-Jan-22	78	Goldbar Creek	1	50
19-Jan-22	77	Goldbar Creek	1	30
19-Jan-22	191	Mill Creek South	1	50

19-Jan-22	92B	Mill Creek South	1	50
19-Jan-22	195	Mill Creek South	1	90
20-Jan-22	192	Mill Creek South	1	50
20-Jan-22	91	Big Lake	1	20
20-Jan-22	190	North Sask. River	1	30
20-Jan-22	65	North Sask. River	2	50
21-Jan-22	101	North Sask. River	2	100
21-Jan-22	298	North Sask. River	2	50
21-Jan-22	265	Whitemud Creek	1	70
24-Jan-22	183	North Sask. River	1	30
24-Jan-22	182	North Sask. River	1	30
24-Jan-22	136	Ramsay Ravine	1	40
24-Jan-22	125	Ramsay Ravine	1	40
24-Jan-22	139	Ramsay Ravine	1	40
24-Jan-22	126	Ramsay Ravine	1	20
24-Jan-22	124	Ramsay Ravine	1	20
24-Jan-22	123A	Ramsay Ravine	1	20
24-Jan-22	65	North Sask. River	1	70
24-Jan-22	87	Kennedale Ravine	1	40
24-Jan-22	88	North Sask. River	1	40
24-Jan-22	71	North Sask. River	1	40
25-Jan-22	123	Ramsay Ravine	1	10
25-Jan-22	24	North Sask. River	1	40
25-Jan-22	29	North Sask. River	1	40
25-Jan-22	57	North Sask. River	1	30
25-Jan-22	58	North Sask. River	1	30
26-Jan-22	268	North Sask. River	1	40
26-Jan-22	148	North Sask. River	1	60
26-Jan-22	108	North Sask. River	1	30
27-Jan-22	249	Mill Creek South	1	60
28-Jan-22	191	Mill Creek South	1	40
28-Jan-22	92B	Mill Creek South	1	30
28-Jan-22	195	Mill Creek South	1	30
28-Jan-22	192	Mill Creek South	1	30
31-Jan-22	4	Whitemud Creek	1	50
31-Jan-22	1	Whitemud Creek	1	40
31-Jan-22	274	Blackmud Creek	1	40
31-Jan-22	275	Blackmud Creek	1	40
31-Jan-22	263	Blackmud Creek	1	50
31-Jan-22	65	North Sask. River	1	40

01-Feb-22 59 North Sask. River 1 40	
01-Feb-22 268 North Sask. River 1 40)
01-Feb-22 267 North Sask. River 1 40	
01-Feb-22 65 North Sask. River 2 60	
01-Feb-22 23D North Sask. River 1 40	
01-Feb-22 314 North Sask. River 1 40	
01-Feb-22 120 North Sask. River 1 80	
02-Feb-22 23C North Sask. River 1 40	
02-Feb-22 277 Blackmud Creek 1 70	
02-Feb-22 101 North Sask. River 1 80	
02-Feb-22 25 North Sask. River 1 30	
03-Feb-22 265 North Sask. River 1 80	
03-Feb-22 264 North Sask. River 1 80	
04-Feb-22 257 Wedgewood Creek 1 10	
04-Feb-22 15 North Sask. River 2 10	
04-Feb-22 65 North Sask. River 1 40	
04-Feb-22 N/A Shallow Storm Main 1 40	
07-Feb-22 65 North Sask. River 1 80	
07-Feb-22 119 Westridge Ravine 1 40	
08-Feb-22 52 North Sask. River 1 80	
08-Feb-22 153 North Sask. River 1 30	
08-Feb-22 156 North Sask. River 1 30	
08-Feb-22 121 North Sask. River 1 60	
09-Feb-22 78 Goldbar Creek 1 60	
09-Feb-22 77 Goldbar Creek 1 40	
09-Feb-22 47 North Sask. River 1 60	
09-Feb-22 108 North Sask. River 1 40	
09-Feb-22 57 North Sask. River 1 50	
09-Feb-22 109 North Sask. River 1 30	
09-Feb-22 46 North Sask. River 1 50	
10-Feb-22 126 Ramsay Ravine 1 40	0
10-Feb-22 138 Ramsay Ravine 1 10	0
14-Feb-22 274 Blackmud Creek 1 80	0
14-Feb-22 207 Blackmud Creek 1 30	0
15-Feb-22 277 Blackmud Creek 1 50	
15-Feb-22 123A Ramsay Ravine 1 50	0
15-Feb-22 124 Ramsay Ravine 1 50	0
15-Feb-22 126 Ramsay Ravine 1 50	0
16-Feb-22 108 North Sask. River 1 30	0
16-Feb-22 47 North Sask. River 1 50	0

16-Feb-22	109	North Sask. River	1	30
16-Feb-22	192	Mill Creek South	1	40
18-Feb-22	154	North Sask. River	1	40
22-Feb-22	267	North Sask. River	1	40
22-Feb-22	268	North Sask. River	1	40
22-Feb-22	59	North Sask. River	2	100
23-Feb-22	77	Goldbar Creek	1	20
23-Feb-22	N/A	Shallow Storm Main	1	20
28-Feb-22	118	Big Lake	1	30
01-Mar-22	217	Clover Bar Ravine	1	20
02-Mar-22	46	North Sask. River	1	10
02-Mar-22	128	Wellington Ravine	1	50
04-Mar-22	15	North Sask. River	1	70
07-Mar-22	119	Westridge Ravine	1	50
07-Mar-22	257	Wedgewood Creek	1	80
07-Mar-22	197	Mill Creek South	1	50
08-Mar-22	275	Blackmud Creek	1	50
08-Mar-22	274	Blackmud Creek	1	70
09-Mar-22	52	North Sask. River	1	80
09-Mar-22	274	Blackmud Creek	1	70
09-Mar-22	265	Whitemud Creek	1	60
09-Mar-22	277	Blackmud Creek	1	50
09-Mar-22	207	Blackmud Creek	1	40
10-Mar-22	274	Blackmud Creek	1	70
10-Mar-22	132	Ramsay Ravine	1	20
11-Mar-22	108	North Sask. River	1	30
11-Mar-22	109	North Sask. River	1	30
11-Mar-22	47	North Sask. River	1	80
15-Mar-22	126	Ramsay Ravine	1	50
15-Mar-22	136	Ramsay Ravine	1	40
15-Mar-22	124	Ramsay Ravine	1	40
15-Mar-22	101	North Sask. River	2	40
16-Mar-22	123	Ramsay Ravine	1	30
16-Mar-22	123A	Ramsay Ravine	1	50
16-Mar-22	256	North Sask. River	1	20
16-Mar-22	46	North Sask. River	1	20
18-Mar-22	121	North Sask. River	1	90
23-Mar-22	N/A	North Sask. River	1	10
25-Mar-22	125	Ramsay Ravine	1	90
28-Mar-22	125	Ramsay Ravine	1	100

28-Mar-22	124	Ramsay Ravine	1	30
28-Mar-22	123A	Ramsay Ravine	1	30
28-Mar-22	154	North Sask. River	1	20
09-Nov-22	125	Ramsay Ravine	1	50
09-Nov-22	126	Ramsay Ravine	1	40
09-Nov-22	124	Ramsay Ravine	1	40
10-Nov-22	139	Ramsay Ravine	1	50
23-Nov-22	52	North Sask. River	1	70
23-Nov-22	301	Mill Creek South	1	40
25-Nov-22	192	Mill Creek South	1	40
29-Nov-22	119	Westridge Ravine	1	80
29-Nov-22	298	North Sask. River	1	80
29-Nov-22	101	North Sask. River	1	80
29-Nov-22	183	North Sask. River	1	30
29-Nov-22	125	Ramsay Ravine	1	40
30-Nov-22	139	Ramsay Ravine	1	30
30-Nov-22	136	Ramsay Ravine	1	30
30-Nov-22	274	Blackmud Creek	1	60
01-Dec-22	265	Whitemud Creek	1	70
01-Dec-22	277	Blackmud Creek	1	50
05-Dec-22	4	North Sask. River	1	20
05-Dec-22	126	Ramsay Ravine	1	50
06-Dec-22	123A	Ramsay Ravine	1	40
06-Dec-22	123	North Sask. River	1	30
06-Dec-22	124	Ramsay Ravine	1	40
06-Dec-22	118	Big Lake	1	20
06-Dec-22	15	North Sask. River	1	50
07-Dec-22	249	Mill Creek South	1	100
07-Dec-22	31	North Sask. River	1	40
15-Dec-22	119	Westridge Ravine	1	40
16-Dec-22	87	Kennedale Ravine	1	50
19-Dec-22	29	North Sask. River	1	70
19-Dec-22	71	North Sask. River	1	50
19-Dec-22	148	North Sask. River	1	40
19-Dec-22	108	North Sask. River	1	30
19-Dec-22	47	North Sask. River	1	60
20-Dec-22	109	North Sask. River	1	40
20-Dec-22	183	North Sask. River	1	30
21-Dec-22	46	North Sask. River	1	10
21-Dec-22	182	North Sask. River	1	30

21-Dec-22	125	Ramsay Ravine	1	50
21-Dec-22	139	Ramsay Ravine	1	40
22-Dec-22	126	Ramsay Ravine	1	30
22-Dec-22	123A	Ramsay Ravine	1	30
22-Dec-22	124	Ramsay Ravine	1	30
22-Dec-22	31	North Sask. River	1	80
22-Dec-22	29	North Sask. River	1	40
23-Dec-22	24	North Sask. River	1	40
23-Dec-22	N/A	North Sask. River	1	20
23-Dec-22	65	North Sask. River	1	40
28-Dec-22	101	North Sask. River	1	100
29-Dec-22	31	North Sask. River	3	430
30-Dec-22	314	North Sask. River	1	70
30-Dec-22	120	North Sask. River	1	70
30-Dec-22	23C	North Sask. River	1	60
30-Dec-22	23D	North Sask. River	1	80

Total Number of Applications: 223
Total Usage (kg): 10,980

TABLE 11: 2022 Operational Issues - Drainage Services

Date of Occurrence	Location	Incident Description	Туре	AEPA Reference Number
11-Jan-22	10310-56 Street NW	During the investigation of an odour complaint at Outfall #57 (OF268556), EPCOR Drainage Investigators identified a plugged / damaged sanitary line (PIP9224) that was allowing untreated wastewater (unknown volume) to infiltrate into an adjacent storm line. EPCOR equipment removed the obstruction in the sanitary line stopping the release of untreated wastewater into the storm collection system. Condition assessments of the sanitary / storm lines were initiated and repairs to the sanitary line were completed on January 20, 2022. This release was reported to AEPA on January 13, 2022. A written report was issued to AEPA on January 20, 2022.	Reportable- Internal	387062
19-Jan-22	9626-96A Street NW	Propylene glycol (approx. 100L) was released into the combined collection system at the City of Edmonton – Muttart Conservatory. During repairs to the mechanical room at this facility a private contractor (Graham Construction & Engineering Inc.) released glycol into a floor drain. The City of Edmonton has addressed the issue of the improper disposal of the glycol with the private contractor. This release was reported to AEPA on January 19, 2022 by the City of Edmonton. A written report was issued to AEPA on January 19, 2022.	Reportable- 3 rd Party Release	387223
20-Jan-22	Multiple Locations	During a technical review of condition assessments associated with the drill drop manhole (DDMH) rehabilitation program, EPCOR Utilities identified four DDHM where structural deficiencies in the corrugated metal pipe would have resulted in untreated wastewater being released to soil. Any release would be contained in the surrounding soil and would not have entered the storm collection system or the environment. EPCOR is currently evaluating rehabilitation and construction options for each of the four drill drop manholes; this includes evaluating access challenges, developing design and engineering drawings and construction schedules. EPCOR will continue to monitor the condition of the four drill drop manholes. This release was reported to AEPA on January 21, 2022. A written report was issued to AEPA on January 28, 2022.	Reportable- Internal	387302
U0 E0P 33	100-Street & -104 Avenue NW	Ethylene glycol (approx. 3L) was released into a catch basin from a City of Edmonton bus. The catch basin (CB264506) at this location drains to the combined sewer system that is connected to the Gold Bar WWTP. A 3 rd party environmental company (Nor-Alta Environmental Services) was called to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA on February 8, 2022 by the City of Edmonton. A written report was issued to AEPA on February 11, 2022.	Reportable- 3 rd Party Release	387446
10-Feb-22	5618-54-Street NW	Diesel fuel (approx. 10L) was released from a damaged gravel truck located at Edmonton Truck Wash. Drainage investigators observed a trail of fuel leading down 54 th street towards a storm catch basin (CB233505). The truck had been leaking for 2-3 days and diesel fuel may have entered the storm collection system. A 3 rd party environmental company was called to the spill site to remove fuel residue near the gravel truck and along the roadway. A Notice to Comply was issued to Edmonton Truck Wash to immediately after becoming aware of a release to take all reasonable steps to: a) confine, remedy and repair the effects of the release and b) remove or dispose of the matter in a manner that minimizes any adverse effects. This release was reported to AEPA on February 10, 2022 by City of Edmonton – Fire Services. A written report was issued to AEPA on February 17, 2022.	Reportable- 3 rd Party Release	387810
19-Feb-22	Multiple Locations	During a technical review of condition assessments associated with the drill drop manhole (DDMH) rehabilitation program, EPCOR Utilities identified three DDMH where structural deficiencies in the corrugated metal pipe would have resulted in untreated wastewater being released to soil. These releases would be contained in the surrounding soil and would not have entered the storm collection system or the environment. EPCOR is currently evaluating rehabilitation and construction options for 2022 for each of the three drill drop manholes; this includes evaluating access challenges, developing design and engineering drawings and construction schedules. EPCOR will continue to monitor the condition of the three drill drop manholes. This release was reported to AEPA on February 24, 2022. A written report was issued to AEPA on March 1, 2022.	Reportable- Internal	388125, 388126, 388127
22-Feb-22	15830-121A Avenue NW	Sample results of the stormwater discharge from Burnco Rock Products were received and reviewed by EPCOR Drainage - Monitoring & Compliance. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for COD at 366 mg/L and pH at 9.87. The original sample from the company was collected on February 17, 2022 by Drainage Investigators. A Notice to Comply was issued to Burnco Rock Products to discontinue the release of restricted waste	Reportable- 3 rd Party Release	388161

	T		1	
		to the storm collection system and to report the release to AEPA. This release was reported to AEPA on February 23, 2022 by the company. A written report was issued to AEPA on March 3, 2022.		
08-Mar-22	102-Avenue & 179- Street NW	Potable water (approx. 8 cubic meters) was released into the storm collection system at an EPCOR Drainage worksite. During an excavation, a Drainage Construction crew struck a water line, which resulted in a potable (chlorinated) water release into a nearby storm catch basin (CB524320). An EPCOR Water crew was mobilized to the site to shut off the water main and repair the damaged line. This release was reported to AEPA on March 8, 2022. A written report was issued to AEPA on March 15, 2022.	Reportable- Internal	388491
08-Mar-22	8882- 170-Street NW	Sample results of the stormwater from a storm manhole (MH237162) located at the West Edmonton Mall shopping center were received and reviewed by EPCOR Drainage - Monitoring & Compliance. The results of the sample (E. coli = 200,000 CFU/100mL) indicated that untreated wastewater may have entered the storm collection system thru a cross-connection. Drainage investigators conducted an investigation into this incident to confirm if a cross-connection exists at this location. Further sampling and video inspections of the storm lines at this location confirmed a cross-connection. A Notice to Comply was issued to the shopping center to locate / repair the source of the cross-connection. This release was reported to AEPA on June 2, 2022 by the shopping center. A written report was issued to AEPA on June 6, 2022.	Reportable- 3 rd Party Release	391232
22-Mar-22	56 Avenue & 107- Street NW	Hydraulic fluid (approx. 60L) was released into a catch basin (CB228325) from a damaged City of Edmonton truck. Drainage investigators determined that this catch basin is connected to the combined sewer system and there was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA on March 22, 2022 by the City of Edmonton. A written report was issued to AEPA on March 28, 2022.	Reportable- 3 rd Party Release	388864
22-Mar-22	1912-66 Avenue NW	Sample results of wastewater from the sanitary line (S-57862-SAN) located at Great Western Containers were received and reviewed by EPCOR Drainage - Monitoring & Compliance. The results of the sample exceeded Alberta Environment and Parks hazardous waste (Class 9.3 violation) limits for Ethylbenzene at 4.19 mg/L, Toluene at 26.2 mg/L and Total Xylenes at 30.1 mg/L. The original sample from the sanitary line was collected on March 15, 2022 by Drainage Investigators. A Notice to Comply was issued to Great Western Containers to discontinue the release of hazardous waste into the sewerage system. Activity will continue with this customer to discontinue the release of hazardous waste from this site. Enforcement and educational activities with the business are ongoing. This release was reported to AEPA on March 22, 2022. A written report was issued to AEPA on March 28, 2022.	Reportable- 3 rd Party Release	388869
25-Mar-22	16110-116 Avenue NW	Motor oil (approx. 5L) was released along the roadway / snowbank near the Alberta Park Industrial neighborhood. Drainage investigators observed that the oil was likely spilled during the winter months and had recently been released into the storm collection system (CB567985) during the spring melt. A 3 rd party environmental company (GFL Environmental) was contacted to clean-up the impacted catch basin and surrounding area. This release was reported to AEPA on March 25, 2022. A written report was not required by AEPA.	Reportable- 3 rd Party Release	388983
30-Mar-22	149-Street & Stony Plain Road NW	Potable water (approx. 165 cubic meters) was released into the storm collection system by a private company (Marigold Infrastructure Ltd). During excavation activity to install a piling, the company struck an EPCOR water line. The potable water at this location would have been released through the storm collection system at Outfall #30 (OF241827) located Southeast of 135-Street & Ravine Drive NW. The water line was shut off and repaired by an EPCOR Water crew. A Notice to Comply was issued to the company to discontinue the release of potable (chlorinated) water to the storm sewerage system. This event was reported to AEPA on March 30, 2022 by the company. A written report was issued to AEPA on April 6, 2022.	Reportable- 3 rd Party Release	389120
30-Mar-22	9924-35 Avenue NW	Motor oil (approx. 10L) was released from a private company (Lube City). The release from an oil tank onto the surface of the rear parking area of the facility may have entered a nearby private storm catch basin. Drainage investigators used absorbent booms to contain and remove contaminants from the spill site. A 3 rd party environmental company (Clean Harbors) was contacted to clean-up the impacted storm catch basin and surrounding area. This event was reported to AEPA on March 30, 2022 by the company. A written report was issued to AEPA on April 1, 2022.	Reportable- 3 rd Party Release	389116
08-Apr-22	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 202 mg/L, Oil & Grease at 30 mg/L, Arsenic at 0.064 mg/L, Cadmium at 0.0103 mg/L, Chromium at 0,239 mg/L, Copper at 0.20 mg/L, Lead at 0.129 mg/L, Nickel at 0.189 mg/L and Zinc at 1.80 mg/L. The original sample from the NW district yard facility was collected on March 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on April 8, 2022 by the City of Edmonton. A written report was issued to AEPA on April 15, 2022.	Reportable- 3 rd Party Release	389427
08-Apr-22	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes	Reportable- 3 rd Party	389426

		Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 662 mg/L, Oil & Grease at 35 mg/L, Cadmium at 0.0027 mg/L, Zinc at 0.40 mg/L and Total Chlorine at 0.07 mg/L. The original sample from the NE district yard facility was collected on March 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on April 8, 2022 by the City of Edmonton. A written report was issued to AEPA on April 15, 2022.	Release	
08-Apr-22	5404- 59-Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 576 mg/L, Oil & Grease at 42 mg/L, Cadmium at 0.012 mg/L and Zinc at 0.76 mg/L. The original sample from the SE district yard facility was collected on March 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on April 8, 2022 by the City of Edmonton. A written report was issued to AEPA on April 15, 2022.	Reportable- 3 rd Party Release	389424
12-Apr-22	3191-141 Street SW	Untreated wastewater (unknown volume) was released into the storm collection system from the Chappelle business complex. EPCOR Drainage investigators observed that untreated wastewater was surcharging from a private sanitary manhole and was migrating into a nearby private storm catch basin. EPCOR equipment was mobilized to the site to release the blockage in the sanitary line and clean contaminants from the impacted storm collection system. Drainage investigators checked the storm line downstream to the Chappelle Facility #1 SWMF (SWM475564) and did not observe any evidence of sanitary wastewater in the facility pond. A Notice to Comply was issued to two restaurants in the business complex to clean and maintain their grease interceptors. A Notice to Comply was also issued to the owner of the business complex to discontinue the release of unpermitted waste into the storm sewerage system. This release was reported to AEPA on April 12, 2022. A written report was issued to AEPA on April 19, 2022.	Reportable- 3 rd Party Release	389530
14-Apr-22	9351-105 Avenue NW	Potable water (unknown volume) was released into the combined collection system (MH262848) from a leaking fire hydrant near the City of Edmonton – Central District yard. The City of Edmonton contacted a 3 rd party vacuum truck to clean up the release site. There was no release of potable water to the storm collection system. This release was reported to AEPA on April 14, 2022 by the City of Edmonton. A written report was issued to AEPA on April 21, 2022.	Reportable- 3 rd Party Release	389617
20-Apr-22	6545-99 Street NW	Sample results of the stormwater discharge from a business complex were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample (E. coli = 9,700,000 CFU/100mL) collected on April 13 th confirmed that untreated wastewater was entering the storm collection system (MH478152) thru a cross-connection. EPCOR Drainage crews conducted dye tests and a CCTV inspection that identified that the cross-connection was located at a nearby food retail store (7-Eleven). The untreated wastewater from this cross-connection would have been released to Mill Creek Ravine South from Outfall 91A (OF229113). A Notice to Comply was issued to the property owner to identify and repair the cross-connection. This release was reported to AEPA on April 20, 2022. A written report was issued to AEPA on April 27, 2022.	Reportable- 3 rd Party Release	389734
21-Apr-22	505-65 Avenue NW	Oil waste (unknown volume) was released from a private trucking company (Shan Construction Services Ltd). EPCOR Drainage investigators responded to a report from AEPA of used oil leaking from barrels onto the ground at this location. The investigators identified several barrels and totes of used oil on the property with black staining observed on the nearby ground and ditches. The company has cleaned up the contaminated soil as required. This area is not currently serviced by a storm / sanitary collection system. A Notice to Comply was issued to the company to discontinue the release of prohibited waste (used oil). The notice also requires the company to store prohibited waste in a manner that will ensure that no future releases will occur. The reference number (#389770) for this release was provided by AEPA. A written report was not required by AEPA.	Reportable- 3 rd Party Release	389770
01-May-22	100-Creston Place NW	Untreated wastewater (approx. 200L) was released into the storm collection system by the Renew Carpet Care company. The company was using their vehicle to pump untreated wastewater from a collapsed sanitary line into a nearby storm catch basin (CB296983). EPCOR equipment was mobilized to the site and removed contaminants from the impacted catch basin. A Notice to Comply was issued to the company to discontinue the release of untreated wastewater into the storm collection system. This release was reported to AEPA on May 1, 2022 by the company. A written report was not required by AEPA.	Reportable- 3 rd Party Release	390069
03-May-22	18711-106A Avenue NW	Potable water (approx. 2000L) was released into the storm collection system at the City of Edmonton – Fire Services Training Center. During training activities at their west end center, Fire Rescue Services had not dechlorinated the potable water used during their training exercises. A Notice to Comply was issued to the City of Edmonton to discontinue the release of other than permitted matter (chlorinated water) into the storm collection system. This release was reported to AEPA on May 3, 2022 by the City of Edmonton. A written report was issued to AEPA on May 10, 2022.	Reportable- 3 rd Party Release	390158

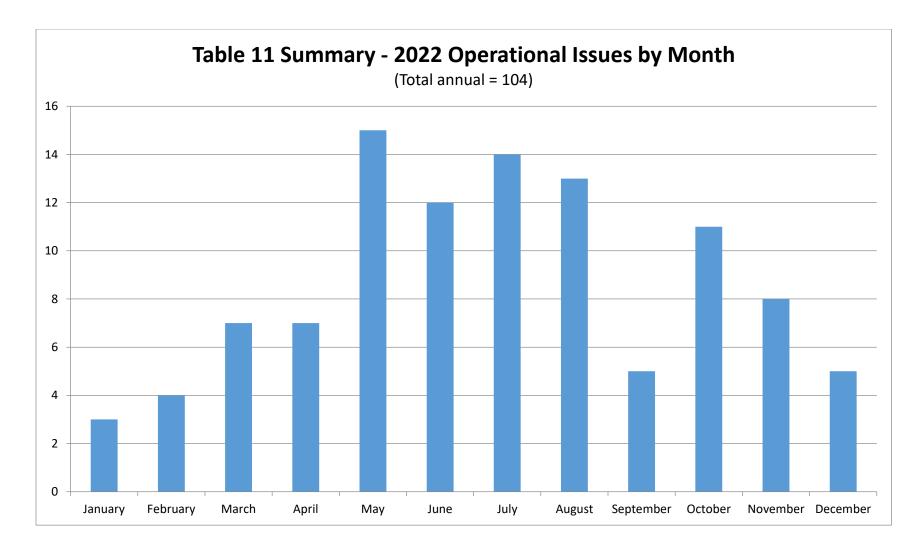
04-May-22	3428-99 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from a Parsons Place shopping center. Drainage investigators arrived on site and observed that a surcharging private sanitary manhole was releasing untreated wastewater into a nearby private storm catch basin. EPCOR equipment was mobilized to the site and released the blockage in the private sanitary line and removed contaminants from the impacted private catch basin and storm line. A Notice to Comply was issued to the property owner to discontinue the release of other than permitted matter (untreated wastewater) into the storm collection system. This release was reported to AEPA on May 4, 2022. A written report was issued to AEPA on May 11, 2022.	Reportable- 3 rd Party Release	390218
09-May-22	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Total Chlorine at 0.16 mg/L. The original sample from the NW district yard facility was collected on April 28, 2022 by COE Environmental Technologists. This release was reported to AEPA on May 9, 2022 by the City of Edmonton. A written report was issued to AEPA on May 16, 2022.	Reportable- 3 rd Party Release	390358
09-May-22	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 329 mg/L, Oil & Grease at 59 mg/L, Cadmium at 0.00086 mg/L, Zinc at 0.357 mg/L, Lead at 0.0304 mg/L, Total Phosphorous at 1.56 mg/L and Total Chlorine at 0.69 mg/L. The original sample from the NE district yard facility was collected on April 28, 2022 by COE Environmental Technologists. This release was reported to AEPA on May 9, 2022 by the City of Edmonton. A written report was issued to AEPA on May 16, 2022.	Reportable- 3 rd Party Release	390357
09-May-22	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 730 mg/L, Cadmium at 0.0063 mg/L and Total Phosphorous at 1.16 mg/L. The original sample from the SE district yard facility was collected on April 29, 2022 by COE Environmental Technologists. This release was reported to AEPA on May 9, 2022 by the City of Edmonton. A written report was issued to AEPA on May 16, 2022.	Reportable- 3 rd Party Release	390356
10-May-22	112-Avenue & 120- Street NW	During an open-cut repair, a suspected hydrocarbon odor was detected by an EPCOR Contractor (Streamline Construction) at a Drainage worksite (PIP52005). A soil sample was collected and analyzed for hydrocarbon and BTEX contaminants. Laboratory results indicated that no contaminants were present in the excavated soil. This release was reported to AEPA on May 10, 2022 by the contractor. A written report was issued to AEPA on May 17, 2022.	Reportable- Internal	390406
11-May-22	11066-150 Street NW	Hydraulic fluid (approx. 10L) was released into a storm catch basin (CB254002) by a City of Edmonton contractor (Canadian Tree Care). The hydraulic fluid was contained within the catch basin sump and there was no release into the storm collection system. A 3 rd party vacuum truck (GFL Environmental) was called in to remove contaminants from the impacted catch basin. This release was reported to AEPA on May 11, 2022 by the City of Edmonton. A written report was issued to AEPA on May 16, 2022.	Reportable- 3 rd Party Release	390435
18-May-22	14708-50 Street NW	A concrete slurry (approx. 5L) was released into a private storm catch basin by a 3 rd party contractor (E-Tech Contracting). The release was contained within the catch basin sump and a 3 rd party vacuum truck was called to the site to remove contaminants from the impacted catch basin. There was no release of concrete slurry to the storm / sanitary collection system. A Notice to Comply was issued to the contractor to discontinue the release of prohibited waste to the sewerage system. This release was reported to AEPA on May 18, 2022 by the contractor. A written report was issued to AEPA on May 20, 2022.	Reportable- 3 rd Party Release	390709
19-May-22	111-Avenue & 97- Street NW	A fire retardant foam (approx. 5L) was released into a storm catch basin (CB265141) by a City of Edmonton – Fire Services truck. Rainfall released the foam into the downstream (combined sewer) drainage system. There was no release of firefighting foam to the storm collection system. This release was reported to AEPA on May 19, 2022 by the City of Edmonton. A written report was issued to AEPA on May 26, 2022.	Reportable- 3 rd Party Release	390756
19-May-22	8745-165-Street NW	An emulsified oil (approx. 3L) was released into the storm collection system at the Meadowlark Village condo complex. EPCOR Drainage investigators observed that the oil had pooled in the parking lot of the complex and recent rainfall had released oil into a nearby private storm catch basin. A 3 rd party vacuum truck (GFL Environmental) was called in to remove contaminants from the parking lot and impacted catch basin. A Notice to Comply was issued to the property owner to discontinue the release of prohibited waste into the sewerage system. Investigators will conduct a follow-up investigation to determine the source of the release. This release was reported to AEPA on May 19, 2022. A written report was not required by AEPA.	Reportable- 3 rd Party Release	390777

19-May-22	4510 CO Avenue NIM	Sample results of the stormwater discharge from a metal recycling company (Maple Leaf Metals) were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 1630 mg/L, Cadmium at 0.00105 mg/L, Lead at 0.036 mg/L and Nickel at 0.123 mg/L. The original sample from the company was collected on May 11, 2022 by Drainage investigators. A Notice to Comply was issued to the company to discontinue the release of restricted waste into the storm sewer system. This release was reported to AEPA on May 20, 2022 by the company. A written report was issued to AEPA on April 27, 2022.	Reportable- 3 rd Party Release	390790
26-May-22		Untreated wastewater (approx. 17 cubic meters) was released from a combined sewer manhole (MH247804) surcharge. A portion of the flow from MH247804 travelled overland through Queen Elizabeth Park to the North Saskatchewan River (NSR). Upon confirming the release of untreated wastewater, additional EPCOR resources were mobilized to site. A shutdown of the pumps at the Walterdale Pump Station (PS171) was initiated. This shutdown stopped the flow of untreated wastewater to the downstream combined pipe and stopped the release of untreated wastewater from MH247804. Additional EPCOR equipment and personnel were also mobilized to the site and EPCOR has initiated/completed site remediation activities. This release was reported to AEPA on May 26, 2022. A written report was issued to AEPA on June 2, 2022.	Reportable- Internal	390975
26-May-22	14163-28 Avenue SW	Gasoline (approx. 50L) was released at a gas station (Co-Op). The gasoline had entered a nearby storm drain, but was contained within a private stormceptor. A 3 rd party vacuum truck (Nor-Alta Environmental Services) was called in to remove contaminants from the stormceptor and surrounding area. There was no release of gasoline to the storm / sanitary collection system. This release was reported to AEPA on May 26, 2022 by the gas station. A written report was not required by AEPA.	Reportable- 3 rd Party Release	390950
27-May-22	Gateway Boulevard & Whitemud Drive NW	Hydraulic fluid (approx. 50L) was released into the storm collection system (MH314069) from a City of Edmonton contractor street sweeper. The hydraulic fluid was released into a storm catch basin and entered a downstream stormwater underground storage facility (SUT320936). A 3 rd party vacuum truck was called-in to remove contaminants from the roadway and impacted storm catch basin. EPCOR equipment was mobilized to the site to remove hydraulic fluid contaminants from the underground storage facility. This release was reported to AEPA May 27, 2022 by the City of Edmonton contractor. A written report was issued to AEPA on June 6, 2022.	Reportable- 3 rd Party Release	390989
27-May-22	5945-168 Avenue NW	Antifreeze (approx. 1L) was released into a storm catch basin (CB461516) from a City of Edmonton garbage truck. The antifreeze was contained within the catch basin sump and was removed by an EPCOR vacuum truck. There was no release of antifreeze to the storm / sanitary collection system. This release was reported to AEPA on May 27, 2022 by the City of Edmonton. A written report was not required by AEPA.	Reportable- 3 rd Party Release	391012
01-Jun-22	7640-144 Avenue NW	Untreated wastewater (unknown volume) was released into the storm collection system from the Londondale Shopping Centre. During routine system maintenance an EPCOR Drainage crew observed that a surcharging private sanitary manhole was releasing untreated wastewater into a nearby storm catch basin (CB295296). EPCOR equipment was used to release the blockage in the private sanitary line and removed contaminants from the impacted catch basin and storm line. A Notice to Comply was issued to the property management company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA on June 1, 2022. A written report was issued to AEPA on June 8, 2022.	Reportable- 3 rd Party Release	391221
03-Jun-22	10030-115 Street NW	Potable water (approx. 102 cubic meters) was released into the combined sewer system at a Drainage Construction worksite. During an excavation at the worksite, the Construction crew struck a potable water line that was not accurately marked in the EPCOR mapping database (Geofit). Dechlorination pucks were put down to remove residual chlorine from the water. EPCOR Water responded to the utility strike, shut off the water and completed repairs to the damaged water line. This release was reported to AEPA on June 3, 2022 by EPCOR Water Services. A written report was issued to AEPA on June 6, 2022.	Reportable- Internal	391301
08-Jun-22	14402-114 Avenue	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Total Chlorine at 0.23 mg/L and Cadmium at 0.0037 mg/L. The original sample from the NW district yard facility was collected on May 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on June 8, 2022 by the City of Edmonton. A written report was issued to AEPA on June 15, 2022.	Reportable- 3 rd Party Release	391426
08-Jun-22		Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Cadmium at 0.0103 mg/L. The original sample from the NE district yard facility was collected on May 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on June 8, 2022 by the City of Edmonton. A written report was issued to AEPA on June 15, 2022.	Reportable- 3 rd Party Release	391425

08-Jun-22	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 723 mg/L and Cadmium at 0.0078 mg/L. The original sample from the SE district yard facility was collected on May 30, 2022 by COE Environmental Technologists. This release was reported to AEPA on June 8, 2022 by the City of Edmonton. A written report was issued to AEPA on June 15, 2022.	Reportable- 3 rd Party Release	391424
16-Jun-22	565-Griesbach Parade NW	Groundwater (approx. 5000L) was released into the storm collection system by a private contractor (Deveraux Developments). The contractor had requested a permit from EPCOR to discharge ground water / surface run-off from their worksite into the sanitary sewer system. A water sample that the contractor had submitted to EPCOR Drainage investigators had exceeded the Drainage Bylaw 19627 Appendix C guidelines for BOD at 550 mg/L, COD at 199 mg/L, Oil and Grease at 41 mg/L and Total Phosphorus at 1.06 mg/L. Based on these lab results, this water could not be released into the storm collection system. During an inspection of the contractor worksite, Drainage investigators observed that the contractor was pumping ground water into the storm collection system (MH419992). A Notice to Comply was issued to the contractor to ensure approval is obtained from EPCOR Drainage Operations prior to all future releases to the storm sewerage system. This release was reported to AEPA on June 16, 2022 by the contractor. A written report was issued to AEPA on June 16, 2022.	Reportable- 3 rd Party Release	400332
22-Jun-22	86-Street & Jasper Avenue NW	Stormwater / untreated wastewater (approx. 429 cubic meters) was released into the North Saskatchewan River (NSR) from Outfall #54 (OF377189). The City of Edmonton experienced significant precipitation on June 22, 2022. A level sensor at the Real-Time Control #3 did not close a downstream gate (PW537) as expected. The resulting combined sewer flow exceeded the North Highland Interceptor capacity and resulted in combined sewer wastewater being released to the NSR. On June 23, 2022, EPCOR identified the issue with the gate at PW537 and restored the gate to regular operation. A repair of the gate at PW537 is expected to prevent this issue from reoccurring. The level sensing instruments, alarms and gate control operations are undergoing further evaluation. This release was reported to AEPA on June 23, 2022 by the Drainage Environmental Manager. A written report was issued to AEPA on June 30, 2022.	Reportable- Internal	400597
24-Jun-22	9253-48 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from The Citadel Center. EPCOR Drainage investigators observed that untreated wastewater was surcharging from a private sanitary manhole and was migrating into a nearby storm catch basin (CB249665). EPCOR equipment was mobilized to the site to release the blockage in the private sanitary line and clean contaminants from the impacted storm collection system. This release was reported to AEPA on June 25, 2022 by the property owner. A written report was issued to AEPA on August 2, 2022.	Reportable- 3 rd Party Release	400647
26-Jun-22	519-89 Street SW	Paint / drywall wastewater (approx. 15L) was released into the storm collection system (CB393085) from a private residence. EPCOR Drainage investigators contacted a 3 rd party environmental company (GFL Environmental) to clean contaminants from the roadway and the impacted storm collection system. This release was reported to AEPA on June 27, 2022. A written report was not required by AEPA.	Reportable- 3 rd Party Release	400706
27-Jun-22	519-89 Street SW	Paint wastewater (approx. 490L) was released into the storm collection system (CB393085) from a private residence. EPCOR Drainage investigators responded to a second report of a paint release at this location and observed a milky residue along the roadway and inside the storm catch basin. The homeowner contacted a 3 rd party environmental company (Hydrodig) to clean contaminants from the roadway and the impacted storm collection system. This clean-up was performed under the supervision of the Drainage investigators. A verbal notice was issued to the homeowner to discontinue the release of prohibited waste into the storm collection system. This release was reported to AEPA on June 27, 2022. A written report was not required by AEPA.	Reportable- 3 rd Party Release	400734
29-Jun-22	13810-64 Street NW	Hydraulic fluid (approx. 200L) was released from a City of Edmonton – Waste Management truck. EPCOR Drainage investigators arrived on site and observed that hydraulic fluid had been released onto a nearby roadway and parking lot. The spill site was cleaned-up by the City of Edmonton. There was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA on June 29, 2022 by the City of Edmonton. An email update was issued to AEPA by EPCOR Drainage on July 11, 2022.	Reportable- 3 rd Party Release	400794
30-Jun-22	11319-163 Street NW	Diesel fuel (approx. 2L) was released into the storm collection system from a private tow truck (Rescue Towing Ltd). EPCOR Drainage investigators arrived on site and observed that diesel fuel had been released onto the roadway and had migrated into a nearby storm catch basin (CB255429). The towing company called in a 3 rd party vacuum truck to clean-up contaminants from the roadway and impacted catch basin. This release was reported to AEPA on June 30, 2022 by the towing company. A written report was not required by AEPA.	Reportable- 3 rd Party Release	400861
04-Jul-22	100-Street & McDougall Hill NW	Untreated wastewater (approx. 17 cubic meters) was released to the ground from a combined sewer manhole (MH245306) surcharge. EPCOR equipment was mobilized to the site to release the blockage, flush the sewer line and restore the pipe to regular service. No untreated wastewater left the vicinity of the surcharge to enter the storm collection system and/or the North Saskatchewan River. This release was reported to AEPA on July 4, 2022. A written report was issued to AEPA on July 7, 2022.	Reportable- Internal	400961

04-Jul-22		A concrete slurry (approx. 50L) was released onto a roadway by a cement company (Lafarge Canada). The company called in a 3 rd party street sweeper and vacuum truck to remove the concrete slurry from along the roadway. There was no release of concrete slurry to the storm / sanitary collection system. This release was reported to AEPA on July 4, 2022 by the cement company. A written report was issued to AEPA on July 6, 2022.	Reportable- 3 rd Party Release	400962
04-Jul-22	11622-127 Avenue NW	Tac oil (approx. 50L) was released by a City of Edmonton contractor (Standard General Inc.). EPCOR Drainage investigators observed that most of the tac oil had adhered to the road surface and only a small amount (sheen) would have entered a nearby catch basin (CB273750). A 3 rd party vacuum truck was called in to remove any contaminants that may have entered nearby catch basins. The catch basins in this area are connected to the combined sewer system. There was no release of tac oil to the storm collection system. This release was reported to AEPA on July 4, 2022 by the City of Edmonton. A written report was not required by AEPA.	Reportable- 3 rd Party Release	400965
09-Jul-22		A concrete slurry (approx. 5L) was released into the storm collection system (CB331329) by a private contractor (Ribbon Contracting). EPCOR Drainage investigators called in a 3 rd party vacuum truck (GFL Environmental) to remove contaminants from the impacted catch basin and nearby roadway. A Notice to Comply was issued to the contractor to discontinue the release of restricted wastes into the sewerage system. This release was reported to AEPA on July 9, 2022 by the City of Edmonton. A written report was issued to AEPA on July 15, 2022.	Reportable- 3 rd Party Release	401162
12-Jul-22	16707-14 Street NE	Untreated wastewater (189 cubic meters) was released into the North Saskatchewan River (NSR) at the Regional Tunnel. The Regional Tunnel connects the City of Edmonton with the Alberta Capital Region Wastewater (ACRWC) plant and runs under the North Saskatchewan River (NSR). Currently, the south 750mm pipe in the tunnel conveys wastewater from North East Edmonton to the Alberta Capital Region Water Commission. The north pipe 750mm provides redundancy in case of a failure to the south pipe. The tunnels are designed to remove groundwater from infiltration by discharging that groundwater from a sump pump in the tunnels into the NSR. On July 8, 2022 due to a ROGER'S network outage, two level sensors that communicate to control the flow of untreated wastewater through the two 750mm pipes inside the Regional Tunnel (Station 901 & 902) went in to a standby state to store untreated wastewater in the tunnel and regulate downstream flow. Work is ongoing to review the control philosophy, control system and resulting hydraulic conditions related to determine any other adjustments that could potentially be made to optimize flow in the event of a ROGER'S network outage. EPCOR has completed an assessment of the Regional Tunnel and is completing an engineering assessment of the condition and operation of the north pipe to prevent future occurrences. This release was reported to AEPA on July 12, 2022 by the Drainage Environmental Manager. A written report was issued to AEPA on July 19, 2022.	Reportable- Internal	401267
12-Jul-22	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 358 mg/L & Cadmium at 0.0095 mg/L. The original sample from the SE district yard facility was collected on June 24, 2022 by COE Environmental Technologists. This release was reported to AEPA on July 12, 2022 by the City of Edmonton. A written report was issued to AEPA on July 18, 2022.	Reportable- 3 rd Party Release	401208
12-Jul-22		Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Cadmium at 0.0311 mg/L and E.coli at 17,000 CFU/100 mL. The original sample from the NE district yard facility was collected on June 24, 2022 by COE Environmental Technologists. This release was reported to AEPA on July 12, 2022 by the City of Edmonton. A written report was issued to AEPA on July 18, 2022.	Reportable- 3 rd Party Release	401209
12-Jul-22	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 143 mg/L, E.coli at 310 CFU/100mL and Oil and grease at 18 mg/L. The original sample from the NW district yard facility was collected on June 24, 2022 by COE Environmental Technologists. This release was reported to AEPA on July 12, 2022 by the City of Edmonton. A written report was issued to AEPA on July 18, 2022.	Reportable- 3 rd Party Release	401211
19-Jul-22		Sample results of the stormwater from a storm manhole (MH212492) were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample (E. coli = 8,800,000 CFU/100mL) collected on June 19 th confirmed that untreated wastewater was entering the storm collection system thru a cross-connection. The untreated wastewater from this cross-connection would release to the North Saskatchewan River at Outfall# 9 (OF207873). EPCOR Drainage investigators will conduct an investigation to determine the source of the cross-connection by sampling upstream at 5 key locations to narrow down the particular sections of storm line in the service area.	Reportable- Internal	401580

	T		1	
		Based on the analytical results, EPCOR will continue to investigate until the source of the cross-connection is identified. This release was reported to AEPA on July 19, 2022. A written report was issued to AEPA on July 25, 2022.		
22-Jul-22	22049-95B Avenue NW	Paint waste (approx. 20L) was released into the storm collection system (CB460734) from a residential property. EPCOR Drainage investigators called in a 3 rd party vacuum truck (GFL Environmental) to remove contaminants from the impacted storm collection system. A Notice to Comply was issued to the tenant of the property to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA on July 22, 2022. A written report was issued to AEPA on July 27, 2022.	Reportable- 3 rd Party Release	401761
22-Jul-22	1485-Welbourn Drive NW	A concrete slurry (approx. 5-50L) was released into the storm collection system (CB308015) by a cement company (Finished First Concrete Ltd). EPCOR Drainage investigators arrived on site and observed concrete residue along the roadway and in a nearby catch basin. The company called in a 3 rd party vacuum truck (Strathcona Excavating Ltd) to remove contaminants from the impacted catch basin and nearby roadway. A Notice to Comply was issued to the company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA on July 22, 2022 by the company. A written report was not required by AEPA.	Reportable- 3 rd Party Release	401750
23-Jul-22	38-Avenue & 66- Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from an EPCOR sanitary manhole surcharge. EPCOR Drainage investigators responded to the site and observed that a sanitary manhole (MH216795) was releasing untreated wastewater into a nearby storm catch basin (CB216868). EPCOR equipment was mobilized to the site and released the blockage (fats, oil and grease) in the sanitary line, removed contaminants from the impacted storm collection system and cleaned untreated wastewater from the nearby roadway. The untreated wastewater from this release would have entered the North Saskatchewan River at Outfall# 9 (OF207873). This release was reported to AEPA on July 23, 2022. A written report was issued to AEPA on July 28, 2022.	Reportable- Internal	401784
25-Jul-22	1636C-Kerr Road NW	Sample results of the stormwater from a storm manhole (MH416955) were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample (E. coli = 1,100,000 CFU/100mL) collected on July 19 th confirmed that untreated wastewater was entering the storm collection system thru a cross-connection. A Notice to Comply was issued to the property management company for this location to identify and repair the cross-connection. This release was reported to AEPA on July 25, 2022. A written report was issued to AEPA on July 27, 2022.	Reportable- 3 rd Party Release	401859
27-Jul-22		A chromic acid solution (approx. 700L) was released into the sanitary collection system (MH230852) by a metal plating company (Western Hard Chrome Plating Ltd). Due to age deterioration of a steel holding tank, a leak of chromic acid was released into a nearby floor drain. EPCOR Drainage investigators observed a heavy flow thru the EPCOR sanitary sewer lines at this location and the chromic acid solution would likely have reached the Gold Bar WWTP soon after the initial release. The company cleaned up the spill site within their facility and will be replacing the primary and secondary liner on the steel tank. The company will also have new flooring installed with advanced sealing technological material and have it sloped towards a self-contained sump. This release was reported to AEPA on July 27, 2022 by the company. A written report was issued to AEPA on July 28, 2022.	Reportable- 3 rd Party Release	401927
04-Aug-22	10542-95 Street NW	Hydraulic fluid (approx. 1L) was released into a catch basin (CB264481) by a City of Edmonton vehicle. EPCOR Drainage investigators arrived on site and confirmed that hydraulic fluid had been released from the catch basin into the combined sewer system. The spill site was cleaned-up by the City of Edmonton using absorbent pads and sand. There was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA on August 4, 2022 by the City of Edmonton. A written report was not required by AEPA.	Reportable- 3 rd Party Release	402262
15-Aug-22	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 382 mg/L, E.coli at 1200 CFU/100 mL and Cadmium at 0.0096 mg/L. The original sample from the SE district yard facility was collected on August 3, 2022 by COE Environmental Technologists. This release was reported to AEPA on August 15, 2022 by the City of Edmonton. A written report was issued to AEPA on August 22, 2022.	Reportable- 3 rd Party Release	402707
16-Aug-22	3004-Grandville Drive NW	Tack oil (approx. 1L) was released into the storm collection system (CB561818) by a private contractor located at the Lewis Farms LRT project. EPCOR Drainage investigators arrived on site and observed that tack oil had migrated downstream to a storm manhole (MH561792). The contractor (Standard General Inc.) called in a 3 rd party vacuum truck to remove contaminants from the impacted storm collection system. A verbal Notice to Comply was issued to the contractor to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA on August 16, 2022 by the contractor. A written report was not required by AEPA.	Reportable- 3 rd Party Release	402766
17-Aug-22	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Cadmium at 0.00257 mg/L and E.coli at 3300 CFU/100 mL. The original sample from	Reportable- 3 rd Party Release	402828


	Ī	the NE district yard facility was collected on August 5, 2022 by COE Environmental Technologists. This release was reported to AEPA on		
		August 17, 2022 by the City of Edmonton. A written report was issued to AEPA on August 22, 2022.		
17-Aug-22	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E.coli at 2700 CFU/100mL. The original sample from the NW district yard facility was collected on August 5, 2022 by COE Environmental Technologists. This release was reported to AEPA on August 17, 2022 by the City of Edmonton. A written report was issued to AEPA on August 22, 2022.	Reportable- 3 rd Party Release	402827
19-Aug-22		Motor oil (approx. 5L) was released into a storm catch basin (CB346379) from an unknown source. EPCOR Drainage investigators confirmed that the oil was contained within the catch basin sump and a 3 rd party environmental company (GFL Environmental) was calledin to clean contaminants from the impacted catch basin. This release was reported to AEPA on August 19, 2022 by the City of Edmonton – Fire Services. A written report was not required by AEPA.	Reportable- 3 rd Party Release	402918
19-Aug-22	2762 1104 Stroot SW	Untreated wastewater (unknown volume) was released into the storm collection system from the Heritage Valley Town Complex. EPCOR Drainage investigators observed that untreated wastewater was surcharging from a private sanitary manhole and was migrating into a nearby private storm catch basin. The property manager for this complex called-in a 3 rd party vacuum truck to release the blockage in the private sanitary line and clean contaminants from the impacted storm collection system. A Notice to Comply was issued to the property manager to discontinue the release of prohibited waste (untreated wastewater) into the storm sewerage system. This release was reported to AEPA on August 19, 2022 by the property manager. A written report was issued to AEPA on August 25, 2022.	Reportable- 3 rd Party Release	402940
21-Aug-22	13008-205 Street NW	Power steering fluid (approx. 5-10L) was released into a storm catch basin (CB487125) from a private vehicle. EPCOR Drainage investigators confirmed that the fluid was contained within the catch basin sump and a 3 rd party environmental company (GFL Environmental) was called-in to clean contaminants from the impacted catch basin. This release was reported to AEPA on August 21, 2022 by the City of Edmonton – Fire Services. AEPA has not requested a written report.	Reportable- 3 rd Party Release	402972
24-Aug-22	6410-28 Avenue NW	Diesel fuel (approx. 0.5L) was released into a storm catch basin (CB382668) by a City of Edmonton - ETS bus. EPCOR Drainage investigators arrived on site and confirmed that the fuel was contained within the catch basin sump. The investigators used absorbent pads to remove contaminants from the catch basin and nearby roadway. There was no release of diesel fuel to the storm collection system. This release was reported to AEPA on August 24, 2022 by the City of Edmonton. AEPA has not requested a written report.	Reportable- 3 rd Party Release	403146
26-Aug-22	11424-55 Avenue NW	A concrete slurry (approx. 5L) was released into the storm collection system (CB225181) by a private residence. The resident had also opened a sanitary manhole (MH224092) and was releasing concrete slurry directly into the sanitary sewer line. EPCOR Drainage equipment was mobilized to the site to remove contaminants from the impacted storm / sanitary collection systems. A Notice to Comply was issued to the resident to discontinue the release of prohibited waste (concrete and cement based products) into the sewerage system. The Notice also requires the resident to discontinue the removal of any manhole covers owned by EPCOR Water Services Inc. This release was reported to AEPA on August 26, 2022. AEPA has not requested a written report.	Reportable- 3 rd Party Release	403333
29-Aug-22	10119-45 Avenue NW	EPCOR Drainage was notified by Labatt's Brewery that an anhydrous ammonia solution (approx. 37L) had been released into the sanitary collection system. The actual release occurred on August 21, 2022 and was reported to the EPCOR Gold Bar WWTP control room by the company. This release was reported to AEPA by the company. A written report was issued to AEPA on August 26, 2022.	Reportable- 3 rd Party Release	402971
30-Aug-22	3703-161 Avenue NW	Paint waste (approx. 5L) was released into the storm collection system (CB403599). This release was reported to EPCOR Drainage investigators by an EPCOR Drainage Operations crew and the source of the release has not been determined. The investigators called in a 3 rd party environmental company (GFL Environmental) to remove contaminants from the impacted storm collection system. This release was reported to AEPA on August 30, 2022. AEPA has not requested a written report.	Reportable- 3 rd Party Release	403535
30-Aug-22	10155-102 Street NW	Ethylene glycol (approx. 18,000L) was released into the combined sewer system from an office building (Commerce Place). During maintenance work inside the building, a coolant line was accidently damaged resulting in a large release of ethylene glycol that flowed out of the building, down the street and into a nearby catch basin (CM264344). This area is serviced by a combined sewer system and there was no release of glycol to the storm collection system. This release was reported to AEPA on August 30, 2022 by the property manager. A written report was issued to AEPA on September 7, 2022.	Reportable- 3 rd Party Release	403529
01-Sep-22	122-Avenue & 121A Street NW	Firefighting foam (unknown volume) was released by City of Edmonton – Fire Services from a vehicle accident. EPCOR Drainage investigators confirmed that the foam and small amounts of blackened material from the fire had not entered the storm collection system. The investigators used absorbent pads to remove contaminants from two small puddles along the roadway. This release was reported to AEPA on September 1, 2022 by the City of Edmonton – Fire Services. AEPA has not requested a written report.	Reportable- 3 rd Party Release	403741

14-Sep-22	9529-106 Avenue NW	Hydraulic fluid (approx. 1L) was released into a private catch basin at the City of Edmonton – Huffman Yard facility. EPCOR Drainage investigators observed that the hydraulic fluid was contained within the catch basin sump. The City of Edmonton called-in a 3 rd party vacuum truck to remove contaminants from the impacted catch basin. This area is serviced by a combined sewer system and there was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA on September 14, 2022 by the City of Edmonton. AEPA has not requested a written report.	Reportable- 3 rd Party Release	404343
14-Sep-22	7665-91 Avenue NW	Chlorinated water (unknown volume) was released from a fire hydrant that was hit by a City of Edmonton vehicle. EPCOR water was called to the location to shut off the potable water to the area and repair the damaged fire hydrant. This area is serviced by a combined sewer system and there was no release of chlorinated water to the storm collection system. This release was reported to AEPA on September 14, 2022 by the City of Edmonton. A written report was issued to AEPA on September 19, 2022.	Reportable- 3 rd Party Release	404409
20-Sep-22	2909-113 Avenue NW	Roofing primer (approx. 1L) was released into a storm catch basin (CB271221) at the City of Edmonton – A.C.T Center. A contractor (Graham Construction) was working at the facility and reported that after working hours, a pail of the primer had dropped off the roof of the building. EPCOR Drainage investigators observed that the primer had migrated into the catch basin sump, but had not been released into the storm collection system. The contractor called-in a 3 rd party vacuum truck (McRae's Environmental Services) to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA on September 21, 2022 by the contractor. AEPA has not requested a written report.	Reportable- 3 rd Party Release	404614
30-Sep-22	437-Parsons Road SW	Diesel fuel (approx. 1L) was released into a private storm catch basin located at a business complex. EPCOR Drainage investigators observed that diesel fuel from a leaking pickup truck had spilled onto a parking lot and entered a nearby catch basin. The fuel was contained within the catch basin sump and had not been released into the storm collection system. The property manager for the complex called-in a 3 rd party vacuum truck to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA on September 30, 2022 by the City of Edmonton – Fire Services. A written report was issued to AEPA on October 4, 2022.	Reportable- 3 rd Party Release	405014
03-Oct-22	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 240 mg/L and Cadmium at 0.0037 mg/L. The original sample from the SE district yard facility was collected on September 19, 2022 by COE Environmental Technologists. This release was reported to AEPA on October 3, 2022 by the City of Edmonton. A written report was issued to AEPA on October 10, 2022.	Reportable- 3 rd Party Release	405118
03-Oct-22	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 185 mg/L, E.coli at 18,000 CFU/100mL and Cadmium at 0.00065 mg/L. The original sample from the NW district yard facility was collected on September 19, 2022 by COE Environmental Technologists. This release was reported to AEPA on October 3, 2022 by the City of Edmonton. A written report was issued to AEPA on October 10, 2022.	Reportable- 3 rd Party Release	405120
03-Oct-22	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard facility were received and reviewed by COE Engineering Services. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Chemical Oxygen Demand at 218 mg/L, E.coli at 26,000 CFU/100 mL, Cadmium at 0.00208 mg/L and Oil & Grease at 16 mg/L. The original sample from the NE district yard facility was collected on September 19, 2022 by COE Environmental Technologists. This release was reported to AEPA on October 3, 2022 by the City of Edmonton. A written report was issued to AEPA on October 10, 2022.	Reportable- 3 rd Party Release	405119
06-Oct-22	10204-127 Avenue NW	Fats, oil and grease (approx. 1L) were released into the storm collection system (MH277329) by the Root of Beirut restaurant. EPCOR Drainage investigators observed material in a private catch basin, which appeared to be waste from a grease interceptor. EPCOR equipment was mobilized to the site to clean contaminants from the impacted storm collection system. A Notice to Comply was issued to the restaurant to clean and maintain their grease interceptor on a regular basis. This release was reported to AEPA on October 06, 2022. A written report was issued to AEPA on October 17, 2022.	Reportable- 3 rd Party Release	405308
14-Oct-22	10525-108 Street NW	During an excavation at a Drainage worksite by an EPCOR contractor (Norellco Contracting Ltd), a possible hydrocarbon odor was detected. The soil was stockpiled and a sample was collected for laboratory analysis. The lab results confirmed there was no exceedance of regulatory limits. The excavated soil was taken to Norstar Industries (12204-170 Street NW) for disposal. This release was reported to AEPA on October 24, 2022 by the contractor. A written report was issued to AEPA on October 31, 2022.	Reportable- Internal	406040

20-Oct-22	105-Avenue & 184- Street NW	A concrete slurry (approx. 10L) was released into the storm collection system (CB464981) by a private contractor (DeFord Contracting Ltd.). A 3 rd party vacuum truck (Alta Vac Services Ltd.) was called-in to remove contaminants from the impacted catch basin and nearby roadway. This release was reported to AEPA on October 20, 2022 by the contractor. AEPA has not requested a written report.	Reportable- 3 rd Party Release	405899
22-Oct-22	9325-84 Avenue NW	Untreated wastewater (approx. 4 cubic meters) was released to the ground from a combined sewer manhole (MH245306) surcharge located in the Mill Creek ravine. EPCOR equipment was mobilized to the site to release the blockage (leaves/sticks/rags), flush the sewer line and restore the pipe to regular service. No untreated wastewater left the vicinity of the surcharge to enter the storm collection system or Mill Creek. This release was reported to AEPA on October 22, 2022. A written report was issued to AEPA on October 28, 2022.	Reportable- Internal	405987
23-Oct-22	14402-114 Avenue NW	A calcium chloride solution (approx. 400L) was released into a private storm manhole located at the City of Edmonton – NW District Yard. The City of Edmonton called-in a 3 rd party vacuum truck (GFL Environmental) to remove contaminants from the impacted sewer system and surrounding areas. The storm lines in this area release (downstream) into the combined sewer system and there was no release of calcium chloride to the storm collection system. This release was reported to AEPA on October 23, 2022 by City of Edmonton. A written report was issued to AEPA on October 31, 2022.	Reportable- 3 rd Party Release	405999
24-Oct-22	9310-211 Street NW	Sample results of the stormwater from private storm manholes located at the Lewis Estates Seniors Facility were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the samples (E. coli = 90,000,000 & 120,000,000 CFU/100mL) collected on September 19 th confirmed that untreated wastewater was entering the storm collection system thru a cross-connection. The untreated wastewater from this cross-connection would release into the Webber Greens Storm Facility #1 (SWM466400). A Notice to Comply was issued to the senior's facility to discontinue the release of restricted waste into the storm sewerage system. The Notice also requires the facility to identify, locate and repair the cross-connection that is discharging untreated wastewater into the storm sewerage system. This release was reported to AEPA on October 24, 2022. A written report was issued to AEPA on November 3, 2022.	Reportable- 3 rd Party Release	406146
25-Oct-22	North of Hooke Road NW	During rehabilitation work on storm Outfall #88 (OF288009), an EPCOR contractor's (Whitson Contracting) turbidity monitor observed a turbidity exceedance downstream of the work site. In-stream activities by the contractor were ceased until the next day after a sediment fence, filter cloth and sandbag berm were installed on the upstream and downstream limits of the work area. It was concluded that the high turbidity was caused by wildlife activity (muskrats) within the channel and work area. This release was reported to AEPA on October 25, 2022 by the contractor. A written report was issued to AEPA on October 31, 2022.	Reportable- Internal	406086
28-Oct-22	1310-Potters Green Drive NW	An Alberta Environment and Parks (AEPA) - Fish and Wildlife team investigated the Potter Greens #1 East (SWM309151) and Potter Greens #2 West (SWM306499) stormwater management facilities for the presence of invasive species. Their investigation involved setting three nets on October 27, 2022 for an overnight catch. The AEPA team came back on the morning of October 28th and pulled out the nets and confirmed the presence of invasive species (goldfish) at both stormwater management facilities. EPCOR Drainage Services has contacted AEPA to discuss follow-up actions.	Reportable- Internal	N/A
07-Nov-22	13003-56 Street NW	A release of hydraulic fluid (approx. 5-50L) from a City of Edmonton sanding truck was reported to EPCOR Drainage. The original release occurred on November 3, 2022 when a sanding truck began leaking hydraulic oil at the City of Edmonton - Northeast Yard. This leak was not noticed until the truck reached the intersection of 167-Avenue NW and 18-Street NW. The City of Edmonton cleaned the hydraulic fluid release from the roadway. Due to recent snowfall, EPCOR Drainage investigators were not able to observe if any hydraulic fluid was released into nearby roadway ditches or the storm collection system. This release was reported to AEPA on November 3, 2022 by the City of Edmonton. A written report was issued to AEPA on November 10, 2022.	Reportable- 3 rd Party Release	406442
15-Nov-22	North of Hooke Road NW	During rehabilitation work on storm Outfall #88 (OF288009), an EPCOR contractor (Whitson Contracting) observed turbid water coming from a sediment bag at the end of a discharge hose. Pumping activity at this site was temporarily stopped while the sediment bag was secured back onto the discharge hose. This release was reported to AEPA on November 15, 2022 by the contractor. A written report was issued to AEPA on November 18, 2022.	Reportable- Internal	406778
15-Nov-22	11204-48 Avenue NW	Results of a stormwater sample collected on November 10 th from a storm manhole (MH210778) were received by EPCOR Drainage investigators. The analytical results of the sample (E. coli at 22,000,000 CFU/100ml) indicated a sanitary cross-connection into the storm collection system. Further investigations are ongoing to determine the source of the cross-connections. Investigators will dye test suspected residences in the area to confirm which ones have a sanitary / storm cross connection. Residences that have a confirmed cross-connection will be issued a Notice to Comply to correct any untreated wastewater discharge to the storm collection system. This release was reported to AEPA on November 15, 2022. A written report was issued to AEPA on November 23, 2022.	Reportable- 3 rd Party Release	406815
17-Nov-22	13880-110A Avenue NW	Results of stormwater samples collected on November 15 th from storm manholes located in the North Glenora neighborhood were received by EPCOR Drainage investigators. The E. coli results of the samples (MH257970 at 2,100,000 CFU/100 mL & MH257972 at 39,000 CFU/100	Reportable- 3 rd Party	406859

		mL) indicated a possible sanitary cross-connection into the storm collection system. Further investigations are ongoing to determine the source of any cross-connections. Investigators will dye test suspected residences in the area to confirm if any have a sanitary / storm cross connection. Residences that have a confirmed cross-connection will be issued a Notice to Comply to correct any untreated wastewater discharge to the storm collection system. This release was reported to AEPA on November 17, 2022. A written report was issued to AEPA on November 24, 2022.	Release	
21-Nov-22	68-Marlboro Road NW	Results of a stormwater sample collected on November 15 th from a storm manhole (MH209510) located in the Westbrook Estates neighborhood were received by EPCOR Drainage investigators. The analytical results of the sample (E. coli at 5,900,000 CFU/100 mL) indicated a sanitary cross-connection into the storm collection system. Further investigation of the storm sewer lines in the area has determined that there is potentially one residence at 132 Fairway Drive NW that has their sanitary wastewater cross connected into the storm sewer on the private side of the connection to EPCOR's system. Investigators will dye test the suspected residence to confirm a sanitary / storm cross connection. Once the cross-connection has been confirmed, a Notice to Comply will be issued to correct the untreated wastewater discharge to the storm collection system. This release was reported to AEPA on November 21, 2022. A written report was issued to AEPA on November 28, 2022.	Reportable- 3 rd Party Release	406962
22-Nov-22	2304-24 Street NW	Results of a stormwater sample collected on November 14 th from a private storm manhole located at the Market at the Meadows business complex were received by EPCOR Drainage investigators. The analytical results of the sample (E. coli at 10,000,000 CFU/100 mL) indicated a sanitary cross-connection into the storm collection system. A sample was also taken from the receiving EPCOR storm manhole (MH412498) on November 18th (E.coli at 24,000,000 CFU/100mL). EPCOR Monitoring & Compliance staff were instructed to sample the Silver Berry # 2 SWMF (SWM401009). No sample was obtained as the SWMF was frozen over, therefore sampling will occur once the ice thaw. Once the cross-connection at the business complex has been confirmed, a Notice to Comply will be issued to the property owner to correct the untreated wastewater discharge to the storm collection system. This release was reported to AEPA on November 22, 2022. A written report was issued to AEPA on November 29, 2022.	Reportable- 3 rd Party Release	406991
24-Nov-22	NW	During rehabilitation work on storm Outfall #88 (OF288009), an EPCOR contractor (Whitson Contracting) observed turbid water coming from a sediment bag at the end of a discharge hose. Pumping activity at this site was temporarily stopped while the cause of the turbidity was investigated. The turbidity may be due to a very fine clay subgrade layer that the sediment bags are not able to capture. The contractor has initiated procedures to control the turbidity at the worksite, including frequent replacement of sediment bags, erecting silt fences and discharging onto a vegetated area. This release was reported to AEPA on November 24, 2022 by the contractor. A written report was issued to AEPA on November 29, 2022.	Reportable- Internal	407066
30-Nov-22	88B-Avenue & 159- Street NW	Results of a stormwater sample collected on November 28 th from a storm manhole (MH237320) located in the Meadowlark Park neighborhood were received by EPCOR Drainage investigators. The analytical results of the sample (E.coli at 1,800,000 CFU/100mL) indicated a sanitary cross-connection into the storm collection system. Further investigations are ongoing to determine the source of any cross-connections. Investigators will dye test suspected residences in the area to confirm if any have a sanitary / storm cross connection. Residences that have a confirmed cross-connection will be issued a Notice to Comply to correct any untreated wastewater discharge to the storm collection system. This release was reported to AEPA on November 30, 2022. A written report was issued to AEPA on December 7, 2022.	Reportable- 3 rd Party Release	407259
01-Dec-22	8750-53 Avenue NW	Ethylene glycol (approx. 500L) was released into a private storm catch basin at Di-Corp. The spill occurred when a stack of totes at the site toppled over and released the glycol. EPCOR Drainage investigators observed that the glycol was contained within private catch basins at the facility and there was no release of glycol into the EPCOR storm collection system. A 3 rd party environmental company was mobilized to the site to removed contaminants from the impacted catch basins and surrounding area. This release was reported to AEPA on December 1, 2022 by the company. A written report was issued to AEPA on December 2, 2022.	Reportable- 3 rd Party Release	407320
06-Dec-22	NW	Gasoline (approx. 40L) was released into a private storm catch basin at a Petro-Canada service station. The release occurred during the refueling of a Southland Transportation bus. EPCOR Drainage investigators confirmed that the gasoline was contained within a private catch basin at the station and there was no release of gasoline into the EPCOR storm collection system. A 3 rd party vacuum truck was called to the site to remove contaminants from the impacted catch basin and surrounding areas. A Notice to Comply was issued to the transportation company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA on December 6, 2022 by the transportation company. A written report was issued to AEPA on December 9, 2022.	Reportable- 3 rd Party Release	407425
13-Dec-22		Sample results of the stormwater from a storm manhole (MH302615) located at the Baturyn neighborhood were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample (E. coli = $1,700,000$ CFU/ 100 mL) collected on December 8 th	Reportable- 3 rd Party	407711

		confirmed that untreated wastewater was entering the storm collection system thru a cross-connection. The untreated wastewater from this cross-connection would release into the Beaumaris Storm Facility (SWM378188). A cross-connection at a private residence (17335-105 Street NW) was identified by EPCOR Drainage Investigators. EPCOR is in the process of scheduling additional testing at the residence to further confirm the location of the cross connection. If an issue with this private service is confirmed, EPCOR will issue a Notice to Comply with those private customers who must then make repairs to their plumbing to stop the release of untreated wastewater. This release was reported to AEPA on December 14, 2022. A written report was issued to AEPA on December 21, 2022.	Release	
15-Dec-22	76-Avenue & 150- Street NW	Sample results of the stormwater from a storm manhole (MH222587) located at the Rio Terrace neighborhood were received and reviewed by EPCOR Drainage Monitoring & Compliance. The results of the sample (E. coli = 13,000,000 CFU/100mL) collected on December 8 th confirmed that untreated wastewater was entering the storm collection system thru a cross-connection. The untreated wastewater from this cross-connection would release thru Outfall #15 (OF223494). EPCOR televised both the storm and sanitary collection systems in the area of concern. Visual evidence was observed of possible customer cross connections at 3 private residences located at 7611A-150 Street NW, 7611B-150 Street NW and 15006-77 Avenue NW. EPCOR is in the process of scheduling additional testing at these residences to further confirm the location of the cross connection(s). If an issue with these private services is confirmed, EPCOR will issue a Notice to Comply with those private customers who must then make repairs to their plumbing to stop the release of untreated wastewater. During televising, it was also discovered that a sanitary service line from a private residence at 15002-77 Avenue NW had caused damage to an EPCOR's storm line (PIP70054). This sanitary service may be leaking untreated wastewater into the storm line at this location. An emergency spot repair was initiated by EPCOR on December 20 th . This release was reported to AEPA on December 15, 2022. A written report was issued to AEPA on December 22, 2022.	Reportable- 3 rd Party Release	407774
24-Dec-22	North end of 231 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from an Alberta Capital Region sanitary line (PIP467008). A mechanical failure in the sanitary forcemain coming from the Parkland Private Pump Station #10 (PS467009) released the untreated wastewater into Big Lake thru Outfall #118 (OF417466). EPCOR vacuum trucks were temporarily used to divert the untreated wastewater from the Alberta Capital Region sanitary line into an EPCOR sanitary manhole (MH497161). The use of EPCOR vacuum trucks remained in place until a bypass was set-up by a 3 rd party company (Rocor Services) on December 28 th . This release was reported to AEPA on December 24, 2022 by the Alberta Capital Region Wastewater Commission. A written report was issued to AEPA on December 31, 2022.	Reportable- 3 rd Party Release	408027

