

Gold Bar Wastewater Treatment Plant 10977 50 Street Edmonton, Alberta T6A 2E9 Canada

epcor.com

February 25, 2021

Alberta Environment and Parks #111 Twin Atria Building 4999-98 Avenue Edmonton AB T6B 2X3

# RE: 2020 Annual Wastewater Treatment and Wastewater Collection Report for Approval to Operate 639-03-06

Attention: Fengqin Wang, Municipal Approvals Engineer

Dear Ms. Wang,

Please find the 2020 Annual Wastewater System Report for Alberta Environment and Parks Approval to Operate 639-03-06 as required under section 6.3.4.

Respectfully,

ANC

Geoff Heise

Senior Manager, Environmental & Scientific Services, EPCOR

Attachment – 2020 Annual Wastewater System Report

cc: AEP.LAR-EPEAreports@gov.ab.ca

Mohammad Rahman, EPEA Team Lead, AEP Mohammad Habib, Approvals Manager, AEP

Craig Bonneville, Director, Gold Bar WWTP, EPCOR Steve Craik, Director, QA & Environment, EPCOR

Cindy Shepel, Director, Drainage Operations, EPCOR

Alfredo Suarez, Senior Manager, Gold Bar WWTP Operations, EPCOR

Angus Grant, Senior Manager, Monitoring & Compliance, EPCOR

Ross Bulat, Manager, Environmental Monitoring & Compliance, EPCOR



# EPCOR Water Services Inc. Edmonton, Alberta

# 2020 Annual Wastewater System Report

Submitted to:

The Province of Alberta

Alberta Environment and Parks (AEP)

As per requirements of:
Approval to Operate No. 639-03-06

February 2021

# **Executive Summary**

The following report contains two parts, Part I: Wastewater Treatment Plant and Part II: Wastewater Collection System, in order to meet the requirements of Approval to Operate No. 639-03-06.

The 2020 Annual Wastewater Treatment Plant Report is separated into an Annual Wastewater Treatment Report, an Annual Air Pollution Control System Report, an Annual Ambient Air Report, and a summary of contraventions reported, as outlined in the Approval to Operate. New requirements for the 2020 Wastewater Treatment Plant annual report include the following:

- reporting the daily average H<sub>2</sub>S from the effluent air stream of the air pollution control systems;
- a summary of operational issues encountered by the air pollution control systems;
- additional information regarding odour complaints; and
- ambient air H<sub>2</sub>S monitoring results.

The 2020 Annual Wastewater Collection System Report summarizes the completed and planned major rehabilitation projects, the interconnection control strategy, storm and CSO volumes and loadings, and other requirements as per Approval to Operate no. 639-03-06.

**Part I: Wastewater Treatment Plant Report** 



# EPCOR Water Services Inc. Gold Bar Wastewater Treatment Plant Edmonton, Alberta

# 2020

# **Annual Wastewater Treatment Plant Report**

Submitted to:

The Province of Alberta
Alberta Environment and Parks (AEP)

As per requirements of:

Approval to Operate No. 639-03-06

# **Table of Contents**

| Section                                             | Approval No. 639-03-06<br>Requirement | Page |
|-----------------------------------------------------|---------------------------------------|------|
| 2020 Overview                                       | N/A                                   | 4    |
| 2020 Annual Wastewater Treatment Report             | 6.3.3 (a) (i)                         | 5    |
| Gold Bar WWTP Performance                           | 6.3.3 (a) (i) (A) and (B) and         | 5    |
|                                                     | Operations Plan – Sections            |      |
|                                                     | 9 and 10                              |      |
| Assessment of Annual Monitoring Results             | 6.3.3 (a) (i) (C)                     | 10   |
| Chemical Added to the Wastewater Treatment          | 6.3.3 (a) (i) (D)                     | 11   |
| Process                                             |                                       |      |
| Names of Supervising Operators                      | 6.3.3 (a) (i) (E)                     | 12   |
| Uncommitted Hydraulic Reserve Capacity              | 6.3.3 (a) (i) (F)                     | 13   |
| Wet Weather Summary                                 | 6.3.3 (a) (i) (G)                     | 13   |
| Summary of Operational Issues                       | 6.3.3 (a) (i) (H)                     | 13   |
| 2020 Annual Air Pollution Control System Report     | 6.3.3 (a) (ii)                        | 14   |
| Summary of Air Pollution Control System  Monitoring | 6.3.3 (a) (ii) (A)                    | 16   |
| Assessment of Monitoring Results                    | 6.3.3 (a) (ii) (B)                    | 17   |
| Chemicals Consumed by Scrubbers                     | 6.3.3 (a) (ii) (C)                    | 17   |
| Summary of Air Pollution Control System             | 6.3.3 (a) (ii) (D)                    | 18   |
| Operational Issues                                  | , , , , , ,                           |      |
| 2020 Annual Ambient Air Report                      | 6.3.3 (a) (iii)                       | 21   |
| Summary of Ambient Air Monitoring                   | 6.3.3 (a) (iii) (A)                   | 21   |
| Summary of Public Odour Complaints                  | 6.3.3 (a) (iii) (C)                   | 23   |
| 2020 Summary of Contraventions and Notifications to | 6.3.3 (a) (iv) and Operations         | 24   |
| AEP                                                 | Plan – Section 1                      |      |
| 2020 Biosolids Program Summary                      | Operations Plan – Section 5           | 26   |
| Appendix A – Monthly Plant Performance Reports      |                                       |      |
| Appendix B – WWTP Chemicals                         |                                       |      |
| Appendix C – Operations Monthly Reports             |                                       |      |
| Appendix D – Air Pollution Control System Data      |                                       |      |
| Appendix E – Scrubber Chemicals                     |                                       |      |
| Appendix F – Fence Line H2S Readings                |                                       |      |
| Appendix G – Odour Complaints                       |                                       |      |
| Appendix H – Nutri-Gold Summary                     |                                       |      |
| Appendix I – Third Party Agricultural Summary       |                                       |      |
| Appendix J – Non-Ag Biosolids Management Report     |                                       |      |

# **Tables**

| Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)                    | 5   |
|-------------------------------------------------------------------------------------------|-----|
| Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)                   |     |
| Table 3: 2020 Gold Bar WWTP Performance                                                   | 7   |
| Table 4: 2020 Reclaimed Water Quality                                                     | 8   |
| Table 5: 2020 Effluent Toxicity                                                           | 9   |
| Table 6: 2020 Summary of Gold Bar Wastewater Proficiency Testing                          | 9   |
| Table 7: List of Certified Wastewater Treatment Operators (as of December 2020)           | 12  |
| Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)    | 14  |
| Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approx | /al |
| to Operate Table 6-2)                                                                     | 14  |
| Table 10: Air Pollution Control System Report - Part I                                    | 16  |
| Table 11: Air Pollution Control System Report - Part II                                   |     |
| Table 12: Summary of Scrubber Operational Issues                                          | 18  |
| Table 13: Summary of Ambient Air Monitoring Results                                       | 21  |
| Table 14: Summary of Gold Bar WWTP Odour Complaints                                       | 23  |
| Table 15: Summary of Contraventions                                                       |     |
| Table 16: Summary of Notifications to AEP                                                 |     |
| Table 17: Summary of Biosolids Program                                                    | 26  |
|                                                                                           |     |
| Figures                                                                                   |     |
| Figure 1: 2020 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP)         |     |
| Index                                                                                     | 10  |
| Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index)                |     |
| 2005-2020                                                                                 |     |
| Figure 3: Location of H <sub>2</sub> S Monitoring                                         | 22  |

#### **Acronyms**

ACRWC Alberta Capital Region Wastewater Commission

AEP Alberta Environment and Parks

CBBRF Clover Bar Biosolids Recycling Facility

CBOD Carbonaceous Biological Oxygen Demand

CSO Combined Sewer Overflow

EPE Enhanced Primary Effluent

EPEPS Enhanced Primary Effluent Pumping Station

EPT Enhanced Primary Treatment

FE Final Effluent

FEC Final Effluent Combined

GBWWTP Gold Bar Wastewater Treatment Plant

H<sub>2</sub>S Hydrogen Sulfide

HSE Health, Safety, and Environment

ISO International Organization for Standardization

ML Megalitres

MLD Megalitres per Day

MLSS Mixed Liquor Suspended Solids

NH<sub>3</sub>-N Ammonia-Nitrogen

NSR North Saskatchewan River

ORP Oxidation-Reduction Potential

PE Primary Effluent

SOP Standard Operating Procedure

TKN Total Kjeldahl Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

UV Ultraviolet

WELP Wastewater Effluent Limit Performance

WWT Wastewater Treatment

WWTP Wastewater Treatment Plant

#### 2020 Overview

The Gold Bar Wastewater Treatment Plant (WWTP) located on the banks of the North Saskatchewan River in Edmonton, Alberta successfully maintained the ISO 14001:2015 (Environmental Management System) and the ISO 45001:2018 (Occupational Health and Safety Management System) certificates for its Integrated Management System.

Notable events in 2020 include the addition of H<sub>2</sub>S monitoring to the air pollution control system scrubbers, upgrades to Fermenter 1 and Fermenter 4, cleaning of Digester 2 and Digester 6 heat exchangers, upgrades to Clover Bar Lagoon Cell 3E, upgrades to Secondary Clarifier 7 and Secondary Clarifier 3, the removal of Digester 5 from service due to structural damage, seeding and placing Digester 3 into service, and ongoing upgrades to the Diversion Structure.

The true dry weather flow in 2020 did not change from 2019 and was 263 MLD. 2020 hosted a significant number of wet weather events (21) compared to previous years which resulted in an increased number of secondary bypasses (92). The plant performed very well with a WWTP Effluent Limit Performance (WELP) index of 19.0%.

#### Gold Bar WWTP Performance

The Gold Bar WWTP final effluent discharge limits of Approval to Operate 639-03-06 are listed in Table 1 and the monitoring requirements are outlined in Table 2.

Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)

| Parameter                                      | Limit                                                        |
|------------------------------------------------|--------------------------------------------------------------|
| CBOD₅                                          | ≤ 20 mg/L monthly arithmetic mean of daily composite         |
| TSS                                            | samples ≤ 20 mg/L monthly arithmetic mean of daily composite |
| 155                                            | samples                                                      |
| Total Phosphorus                               | ≤ 1.0 mg/L monthly arithmetic mean of daily composite        |
|                                                | samples                                                      |
| Total Ammonia-nitrogen (December 1 to May 31)  | ≤ 10 mg/L monthly arithmetic mean of daily composite         |
|                                                | samples                                                      |
| Total Ammonia-nitrogen (June 1 to November 30) | ≤ 5 mg/L monthly arithmetic mean of daily composite          |
|                                                | samples                                                      |
| E. Coli                                        | ≤ 126 per 100 mL/monthly geometric mean                      |
| рН                                             | 6.5-8.5                                                      |

Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)

| Parameter                                                       | Frequency<br>(Minimum)     | Sample Type | Sampling Location                                                                           |
|-----------------------------------------------------------------|----------------------------|-------------|---------------------------------------------------------------------------------------------|
|                                                                 | UNTREATED                  | WASTEWATER  |                                                                                             |
| pH<br>BOD₅<br>TSS<br>Total Phosphorus<br>Total Ammonia-nitrogen | Once per day               | Composite   | Untreated wastewater entering the wastewater treatment plant                                |
| Volume of Flow                                                  | Continuous, recorded daily | Calculated  | Untreated wastewater entering the wastewater treatment plant                                |
|                                                                 | TREATED V                  | VASTEWATER  |                                                                                             |
| pH<br>BOD₅<br>TSS<br>Total Phosphorus<br>Total Ammonia-nitrogen | Once per day               | Composite   | Wastewater treated plant<br>effluent prior to release to<br>the North Saskatchewan<br>River |
| E. Coli                                                         | Once per day               | Grab        | After ultraviolet (UV) disinfection                                                         |
| Acute Toxicity                                                  | Monthly                    | Grab        | Wastewater treatment plant effluent prior to release to the North Saskatchewan River        |
| Chronic Toxicity                                                | Quarterly                  | Grab        | Wastewater treatment plant effluent prior to release to the North Saskatchewan River        |
| Volume                                                          | Continuous, recorded daily | Calculated  | Wastewater treatment plant effluent prior to release to the North Saskatchewan River        |
| Volume                                                          | Continuous, recorded daily | Calculated  | Reuse water transmission main                                                               |

|                                                                                                                                                                    | WASTEWATER TREAT                               | MENT PLANT BYPASS                 |                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Release Volume                                                                                                                                                     | Continuous during bypass event, recorded daily | Calculated                        | Primary and secondary treatment bypass of                                                                                                                                      |
| pH<br>BOD₅<br>TSS<br>Total Phosphorus<br>Total Ammonia-nitrogen                                                                                                    | Any bypass event lasting > 2 hours             | Composite                         | wastewater at the wastewater treatment plant                                                                                                                                   |
| E. Coli                                                                                                                                                            | Any bypass event lasting > 2 hours             | Grab                              |                                                                                                                                                                                |
|                                                                                                                                                                    |                                                | DISPOSAL                          |                                                                                                                                                                                |
| Sludge Volume                                                                                                                                                      | Total volume                                   | Estimated                         | Prior to leaving the wastewater treatment plant                                                                                                                                |
| Sludge Mass                                                                                                                                                        | Total mass                                     | Estimated                         | Amount of sludge being disposed of as per the Biosolids Management Plan                                                                                                        |
|                                                                                                                                                                    |                                                | NAUTHORIZED RELEASE               |                                                                                                                                                                                |
| Release Volume                                                                                                                                                     | Total volume during each discharge event       | Continuous during discharge event | Rat Creek CSO outfall;<br>Hardisty-Capilano CSO<br>outfall;<br>Highlands CSO outfall;<br>Cromdale CSO outfall;<br>Strathearn CSO outfall;<br>and<br>unauthorized release point |
| pH<br>BOD₅<br>TSS<br>Total Phosphorus                                                                                                                              | Each discharge event                           | Composite                         | Rat Creek CSO outfall                                                                                                                                                          |
| Total Ammonia-nitrogen E. Coli                                                                                                                                     |                                                | Grab                              | Unauthorized release point                                                                                                                                                     |
| The amount of any substance other than wastewater or storm water that is spilled or discharged accidentally or intentionally into the wastewater collection system | Each event                                     | Estimated volume or mass          | Unauthorized release point                                                                                                                                                     |

Table 3 summarizes the monthly minimum, mean, and maximum values for parameters in Table 1 from January 1 to December 21, 2020. All analytical data in the table were developed on 24-hour composite samples collected using autosamplers at the sampling location specified in Table 2. The discrete samples for Escherichia coli (E. coli) determinations were collected at random times each day. No instances of non-conformance with regards to monitoring requirements were reported to AEP in 2020. Appendix A contains the monthly Plant Performance Reports.

#### Table 3: 2020 Gold Bar WWTP Performance

|                             |                      |                                  |                           | Flows             |                   |                                  |                         |                   |                   | н             |                          |                          |                   | TSS              |       |                           |                           |                   | BOD <sub>5</sub>         |               |     | CBOD <sub>5</sub>   |                   |                      |                      | TP      |                      |                              |                      |                      | NH <sub>3</sub> |     |                                                  |                              | TH             | (N            |                            |                        | NO <sub>2</sub> +NO <sub>3</sub> |                              |                    | Chle                |           |                        |                          | E. coli           |                                               | Total   |   |
|-----------------------------|----------------------|----------------------------------|---------------------------|-------------------|-------------------|----------------------------------|-------------------------|-------------------|-------------------|---------------|--------------------------|--------------------------|-------------------|------------------|-------|---------------------------|---------------------------|-------------------|--------------------------|---------------|-----|---------------------|-------------------|----------------------|----------------------|---------|----------------------|------------------------------|----------------------|----------------------|-----------------|-----|--------------------------------------------------|------------------------------|----------------|---------------|----------------------------|------------------------|----------------------------------|------------------------------|--------------------|---------------------|-----------|------------------------|--------------------------|-------------------|-----------------------------------------------|---------|---|
|                             | _                    |                                  |                           | (ML)              |                   |                                  |                         |                   |                   |               |                          |                          |                   | (mg/             | L)    |                           |                           |                   | (mg/L                    | )             |     | (mg/L)              |                   |                      |                      | mg P/L) |                      |                              |                      |                      | (mg N/L)        |     |                                                  |                              | (mg            | N/L)          |                            |                        | (mg N/L)                         |                              | _                  | (m                  | g/L)      |                        |                          | Counts/100        | mL                                            | Digeste |   |
| Month                       | Ra                   | w Outfa                          | II MPW                    | Outfall<br>20     | ₽₽\$              | Outfa                            |                         | Raw               | Outfall<br>30     | Outfall<br>20 | Outfall<br>10<br>FEC     | Raw                      | Outfall 30        | Outfall<br>20    | EPEPS | Outfall FEC               |                           | Raw Ou            | tfall 30                 | Outfall<br>20 | EPS | Outfall 10          | , ,               | aw                   | tfall Outf           | EPEPS   | Out                  | fall 10                      | Raw                  | Outfall<br>30        | Outfall EP      | EPS | Outfall 10                                       | Raw                          | Outfall<br>30  | Outfall<br>20 | Outfall<br>10              | Raw                    | Outfall Outfall 30 20            | Outfall<br>10                | Raw                | Outfall<br>30       | 20        | 10                     | KaW                      | 30                | utfall Outfa<br>20 10<br>K10 <sup>6</sup> FEC | (ML)    | • |
| January Min<br>Max          | 24<br>1 23<br>K 26   |                                  |                           | 0.0               | 0.0<br>0.0<br>0.0 | 236.5<br>220.7<br>257.3          | 236.5<br>220.7<br>257.3 | 7.6<br>7.4<br>7.7 |                   |               | 7.7<br>7.5<br>7.8        | 329<br>280<br>420        |                   |                  |       | 4.2<br>2.4<br>10.0        | 2.4                       | 346<br>282<br>410 |                          |               |     | 1.0                 | 1.0               | 7.38<br>7.39<br>7.58 |                      |         | 0.29<br>0.18<br>0.52 | 0.18                         | 39.7<br>31.3<br>44.5 |                      |                 |     | 3.09 3.09<br>1.38 1.38<br>5.70 5.70              | 62.5<br>53.2<br>68.7         |                |               | 4.97<br>2.28<br>7.37       | 0.15<br>0.08<br>0.15   |                                  | 7.07<br>5.49<br>9.19         |                    |                     |           | 105<br>73<br>151       | 2.0<br>2.0<br>2.0        |                   | 8<br>4<br>15                                  |         | ) |
| February Min<br>Max         | 25<br>1 23<br>K 28   | 2.7 1.3<br>3.2 0.0<br>5.8 21.7   | 9.8<br>8.7<br>10.8        | 0.0               | 0.0<br>0.0<br>0.0 | 241.7<br>229.0<br>256.0          | 241.7<br>229.0<br>256.0 | 7.6<br>7.4<br>7.8 | 7.5<br>7.4<br>7.6 |               | 7.7<br>7.6<br>7.9        | 335<br>244<br>540        | 118<br>103<br>144 |                  |       | 4.7<br>3.0<br>15.4        | 4.7<br>3.0<br>15.4        | 214               | 163<br>145<br>194        |               |     | 2.7<br>1.0<br>5.0   | 2.7<br>1.0<br>5.0 | 7.48<br>3.42<br>8.8  | 5.63<br>4.77<br>7.12 |         | 0.30<br>0.24<br>0.62 |                              | 37.2<br>30.1<br>45.8 | 37.0<br>30.3<br>42.5 |                 |     | 4.33 4.33<br>2.80 2.80<br>6.16 6.16              | 61.1<br>27.3<br>73.3         |                |               | 6.63<br>4.64<br>8.77       | 0.09<br>< 0.01<br>0.09 | 0.67<br>0.25<br>0.94             | 6.24<br>5.26<br>7.11         | 156<br>77.9<br>470 | 120                 |           | 154<br>95.0<br>337     | 2.0<br>2.0<br>2.0        | 2.0<br>2.0<br>3.0 | 5<br>2                                        | 68.90   | ) |
| March Min<br>Max            | x 35                 | 2.9 6.4<br>0.4 0.0<br>2.2 88.2   | 9.7<br>8.2<br>11.3        | 0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0 | 246.7<br>230.8<br>262.9          | 246.7<br>230.8<br>262.9 | 7.5<br>7.4<br>7.7 | 7.6<br>7.4<br>7.8 |               | 7.6<br>7.5<br>7.8        | 340<br>224<br>460        | 79<br>52<br>101   |                  |       | 4.4<br>3.0<br>6.1         |                           | 333<br>247<br>447 | 140<br>99<br>179         |               |     | 3.2<br>2.0 <<br>6.0 | 3.2<br>2.0<br>6.0 | 7.54<br>5.85<br>8.43 | 4.76<br>3.64<br>6.36 |         | 0.26<br>0.19<br>0.34 | 0.26<br>0.19<br>0.34         | 36.6<br>27.1<br>45.6 | 36.0<br>28.4<br>41.4 |                 |     | 4.66 4.66<br>2.66 2.66<br>6.15 6.15              | 61.7<br>51.5<br>71.5         | 37.0<br>53.7   |               | 6.84<br>4.90<br>8.05       | 0.04<br>< 0.01<br>0.08 | 0.26<br>0.04<br>0.85             | 6.99<br>4.61<br>9.34         | 78                 | 257<br>144<br>3 498 |           | 144<br>83<br>244       | 1.8<br>1.5<br>2.2        | 1.7<br>0.6<br>3.4 | 7<br>3<br>17                                  | 73.20   | ı |
| April Min Max               | K 39                 | 3.7 0.0<br>3.7 105.2<br>4.1 60.1 | 9.1<br>8.2<br>11.2<br>9.8 | 0.0               | 0.0<br>0.0<br>0.0 | 259.4<br>235.3<br>291.3<br>274.2 | 259.4<br>235.3<br>291.3 | 7.5<br>7.4<br>7.7 | 7.5<br>7.4<br>7.8 |               | 7.6<br>7.4<br>8.0<br>7.6 | 300<br>196<br>400<br>297 | 75<br>51<br>130   |                  |       | 6.0<br>1.7<br>24.6<br>4.3 | 6.0<br>1.7<br>24.6<br>4.3 | 361               | 159<br>103<br>345<br>106 |               |     | 3.5<br>2.0<br>6.0   | 3.5<br>2.0<br>6.0 | 7.43<br>5.88<br>9.58 | 4.19<br>10.50        |         | 0.31<br>0.19<br>0.91 | 0.31<br>0.19<br>0.91<br>0.25 | 35.0<br>25.8<br>43.9 | 33.0<br>24.2<br>49.0 |                 |     | 3.55 3.55<br>1.45 1.45<br>5.50 5.50<br>3.18 3.18 | 57.4<br>43.7<br>72.9<br>50.4 | 36.0<br>65.8   |               | 5.64<br>3.30<br>7.8<br>5.0 | 0.02<br>< 0.01<br>0.08 | 0.37<br>0.04<br>0.62             | 7.62<br>5.25<br>10.6<br>8.01 | 174                | 98<br>4 204<br>89   |           | 114<br>94<br>171<br>94 | 2.3<br>2.1<br>2.6<br>1.5 | 1.9<br>1.0<br>6.5 | 9<br>5<br>22                                  | 64.30   | 1 |
| May Min Max                 | K 84                 | 5.2 0.0<br>1.4 519.8             | 8.8                       | 0.0               | 0.0<br>0.0<br>0.0 | 235.5<br>324.7<br>310.4          | 235.5<br>324.7<br>310.4 | 7.4<br>7.7<br>7.6 | 7.4<br>7.7<br>7.6 |               | 7.4<br>7.8<br>7.6        | 178<br>878<br>317        | 43<br>172<br>58   |                  |       | 2.8<br>9.8                | 2.8<br>9.8                | 97<br>354         | 52<br>224                |               |     | 4.0                 | 4.0               | 8.13                 | 7.69<br>3.08         |         | 0.16<br>0.43<br>0.26 | 0.16<br>0.43                 | 12.4<br>44.6<br>31.5 | 13.6<br>41.9<br>27.3 |                 |     | 0.09 0.09<br>8.6 8.6<br>1.05 1.05                | 21.9<br>62.5<br>49.3         | 22.0<br>61.1   |               | 1.20<br>8.6<br>2.90        | < 0.01                 | 0.10<br>3.85                     | 2.89<br>11.5                 | 50                 | 54<br>5 146         |           | 52<br>105              | 1.4                      | 0.3               | 4<br>13i                                      | 68.50   |   |
| June Min Max                | <b>y</b> 93          | 9.5 0.0<br>2.4 573.2             | 8.8                       |                   | 0.0               | 272.6<br>350.1<br>323.4          | 272.6<br>350.1          | 7.4               | 7.4<br>7.9        |               | 7.5<br>7.8               | 60<br>632<br>304         | 32<br>101         |                  |       | 3.6<br>8.2<br>4.3         | 3.6<br>8.2                | 99                | 31<br>143                |               | <   | 2.0 <               | 2.0<br>5.0        | 3.27<br>10.80        | 1.30                 |         | 0.18<br>0.45<br>0.23 | 0.18<br>0.45<br>0.23         | 14.8<br>41.3<br>26.9 | 11.8<br>42.3         |                 |     | 0.11 0.11<br>2.63 2.63<br>0.82 0.82              | 24.8<br>75.3<br>40.1         | 15.0<br>50.1   |               | 1.50<br>5.20<br>2.30       | < 0.01                 | 0.06<br>3.89                     |                              | 45<br>100          | 39<br>) 105         |           | 59<br>104              | 1.4                      | 0.4<br>2.0        | 2<br>21                                       | 65.90   | ' |
| July Min Max                | <b>K</b> 96          | 2.7 0.0<br>3.9 627.6             | 10.1<br>10.1<br>12.4      | 0.4               | 0.0               | 292.2<br>346.6                   | 292.2<br>346.6          | 7.5<br>7.8        | 7.7<br>7.5<br>8.0 | 7.7<br>8.3    | 7.6<br>7.8               | 79<br>552<br>263         | 30<br>286         | 16<br>963<br>181 |       | 7.1<br>5.0                | 2.2<br>7.1<br>5.0         | 73<br>275<br>240  | 36<br>118                | 5 - 54 - 83   | <   | 2.0 <<br>4.0<br>2.6 | 2.0               | 2.83<br>6.52         | 1.23 0.<br>4.51 2.   | 16      | 0.13<br>0.54<br>0.31 |                              | 14.5<br>39.1<br>29.4 | 8.7<br>32.8          | 0.4<br>2.6      |     | 0.08 0.08<br>3.66 3.66                           | 18.6<br>49.7<br>47.6         | 15.4<br>41.8   | 0.8<br>11.2   | 1.20<br>5.40               | < 0.01                 | 0.02 0.3<br>3.77 23              | 5 2.75                       | 40<br>98           | 34<br>96            | 17<br>152 | 45<br>99               | 1.0                      | 0.3<br>3.2        | < 1<br>3,8<br>0.6 10                          |         | _ |
| August Min<br>Max           | K 45                 | 3.9 0.0<br>4.5 110.3             | 10.2                      | 0.0               | 0.0               | 258.0<br>335.3                   | 258.0<br>335.3          | 7.5<br>7.8        | 7.0<br>8.3        | 7.6<br>7.9    | 7.5<br>7.8<br>7.6        | 192<br>368               | 23<br>99          | 132              |       | 3.0<br>6.9                |                           | 193<br>322        | 29<br>234<br>127         | 63 -          |     | 1.0<br>4.0          | 4.0               | 4.33<br>9.30         | 1.49 1.<br>7.48 2.   | 55      | 0.21<br>0.49         | 0.10                         | 15.6<br>40.7         | 17.7<br>44.8         | 7.2<br>7.3      |     | 0.14 0.14<br>3.08 3.08                           | 28.0<br>67.4<br>62.4         | 37.5<br>53.4   | 13.0          | 1.80<br>5.18<br>3.40       | < 0.01                 | 0.02 0.4<br>1.25 1.0             | 0 6.49<br>4 13.0             | 57                 | 48<br>94            | 36<br>41  | 72<br>90               | 0.6                      | 0.5               | 0.6 4<br>0.6 57                               | 69.60   | 1 |
| September Avg<br>Min<br>Max | K 32                 | 4.5 0.0<br>5.4 12.4              | 9.8<br>12.6               | 0.0               | 0.0<br>0.0<br>0.0 | 255.1<br>243.2<br>302.4          | 243.2<br>302.4          | 7.4               | 7.6<br>7.6        |               | 7.5<br>7.8               | 264<br>856               | 65<br>66          |                  |       | 3.9<br>2.5<br>5.2         | 2.5                       | 223<br>397        | 127<br>127               |               | <   | 2.0 <               | 2.0               | 6.61<br>14.6         | 4.20<br>5.18         |         | 0.25<br>0.23<br>0.28 | 0.25<br>0.23<br>0.28         | 38.4<br>16.4<br>51.8 | 31.0<br>43.1         |                 |     | 0.18 0.18<br>2.84 2.84                           | 50.9<br>88.0                 | 41.8<br>52.2   |               | 1.90<br>5.10               | < 0.01                 | 0.68                             | 7.93<br>15.8                 |                    | 78<br>90            |           | 79<br>92               | 2.4<br>2.4<br>2.5        | 1.4               | 4<br>16                                       |         | ) |
| October Avg Min Max         | к 34                 | 3.4 0.0<br>9.2 59.0              | 11.5<br>10.5<br>12.5      |                   | 0.0<br>0.0<br>0.0 | 242.3<br>227.0<br>278.5          | 242.3<br>227.0<br>278.5 | 7.6<br>6.9<br>7.8 | 7.8<br>7.6<br>8.0 |               | 7.6<br>7.4<br>7.7        | 518<br>92<br>5,900       | 36<br>160         |                  |       | 2.8<br>5.5                | 5.5                       | 000               | 111<br>80<br>134         |               |     |                     | 2.0               | 5.88<br>137.0        | 4.87<br>2.03<br>6.30 |         | 0.22<br>0.09<br>0.29 |                              | 33.2<br>5.81<br>42.4 | 13.5<br>42.8         |                 |     | 1.22 1.22<br>0.32 0.32<br>2.81 2.81              | 67.3<br>15.8<br>390.         | 19.2<br>0 58.3 |               | 2.90<br>1.90<br>4.70       | 0.04<br>< 0.01<br>0.08 | 0.02                             | 8.45<br>5.15<br>12.1         |                    | 43                  |           | 83<br>72<br>95         | 2.9<br>2.8<br>3.1        | 2.0<br>1.5<br>2.3 | 6<br>2<br>27                                  | 94.80   | J |
| November Avg<br>Min<br>Max  | <b>c</b> 28          | 1.0 0.7<br>2.8 0.0<br>4.9 21.7   | 11.7<br>10.5<br>12.7      | 0.0               | 0.0               | 238.5<br>231.4<br>251.1          | 238.5<br>231.4<br>251.1 | 7.6<br>7.4<br>7.8 | 7.6<br>7.6<br>7.6 |               | 7.5<br>7.4<br>7.7        | 320<br>244<br>452        | 83<br>83<br>83    |                  |       | 3.6<br>2.8<br>6.4         | 3.6<br>2.8<br>6.4         | 375               | 134<br>134<br>134        | :             |     | 5.0                 | 5.0               | 7.99<br>6.68<br>8.86 | 4.89<br>4.89         |         | 0.23<br>0.20<br>0.27 | 0.23<br>0.20<br>0.27         | 38.7<br>24.2<br>44.0 | 37.7<br>37.7<br>37.7 |                 |     | 0.53 0.53<br>0.08 0.08<br>1.50 1.50              | 60.1<br>52.5<br>70.8         | 48.0<br>48.0   |               | 2.16<br>1.50<br>3.20       | 0.06<br>< 0.01<br>0.15 | 0.67<br>0.67                     | 9.36<br>13.8                 | 70<br>0 275        | 91 91 5 91          |           | 114<br>74<br>234       | 2.4<br>2.1<br>2.8        | 2.1               | 5<br>2<br>10                                  |         | ) |
| December Avg<br>Min<br>Max  | 24<br>21<br>22<br>29 | 0.0                              | 10.1                      | 0.0               | 0.0<br>0.0<br>0.0 | 230.7<br>200.5<br>280.1          | 230.7<br>200.5<br>280.1 | 7.5<br>7.4<br>7.7 |                   |               | 7.6<br>7.5<br>7.7        | 309<br>232<br>396        |                   |                  |       | 3.3<br>1.9<br>6.8         | 1.9                       | 313<br>252<br>383 |                          |               | <   | 2.0 <               | 2.0               | 7.01<br>5.93<br>8.90 |                      |         | 0.20<br>0.15<br>0.35 | 0.15                         | 36.1<br>30.6<br>42.6 |                      |                 |     | 0.60 0.60<br>0.08 0.08<br>2.00 2.00              | 54.3<br>46.1<br>64.2         |                |               | 2.02<br>1.50<br>3.40       | 0.03<br>< 0.01<br>0.06 |                                  | 8.70<br>6.93<br>11.2         | 74.0               | 0                   |           | 108<br>80.0<br>166     | 1.7<br>1.4<br>2.1        |                   | 6<br>2<br>250                                 | 64.70   | ) |
| Annual Volume (M            | <b>/IL)</b> 108      | 289 8,358                        |                           |                   | 0.00              | 96,029                           | 96,029                  |                   |                   |               |                          |                          |                   |                  |       |                           |                           |                   |                          |               |     |                     |                   |                      |                      |         |                      |                              |                      |                      |                 |     |                                                  |                              |                |               |                            |                        |                                  |                              |                    |                     |           |                        |                          |                   |                                               | 839.8   |   |
| 2020 Avg<br>2019 Avg        | 2                    | 4 21.6<br>6 13.2                 | 10.7<br>11.1              | 0.00              | 0.00              | 262<br>261                       | 262<br>261              | 7.6<br>7.6        | 7.6<br>7.6        | 7.9<br>7.6    | 7.6<br>7.6               | 340<br>316               | 81<br>97          | 276<br>402       |       | 4.4<br>5.9                | 4.4<br>5.9                | 289<br>283        | 119<br>125               | 55 -<br>100 - |     | 2.8 2<br>3.2 3      | 2.8 7<br>3.2 7    | .51 4                | .46 1.4<br>.02 3.4   | 7       | 0.26                 | 0.26<br>0.33                 | 34.6<br>38.1         | 32.0<br>32.4         | 4.3 -<br>11.3 - | 3   | 2.18 2.18<br>3.17 3.17                           | 56.2<br>57.3                 | 42.7<br>41.3   | 9.9<br>21.3   | 4.01<br>5.00               | 0.04                   | 0.88 7.46<br>0.95 0.66           | 8.9                          | 101<br>99          | 136<br>148          | 68<br>79  | 105<br>102             |                          |                   |                                               |         |   |

Outfall 10 - Combined, UV-disinfected (FEC + EPE) Outfall 20 - Combined Bypass (RAW + PE + EPE) Outfall 30 - Combined Bypass (RAW + Screened + PE + EPE)

FEC – Final Effluent, Combined RAW – Influent BOD<sub>5</sub> – 5-day Biological Oxygen Demand CBBO<sub>5</sub> – 5-day Inhibited BOD EPEPS – Enhanced Primary Effluent Pump Station

TSS - Total Suspended Solids MPW - Membrane Product Water TP - Total Phosphorus ns - No sample FE - Final Effluent from secondary treatment process (with biological routient removal), Pre-Ulmevelder disination,

Table 4 summarizes the reclaimed water quality sample data from January 1 to December 31, 2020. All parameters except E. coli were developed on daily 24-hour composite samples of the recycled water. The E. coli testing was conducted on discrete samples collected on a daily basis.

Table 4: 2020 Reclaimed Water Quality

| Mont      | th  | FLOW  | Total<br>Alkalinity | Ammonia  | Biochemical<br>Oxygen<br>Demand | Chemical<br>Oxygen<br>Demand | Chloride  | Conductivity | E. coli         | рН  | Total<br>Suspended<br>Solids | Total Organic<br>Carbon | Total<br>Phosphorus | Total<br>Dissolved<br>Solids | Turbidity |
|-----------|-----|-------|---------------------|----------|---------------------------------|------------------------------|-----------|--------------|-----------------|-----|------------------------------|-------------------------|---------------------|------------------------------|-----------|
|           |     | ML    | (mg CaCO3 /L)       | (mg N/L) | (mg/L)                          | (m g/L)                      | (mg Cl/L) | (mS/cm)      | (Counts/100 mL) |     | (mg/L)                       | (mg/L)                  | (mg P/L)            | (mg/L)                       | (NTU)     |
|           | Avg | 11.70 | 185                 | 0.87     | < 2                             | 27                           | 108       | 988          | < 1             | 8.0 | < 0.7                        | 9.6                     | 0.10                | 593                          | 0.22      |
| January   | Min | 10.30 | 162                 | 0.16     | < 2                             | 20                           | 75.8      | 846          | < 1             | 7.9 | < 0.7                        | 8.7                     | 0.07                | 482                          | 0.13      |
|           | Max | 12.90 | 216                 | 2.31     | < 2                             | 34                           | 154       | 1,150        | < 1             | 8.2 | < 0.7                        | 10.6                    | 0.13                | 716                          | 0.31      |
|           | Avg | 9.80  | 175                 | 0.70     | < 2                             | 31                           | 157       | 1,108        | < 1             | 8.1 | < 0.7                        | 9.7                     | 0.10                | 641                          | 0.21      |
| February  | Min | 8.70  | 163                 | 0.36     | < 2                             | 20                           | 99.0      | 921          | < 1             | 8.0 | < 0.7                        | 9.0                     | 0.08                | 490                          | 0.14      |
|           | Max | 10.80 | 190                 | 1.56     | < 2                             | 47                           | 360       | 1,730        | < 1             | 8.2 | < 0.7                        | 12.4                    | 0.23                | 1,020                        | 0.33      |
|           | Avg | 9.70  | 158                 | 0.93     | < 2                             | 32                           | 143       | 1,044        | < 1             | 8.0 | < 0.7                        | 9.7                     | 0.08                | 618                          | 0.15      |
| March     | Min | 8.20  | 153                 | 0.16     | < 2                             | 24                           | 80.0      | 585          | < 1             | 7.9 | < 0.7                        | 9.0                     | 0.05                | 521                          | 0.11      |
|           | Max | 11.30 | 161                 | 2.75     | < 2                             | 41                           | 251       | 1,370        | < 1             | 8.2 | < 0.7                        | 10.4                    | 0.13                | 786                          | 0.26      |
|           | Avg | 9.10  | 148                 | 0.65     | < 2                             | 24                           | 115.4     | 980          | < 1             | 8.0 | < 0.7                        | 9.8                     | 0.07                | 615                          | 0.15      |
| April     | Min | 8.20  | 130                 | 0.09     | < 2                             | 20                           | 95.9      | 859          | < 1             | 7.8 | < 0.7                        | 9.0                     | 0.04                | 532                          | 0.11      |
|           | Max | 11.20 | 162                 | 2.26     | < 2                             | 30                           | 165       | 1,090        | < 1             | 8.1 | < 1.0                        | 11.1                    | 0.09                | 871                          | 0.19      |
|           | Avg | 9.80  | 170                 | 0.55     | < 2                             | 27                           | 88.7      | 980          | < 1             | 8.0 | < 0.7                        | 10.3                    | 0.11                | 609                          | 0.19      |
| May       | Min | 8.80  | 155                 | 0.06     | < 2                             | 20                           | 76.3      | 911          | < 1             | 7.8 | < 0.7                        | 9.1                     | 0.03                | 407                          | 0.12      |
|           | Max | 10.90 | 192                 | 2.06     | < 2                             | 40                           | 98.7      | 1,030        | < 1             | 8.1 | < 0.7                        | 12.4                    | 0.21                | 661                          | 1.35      |
|           | Avg | 10.40 | 203                 | 0.27     | < 2                             | 29                           | 91.9      | 1,205        | < 1             | 8.0 | < 1.0                        | 9.9                     | 0.11                | 820                          | 0.17      |
| June      | Min | 8.80  | 182                 | 0.05     | < 2                             | 20                           | 57.7      | 860          | < 1             | 8.0 | < 1.0                        | 7.2                     | 0.04                | 566                          | 0.11      |
|           | Max | 11.50 | 224                 | 1.21     | < 2                             | 48                           | 106.0     | 1,380        | < 1             | 8.1 | < 1.0                        | 10.8                    | 0.31                | 980                          | 0.32      |
|           | Avg | 11.10 | 189                 | 0.15     | < 2                             | 29                           | 88.6      | 1,261        | < 1             | 8.1 | < 1.0                        | 9.4                     | 0.20                | 880                          | 0.20      |
| July      | Min | 10.10 | 138                 | 0.06     | < 2                             | 20                           | 48.0      | 692          | < 1             | 7.9 | < 1.0                        | 6.6                     | 0.05                | 427                          | 0.11      |
|           | Max | 12.40 | 224                 | 0.97     | < 2                             | 44                           | 101.0     | 1,460        | < 1             | 8.2 | < 1.0                        | 10.6                    | 0.96                | 1,060                        | 0.29      |
|           | Avg | 10.93 | 169                 | 0.10     | < 2                             | 25                           | 87.0      | 1,080        | < 1             | 8.1 | < 1.0                        | 8.7                     | 0.07                | 712                          | 0.16      |
| August    | Min | 10.20 | 151                 | 0.04     | < 2                             | 20                           | 69.9      | 877          | < 1             | 7.9 | < 1.0                        | 7.8                     | 0.05                | 546                          | 0.11      |
|           | Max | 11.50 | 185                 | 0.40     | < 2                             | 35                           | 96.6      | 1,230        | < 1             | 8.2 | < 1.0                        | 9.6                     | 0.10                | 834                          | 0.22      |
|           | Avg | 11.20 | 165                 | 0.12     | < 2                             | 26                           | 90.4      | 984          | < 1             | 8.0 | < 1.0                        | 8.7                     | 0.09                | 636                          | 0.16      |
| September | Min | 9.80  | 153                 | 0.05     | < 2                             | 20                           | 80.7      | 900          | < 1             | 7.9 | < 1.0                        | 7.7                     | 0.06                | 577                          | 0.11      |
|           | Max | 12.60 | 174                 | 0.84     | < 2                             | 30                           | 96.7      | 1,070        | < 1             | 8.1 | < 1.0                        | 9.3                     | 0.12                | 687                          | 0.23      |
|           | Avg | 11.50 | 163                 | 0.16     | < 2                             | 28                           | 87.6      | 898          | < 1             | 8.0 | < 1.0                        | 8.2                     | 0.08                | 565                          | 0.18      |
| October   | Min | 10.50 | 157                 | 0.07     | < 2                             | 20                           | 77.9      | 840          | < 1             | 7.9 | < 1.0                        | 7.5                     | 0.03                | 520                          | 0.12      |
|           | Max | 12.50 | 173                 | 0.63     | < 2                             | 47                           | 98        | 959          | < 1             | 8.1 | < 1.0                        | 9.8                     | 0.17                | 602                          | 0.30      |
|           | Avg | 11.70 | 158                 | 0.16     | < 2                             | 27                           | 118       | 995          | < 1             | 8.0 | < 1.0                        | 8.4                     | 0.09                | 602                          | 0.18      |
| November  | Min | 10.50 | 147                 | 0.06     | < 2                             | 20                           | 81.3      | 833          | < 1             | 7.9 | < 1.0                        | 7.7                     | 0.06                | 490                          | 0.12      |
|           | Max | 12.70 | 162                 | 0.60     | < 2                             | 33                           | 242       | 1,420        | < 1             | 8.1 | < 1.0                        | 9.1                     | 0.12                | 803                          | 0.32      |
|           | Avg | 11.10 | 164                 | 0.16     | < 2                             | 26                           | 113       | 962          | < 1             | 8.1 | < 1.0                        | 8.0                     | 0.07                | 578                          | 0.17      |
| December  | Min | 10.10 | 152                 | 0.05     | < 2                             | 20                           | 80.8      | 854          | < 1             | 8.0 | < 1.0                        | 7.2                     | 0.04                | 528                          | 0.12      |
|           | Max | 12.20 | 171                 | 0.92     | < 2                             | 41                           | 180       | 1,160        | < 1             | 8.7 | < 1.0                        | 8.8                     | 0.12                | 676                          | 0.28      |
| Annual    | Avg | 10.67 | 171                 | 0.40     | < 2                             | 28                           | 107       | 1,040        | < 1             | 8.0 | < 0.9                        | 9.2                     | 0.10                | 656                          | 0.18      |
| Summary   | Min | 8.20  | 130                 | 0.04     | < 2                             | < 20                         | 48.0      | 585          | < 1             | 7.8 | < 0.9                        | 6.6                     | 0.03                | 407                          | 0.11      |
| . ,       | Max | 12.90 | 224                 | 2.75     | < 2                             | 48                           | 360       | 1,730        | < 1             | 8.7 | 1.0                          | 12.4                    | 0.96                | 1,060                        | 1.35      |

NTU – Nephelometric turbidity units.
 Counts/100mL – Counts per 100 mL of sample.
 ML – Megaliters (1,000,000 liters)

Table 5 summarizes the effluent chronic and acute toxicity testing. Both acute and chronic toxicity tests were carried out by contract laboratories in accordance with the Environment Canada Biological Test Methods (Environment Canada 1990 and 1992). The acute testing included 48-hour Rainbow Trout static toxicity, 48-hour static toxicity using Daphnia magna and 15-minute Microtox tests using luminescence bacteria. Seven-day Ceriodaphnia dubia, Fathead minnows and three-day P. subcapitata survival and reproductive impairment tests were used to determine chronic toxicity. No effluent toxic events were observed in 2020.

|            |     | Microtox     | Daphnia<br>Magna                | Rainbow<br>Trout   |                    |                    | daphnia<br>ubia    |                                 |                    |                    | ead<br>lows        |                    |                                 | Pseudokirchneriella |           |                       |                  |
|------------|-----|--------------|---------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|---------------------|-----------|-----------------------|------------------|
| Dates      | Qrt |              |                                 |                    | Surv               | vival              | Reprod             | uction                          | Sur                | vival              | Bior               | nass               |                                 |                     |           |                       |                  |
|            |     | % of Control | LC <sub>50</sub> % <sup>1</sup> | LC <sub>50</sub> % | LC <sub>25</sub> % | LC <sub>50</sub> % | IC <sub>25</sub> % | IC <sub>50</sub> % <sup>2</sup> | LC <sub>25</sub> % | LC <sub>50</sub> % | IC <sub>25</sub> % | IC <sub>50</sub> % | IC <sub>25</sub> % <sup>3</sup> | NOEL (%)4           | LOEL (%)5 | TOEL (%) <sup>6</sup> | Toxic Units (TU) |
| 1/15/2020  |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 2/12/2020  | 1   | >81.9        | >100                            | >100               |                    | >100               |                    |                                 |                    | >100               |                    |                    | >90.91                          | 1.42                | 2.841     | 2.009                 | 70.42            |
| 3/10/2020  |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 4/22/2020  |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 5/13/2020  | 2   | 81.9         | >100                            | >100               |                    | >100               |                    |                                 |                    | >100               |                    |                    | >90.91                          | 2.841               | 5.682     | 4.018                 | 35.2             |
| 6/15/2020  |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 7/8/2020   |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 8/18/2020  | 3   | >81.9        | >100                            | >100               |                    | >100               |                    |                                 |                    | >100               |                    |                    | >90.91                          | <1.42               | 1.42      | ND                    | >70.42           |
| 9/16/2020  |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |
| 10/14/2020 |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    | •                  |                    |                    |                                 |                     |           |                       | •                |
| 11/18/2020 | 4   | >81.9        | >100                            | >100               |                    | >100               |                    |                                 |                    | >100               |                    |                    | >90.91                          | 2.841               | 5.682     | 4.018                 | 35.2             |
| 12/21/2020 |     | >81.9        | >100                            | >100               |                    |                    |                    |                                 |                    |                    |                    |                    |                                 |                     |           |                       |                  |

Table 5: 2020 Effluent Toxicity

Table 6 summarizes the proficiency testing of the Gold Bar WWTP Laboratory. It includes the Laboratory z-scores achieved from analyzing proficiency testing (PT) samples for constituents required by the Approval to Operate. The 2020 PT samples were provided by the Canadian Association for Laboratory Accreditation (CALA). A PT scores greater than or equal to 70 or z-scores less than or equal to 3.000 are considered acceptable for CALA PT.

Table 6: 2020 Summary of Gold Bar Wastewater Proficiency Testing

|       |        | р        | Н            | В        | DC           | C-E      | OD           | TS       | SS           | NH       | 3-N          | Т        | Р            | E.c      | coli         |
|-------|--------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|
| Study | Date   | PT Score | Avg. z-score |
| CALA  | Mar-20 | 95       | 0.15         | 87       | 0.86         | 99       | -0.03        | 95       | -0.08        | 97       | -0.15        | 90       | 0.66         | 94       | 0.43         |
| CALA  | Oct-20 | 93       | -0.45        | 92       | -0.63        | 84       | -1.06        | 97       | 0.18         | 95       | -0.30        | 96       | 0.29         | 90       | -0.68        |

#### Notes:

PT Score > 70 acceptable.

VH - Very high bias, H - High bias, L - Low bias, A - Acceptable, Q - Questionable, U - Unsatisfactory

CALA - Canadian Association for Laboratory Accreditation.

pH - pH manual, BOD - 5-day Biochemical Oxygen Demand, C-BOD - 5-day Carbonaceous Biochemical Oxygen Demand, TSS - Total Suspended Solids, NH3-N - Ammonia as Nitrogen, TP - Total Phosphorus.

E.coli - Sample analyzed using membrane filtration (mENDO) method.

<sup>&</sup>lt;sup>1</sup>LC50 - % effluent concentration at which there is a 50% mortality of test organisms; <sup>2</sup>IC50 - % effluent concentration at which there is a 50% reduction in growth or reproduction of test organisms; <sup>3</sup>NOEL - the concentration at which there is a 25% reduction in growth or reproduction of test organisms; <sup>4</sup>NOEL - the concentration at which there was no observed effect level; <sup>5</sup>LOEL - the concentration at which you start seeing the lowest observable effect; <sup>6</sup>TOEL - NOEL/LOEL; <sup>7</sup>TU - the ratio of the concentration observed divided by the concentration for 50% inhibition.

In 2020, a total of 108,289 million litres (ML) of wastewater was conveyed to the plant. Secondary treatment and UV disinfection was provided to 96,029 ML (88.7%) of the total raw influent flow with 3,903 ML (3.6%) of reclaimed water provided to industrial customers.

#### Assessment of Annual Monitoring Results

The Gold Bar WWTP Effluent Limit Performance (WELP) index for 2020 was 19.0% (Figure 1). The 2020 index was lower than the five-year average of 22.2% due to having more process tanks/equipment available than in previous years. Figure 2 shows the annual WELP from 2005 to 2020, including the five-year average.

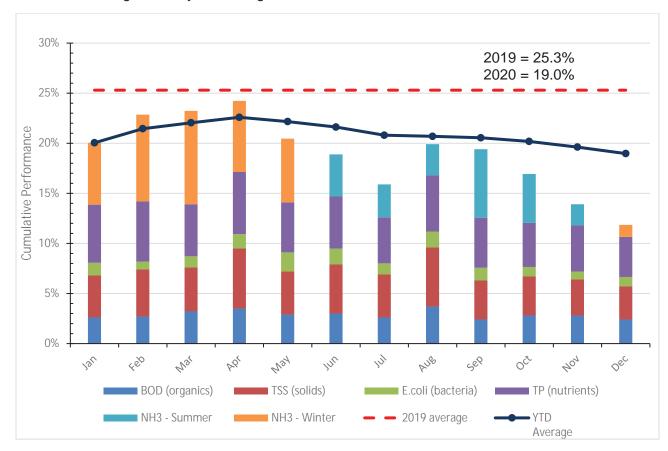



Figure 1: 2020 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP) Index




Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index) 2005-2020

For 2020, all of the monthly limits for Approval to Operate discharge parameters (Table 1) were met.

#### Chemicals Added to the Wastewater Treatment Process

As per Section 6 of the Operations Plan, the following chemicals are used in the wastewater treatment process:

- Secondary Alum
- EPT Alum
- EPT Polymer
- DAF Polymer
- Membrane Bleach
- Ostara Magnesium Chloride
- Ostara Caustic

Daily and monthly consumption of these chemicals is summarized in Appendix B.

# Names of Supervising Operators

Table 7 lists all certified wastewater treatment operators, their level of certification, and their positions at Gold Bar WWTP as of December 2020. Supervising operators are also listed in the Operations Monthly Summaries in Appendix C.

Table 7: List of Certified Wastewater Treatment Operators (as of December 2020)

| Name                 | Title                               | WWT Certification Level |
|----------------------|-------------------------------------|-------------------------|
| Grossell, Ken M      | Manager, Operations                 | IV                      |
| Schneider, Brian P   | WWTP Operator Foreman               | IV                      |
| Kerr, David A        | WWTP HEI Coordinator                | IV                      |
| Graham, Thomas A     | WWTP Operator Foreman               | IV                      |
| Jones, Kira I        | WWTP Operator Foreman               | IV                      |
| Kwan, Tom            | WWTP Operator Foreman               | IV                      |
| Espinosa, Diego F    | WWTP Operator Foreman               | IV                      |
| Lekamwasam, Janaka   | WWTP Operator Foreman               | IV                      |
| Nunes, Michael       | WWTP Lead Operator                  | IV                      |
| Penner, Jody         | WWTP Lead Operator                  | IV                      |
| Sanche, Dagny        | WWTP Training Coordinator           | IV                      |
| Barrett, Jeremy L    | Manager, Process Risk & Integration | III                     |
| Li, Bing (Frank)     | WWTP Operator                       | III                     |
| Jama, Yusuf          | WWTP Operator                       | III                     |
| Budden, Curt         | WWTP Operator Foreman               | III                     |
| Rindero, Billy       | WWTP Operator Foreman               | III                     |
| Hetherington, Clarke | WWTP Operator                       | III                     |
| Hahn, Kevin          | WWTP Operator                       | III                     |
| Sandouga, Sam        | WWTP Lead Operator                  | III                     |
| Baker, Cole          | WWTP Lead Operator                  | III                     |
| Holden, Derek        | WWTP Operator                       | III                     |
| Jordan, Bradley      | WWTP Lead Operator                  | III                     |
| Nieuwenhuis, Andrew  | WWTP Operator                       | III                     |
| Vogelgesang, Ryan    | WWTP Operator                       | III                     |
| Diletzoy, Kyle       | WWTP Operator                       | III                     |
| Sontrop, Melanie     | WWTP Operator                       | II                      |
| Rees, Emma           | WWTP Operator                       | II                      |
| Downey, Anthony      | WWTP Operator                       | II                      |
| Paglicauan, Jermine  | WWTP Operator                       | II                      |
| Omeragic, Armen      | WWTP Operator                       | II                      |
| Furber, Brandyn      | WWTP Operator                       | I                       |

#### **Uncommitted Hydraulic Reserve Capacity**

In 2020, Gold Bar WWTP received a total dry weather volume of 99,932 ML. This volume is the sum total of Outfall 10 effluent (96,029 ML) and membrane reclaimed water (3,903 ML). Outfall 10 effluent also includes wet weather flow that did not result in secondary bypass and any additional wet weather flow that had secondary treatment during secondary bypass events.

The average dry weather flow in 2020 was 273 million litres per day (MLD). However, the true dry weather flow was lower than 273 MLD and was approximately 263 MLD. The true dry weather average flow excludes additional flow to the plant during snow melt or rainfall, but includes inflow and infiltration (I&I). The total true dry weather volume was approximately 96,006 ML.

Based on 310 MLD of average secondary treatment capacity and a true dry weather average flow of 263 MLD, the uncommitted hydraulic reserve capacity for secondary treatment in 2020 was 47 MLD.

#### Wet Weather Summary

In 2020, Gold Bar WWTP had 92 days of secondary and primary plant bypasses. The total volume of secondary bypass was 8,172 ML. In addition, the total primary bypass volume was 187 ML.

There were 21 significant wet weather events with inflows to the plant greater than 1,200 MLD. The plant received a peak flow rate of approximately 1,929 MLD on August 3, 2020.

#### **Summary of Operational Issues**

Key operational activities, issues, and remedial actions are outlined in the Operations Monthly Summaries in Appendix C.

# 2020 Annual Air Pollution Control System Report

Table 8 and Table 9 describe the air pollution control system and ambient air monitoring limits and monitoring requirements. Note that the ambient air monitoring station is not yet installed, so ambient air monitoring was completed using a portable low range H<sub>2</sub>S analyzer and no assessment of results was included as per Section 6.3.3 (a) (iii) (B) of the Approval to Operate. The ambient air monitoring station will be commissioned and in operation before December 31, 2021.

Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)

| Air Pollution<br>Control System      | Monitoring Location                         | Parameter                                               | Limit                                                                                                                    |
|--------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| East scrubber;<br>West scrubber;     | Blowdown recirculation line before chemical | pН                                                      | ≥ 8.0                                                                                                                    |
| EPT scrubber; and Fermenter scrubber | makeup of each wet scrubber                 | ORP                                                     | ≥ 300 mV                                                                                                                 |
| N/A                                  | Ambient air monitoring station              | H <sub>2</sub> S, NO <sub>2</sub> , and SO <sub>2</sub> | After ambient air<br>monitoring station<br>commissioned:<br>Meet the latest Alberta<br>Ambient Air Quality<br>Objectives |

Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approval to Operate Table 6-2)

| Source                                                                                                               | Parameter                 | Frequency                                | Method of<br>Monitoring                                                                             | Sample<br>Location                                |
|----------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Carbon scrubber<br>for grit recovery<br>facility, during<br>operation<br>seasons                                     | Temperature               | Continuous                               | Online<br>temperature<br>transmitter,<br>record daily<br>average                                    | Influent air<br>stream                            |
|                                                                                                                      | Differential air pressure | Continuous                               | Online differential air pressure gauge, record daily average                                        | Influent and effluent air stream                  |
| Carbon scrubber for grit recovery facility, during                                                                   | H <sub>2</sub> S          | Continuous,<br>effective July 1,<br>2020 | Online H <sub>2</sub> S<br>sensor, record<br>daily average                                          | Effluent air<br>stream of each<br>carbon scrubber |
| operation<br>seasons;<br>Carbon scrubber<br>for screening<br>building 2/3;<br>Carbon scrubber<br>for grit building 2 | H <sub>2</sub> S          | Annually                                 | Manual stack<br>survey, as per the<br>latest Alberta<br>Stack Sampling<br>Code                      | Effluent air<br>stream of each<br>carbon scrubber |
| Carbon scrubber<br>for Clover Bar<br>biosolids<br>dewatering<br>building                                             | H <sub>2</sub> S          | Weekly                                   | Portable low range H <sub>2</sub> S analyzer, as per the manufacturer's specifications, grab sample | Effluent air<br>stream of the<br>carbon scrubber  |
|                                                                                                                      | H <sub>2</sub> S          | Annually                                 | Manual stack<br>survey, as per the<br>latest <i>Alberta</i>                                         | Effluent air stream of the carbon scrubber        |

|                                                   |                                                                                               |                                                                                                | Stack Sampling<br>Code                                                                              |                                                            |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| East scrubber;<br>West scrubber;<br>EPT scrubber; | рН                                                                                            | Continuous                                                                                     | Online pH sensor,<br>record daily<br>average                                                        | Recirculation<br>blowdown line,<br>before addition         |
| and Fermenter scrubber                            | ORP                                                                                           | Continuous                                                                                     | Online ORP<br>sensor, record<br>daily average                                                       | of chemical<br>makeup of each<br>wet scrubber              |
| East scrubber;<br>West scrubber;<br>EPT scrubber; | H <sub>2</sub> S                                                                              | Continuous,<br>effective July 1,<br>2020                                                       | Online H <sub>2</sub> S<br>sensor, record<br>daily average                                          | Influent air<br>stream of each<br>wet scrubber             |
| and Fermenter scrubber                            | H <sub>2</sub> S                                                                              | Continuous,<br>effective July 1,<br>2020                                                       | Online H <sub>2</sub> S<br>sensor, record<br>daily average                                          | Effluent air<br>stream of each<br>wet scrubber             |
|                                                   | H <sub>2</sub> S                                                                              | Annually                                                                                       | Manual stack<br>survey, as per the<br>latest Alberta<br>Stack Sampling<br>Code                      | Effluent air<br>stream of each<br>wet scrubber             |
| Ambient air                                       | H <sub>2</sub> S                                                                              | Before ambient air monitoring station commissioned: Daily, when ambient air temperature > 0 °C | Portable low range H <sub>2</sub> S analyzer, as per the manufacturer's specifications, grab sample | Fence line of<br>Gold Bar<br>Wastewater<br>Treatment Plant |
|                                                   | H <sub>2</sub> S, NO <sub>2</sub> , and SO <sub>2</sub> Temperature Wind speed Wind direction | After ambient air monitoring station commissioned: Continuous                                  | Air Monitoring Directives, as amended, record 1-hour average and 24-hour average                    | Ambient air<br>monitoring<br>station                       |
| Public odour complaints                           | N/A                                                                                           | When occurring                                                                                 | Document when Gold Bar Wastewater Treatment Plant is alleged and confirmed to be odour source       | N/A                                                        |

#### Summary of Air Pollution Control System Monitoring

Table 10 and Table 11 contain a monthly summary of the air pollution control system monitoring data. The data is split into two tables for ease of viewing. Appendix D contains the daily air pollution control system data. As per Table 9 (Table 6-2 of the Approval to Operate), the requirement for daily average H<sub>2</sub>S of the effluent air streams of the pollution control systems was effective July 1, 2020, therefore no data is shown prior to this date.

Table 10: Air Pollution Control System Report - Part I

|           |     |      | East S      | Scrubber                        | •                   | F    | ermen       | ter Scru           | bber                |      | West        | Scrubbe         | r                   |      | EPT         | Scrubbe            | er                               |
|-----------|-----|------|-------------|---------------------------------|---------------------|------|-------------|--------------------|---------------------|------|-------------|-----------------|---------------------|------|-------------|--------------------|----------------------------------|
| Month     | 1   | рН   | ORP<br>(mV) | H <sub>2</sub> S<br>In<br>(ppm) | H₂S<br>Out<br>(ppb) | рН   | ORP<br>(mV) | H₂S<br>In<br>(ppm) | H₂S<br>Out<br>(ppb) | рН   | ORP<br>(mV) | H₂S In<br>(ppm) | H₂S<br>Out<br>(ppb) | рН   | ORP<br>(mV) | H₂S<br>In<br>(ppm) | H <sub>2</sub> S<br>Out<br>(ppb) |
| January   | Avg | 9.50 | 671.4       | N/A                             | N/A                 | 9.50 | 699.6       | N/A                | N/A                 | 9.50 | 670.4       | N/A             | N/A                 | 9.49 | 677.2       | N/A                | N/A                              |
| February  | Avg | 9.49 | 671.5       | N/A                             | N/A                 | 9.50 | 699.4       | N/A                | N/A                 | 9.50 | 672.5       | N/A             | N/A                 | 9.50 | 687.3       | N/A                | N/A                              |
| March     | Avg | 9.50 | 671.0       | N/A                             | N/A                 | 9.49 | 699.8       | N/A                | N/A                 | 9.48 | 669.1       | N/A             | N/A                 | 9.50 | 693.5       | N/A                | N/A                              |
| April     | Avg | 9.50 | 669.7       | N/A                             | N/A                 | 9.50 | 700.0       | N/A                | N/A                 | 9.50 | 670.4       | N/A             | N/A                 | 9.51 | 643.6       | N/A                | N/A                              |
| May       | Avg | 9.50 | 669.2       | N/A                             | N/A                 | 9.49 | 699.9       | N/A                | N/A                 | 9.49 | 672.9       | N/A             | N/A                 | 9.49 | 696.9       | N/A                | N/A                              |
| June      | Avg | 9.50 | 669.9       | N/A                             | N/A                 | 9.48 | 694.6       | N/A                | N/A                 | 9.52 | 666.4       | N/A             | N/A                 | 9.50 | 678.3       | N/A                | N/A                              |
| July      | Avg | 9.50 | 669.4       | 0.01                            | 34.2                | 9.49 | 699.7       | 2.24               | 157.9               | 9.50 | 667.4       | 0.98            | 3.9                 | 9.50 | 699.4       | 1.31               | 110.5                            |
| August    | Avg | 9.50 | 669.8       | 0.09                            | 2.3                 | 9.48 | 700.8       | 6.13               | 1123.7              | 9.53 | 623.0       | 2.37            | 73.3                | 9.50 | 676.7       | 2.49               | 540.5                            |
| September | Avg | 9.50 | 671.0       | 0.34                            | 8.5                 | 9.46 | 699.8       | 6.05               | 745.0               | 9.56 | 650.4       | 4.22            | 157.4               | 9.49 | 682.5       | 3.60               | 1528.1                           |
| October   | Avg | 9.50 | 670.0       | 0.82                            | 34.3                | 9.50 | 698.9       | 3.11               | 965.0               | 9.50 | 666.7       | 2.90            | 36.3                | 9.50 | 693.4       | 3.69               | 688.7                            |
| November  | Avg | 9.51 | 671.6       | 0.29                            | 5.9                 | 9.50 | 699.3       | 4.35               | 636.8               | 9.50 | 687.2       | 2.60            | 24.3                | 9.50 | 698.7       | 2.49               | 155.6                            |
| December  | Avg | 9.50 | 670.1       | 0.51                            | 7.1                 | 9.50 | 700.0       | 5.35               | 64.7                | 9.51 | 689.0       | 4.29            | 13.8                | 9.50 | 700.1       | 1.53               | 228.9                            |

Table 11: Air Pollution Control System Report - Part II

| Montl     | n   | Grit 6/7 Building<br>Scrubber | Screen 4-8 Building<br>Scrubber | Dewatering Facility<br>Scrubber |
|-----------|-----|-------------------------------|---------------------------------|---------------------------------|
|           |     | H₂S Out (ppb)                 | H₂S Out (ppb)                   | H₂S Out (ppb)                   |
| January   | Avg | N/A                           | N/A                             | N/A                             |
| February  | Avg | N/A                           | N/A                             | N/A                             |
| March     | Avg | N/A                           | N/A                             | N/A                             |
| April     | Avg | N/A                           | N/A                             | N/A                             |
| May       | Avg | N/A                           | N/A                             | 0                               |
| June      | Avg | N/A                           | N/A                             | 0                               |
| July      | Avg | 1.0                           | 22.3                            | 0                               |
| August    | Avg | 1.7                           | 203.7                           | 0                               |
| September | Avg | 2.8                           | 948.6                           | 0                               |
| October   | Avg | 0.2                           | 329.5                           | 0                               |
| November  | Avg | 0.1                           | 178.4                           | 0                               |
| December  | Avg | 0.0                           | 301.2                           | 0                               |

The annual manual stack survey was submitted to AEP on September 29, 2020.

#### **Assessment of Monitoring Results**

On April 27, 2020, the daily average ORP for the EPT Scrubber was less than the required 300 mV. This was reported to AEP (Reference # 365988).

The daily average ORP for the EPT Scrubber on April 5, 2020 was below 300 mV, however operators were actively troubleshooting the issue and shut down the scrubber when it was determined that the ORP could not be recovered. Refer to Table 12, Summary of Scrubber Operational Issues for more information.

### Chemicals Consumed by Scrubbers

As per Section 6 of the Operations Plan, sodium hypochlorite (bleach) and caustic soda are used in the scrubbers for oxidization of  $H_2S$  and pH control, respectively. Daily and monthly consumption of these chemicals is summarized in Appendix E.

#### Summary of Air Pollution Control System Operational Issues

Table 12 is a summary of operational issues encountered by each air pollution control system, and the remedial actions taken to resolve the issues.

Table 12: Summary of Scrubber Operational Issues

| Scrubber<br>Name | Date/Time<br>of<br>Shutdown | Date/Time<br>Returned<br>to Service | Total Time<br>Shutdown<br>(hr) | Fence Line H2S<br>Readings<br>Taken? | Operational Issue                                                   | Actions Taken                                                                                                                                                                                                      |
|------------------|-----------------------------|-------------------------------------|--------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPT              | 1/14/2020 9:31              | 1/15/2020<br>0:10                   | 14.7                           | No - Temperature too low             | Fan casing full of water due to foaming in tower.                   | Flushed scrubber tower to get rid of foam.                                                                                                                                                                         |
| EPT              | 2/13/2020 7:30              | 2/13/2020<br>8:30                   | 1.0                            | No - Short outage                    | Planned maintenance.                                                | Maintenance on scrubber nozzles.                                                                                                                                                                                   |
| East             | 2/19/2020 4:15              | 2/19/2020<br>14:40                  | 10.4                           | Yes                                  | Planned maintenance.                                                | Preventative maintenance work.                                                                                                                                                                                     |
| East             | 2/29/2020<br>15:40          | 2/29/2020<br>18:40                  | 3.0                            | Yes                                  | Tripped on low level, foaming.                                      | Scrubber drained and restarted.                                                                                                                                                                                    |
| EPT              | 4/5/2020 19:45              | 4/6/2020<br>11:48                   | 16.1                           | Yes                                  | Bleach pump issues.                                                 | No redundant chemical feed pumps on<br>the EPT scrubber. Troubleshooting<br>throughout day including running bleach<br>pump in manual mode. Called in<br>Maintenance to assess issue. Bleach<br>pump was replaced. |
| Fermenter        | 4/7/2020 7:15               | 4/7/2020<br>8:03                    | 0.8                            | No - Short outage                    | Planned maintenance.                                                | Bleach pump replacement.                                                                                                                                                                                           |
| EPT              | 4/26/2020<br>17:30          | 4/27/2020<br>19:00                  | 0.0                            | No - Scrubber not shut down          | Issue with bleach pump airlocking.                                  | Scrubber not shut down. Intermittent issues. Bleach delivered to increase tank level. Reported to AEP (Reference # 365988).                                                                                        |
| EPT              | 5/27/2020 7:30              | 5/27/2020<br>11:00                  | 3.5                            | Yes                                  | Planned outage.                                                     | Install H2S sensors.                                                                                                                                                                                               |
| EPT              | 5/31/2020<br>20:14          | 5/31/2020<br>20:20                  | 0.1                            | No - Short outage                    | Bleach pump issues.                                                 | Troubleshooting as per SOP.                                                                                                                                                                                        |
| EPT              | 6/5/2020 7:00               | 6/5/2020<br>14:28                   | 7.5                            | Yes                                  | Bleach pump issues.                                                 | Replaced bleach pump and repaired union on discharge piping.                                                                                                                                                       |
| EPT              | 6/5/2020 22:40              | 6/6/2020<br>1:54                    | 3.2                            | Yes                                  | Loss of ORP.                                                        | Troubleshooting as per SOP.                                                                                                                                                                                        |
| Fermenter        | 6/7/2020 3:30               | 6/7/2020<br>7:45                    | 4.2                            | Yes                                  | Tube burst on one bleach pump and overcurrent alarm on backup pump. | Emergency work request submitted to replace tube and E/I reset alarm.                                                                                                                                              |

|           |                | 6/8/2020  |      | No - Scrubber not |                              | Scrubber not shut down. Troubleshooting   |
|-----------|----------------|-----------|------|-------------------|------------------------------|-------------------------------------------|
| EPT       | 6/8/2020 9:30  | 13:00     | 0.0  | shut down         | Air locking in bleach pump.  | as per SOP.                               |
|           |                |           |      |                   |                              | Water softener tripped causing low level  |
|           | 6/20/2020      | 6/20/2020 |      |                   | Scrubber pumps/blower        | in scrubbers. Water softener bypassed     |
| West      | 12:41          | 13:29     | 0.8  | No - Short outage | tripped off.                 | and scrubber restarted.                   |
|           | 8/11/2020      | 8/11/2020 |      |                   |                              | Scrubbers not shut down.                  |
| West/EPT  | 19:30          | 22:30     | 0.0  | Yes               | Air locking in bleach pumps. | Troubleshooting as per SOP.               |
|           |                |           |      |                   |                              | Immediately replaced hose on caustic      |
|           |                |           |      |                   |                              | pump and issue was resolved. Hose         |
|           | 8/19/2020      | 8/19/2020 |      |                   | Issue with both caustic      | replacement on backup caustic pump        |
| Fermenter | 10:45          | 14:15     | 3.5  | Yes               | pumps.                       | also scheduled.                           |
|           |                |           |      |                   |                              | Tried both bleach pumps and tried         |
|           |                |           |      |                   |                              | backflushing multiple times. Shut off     |
|           |                |           |      |                   |                              | scrubber until we could get bleach        |
|           |                |           |      |                   |                              | pumps running again. Working on           |
|           | 8/19/2020      | 8/20/2020 |      |                   | Air locking in bleach pumps, | getting temporary totes until piping can  |
| West      | 22:40          | 8:00      | 9.3  | Yes               | ORP dropping.                | be rerouted to resolve air locking issue. |
|           |                |           |      |                   |                              | Switched bleach supply to temporary       |
|           | 8/21/2020      | 8/21/2020 |      |                   |                              | tote. Still having issues, so switched    |
| West      | 21:46          | 22:27     | 0.7  | No - Short outage | Air locking in bleach pumps. | back to tank and ORP recovered.           |
|           |                |           |      |                   |                              | Shut off scrubber until we could get      |
|           |                |           |      |                   |                              | bleach pumps running again. Waiting for   |
|           | 8/24/2020      | 8/25/2020 |      |                   | Air locking in bleach pumps, | design for piping to be rerouted to       |
| West      | 19:45          | 0:30      | 4.8  | Yes               | low ORP.                     | resolve air locking issue.                |
|           |                |           |      |                   |                              | Shut off scrubber until we could get      |
|           |                |           |      |                   |                              | bleach pumps running again. Waiting for   |
|           |                | 8/26/2020 |      |                   |                              | design for piping to be rerouted to       |
| West/EPT  | 8/26/2020 6:21 | 7:57      | 1.6  | No - Short outage | Air locking in bleach pumps. | resolve air locking issue.                |
|           |                |           |      |                   |                              | Redoing piping to eliminate airlocking in |
|           |                | 9/15/2020 |      |                   |                              | bleach pumps. Temporary bleach totes      |
| EPT       | 9/14/2020 5:08 | 13:13     | 32.1 | Yes               | Planned outage.              | utilized to minimize outage.              |
|           |                |           |      |                   |                              | Redoing piping to eliminate airlocking in |
|           |                | 9/16/2020 |      |                   |                              | bleach pumps. Temporary bleach totes      |
| West      | 9/15/2020 4:55 | 13:30     | 32.6 | Yes               | Planned outage.              | utilized to minimize outage.              |
|           |                | 9/21/2020 |      |                   |                              | Switched bleach supply to temporary       |
| West      | 9/21/2020 9:24 | 16:30     | 7.1  | Yes               | Low bleach tank level.       | tote.                                     |
|           | 9/30/2020      | 9/30/2020 |      |                   |                              |                                           |
| EPT       | 18:06          | 19:26     | 1.3  | No - Short outage | Bleach pumping issues.       | Switched bleach supply.                   |
|           |                | 10/1/2020 |      |                   |                              | Cleaned strainers. Cleared blockage       |
| EPT       | 10/1/2020 8:00 | 11:28     | 3.5  | Yes               | Bleach pumping issues.       | from bleach supply line.                  |
|           |                | 10/1/2020 |      |                   |                              | Cleaned strainers. Cleared blockage       |
| West      | 10/1/2020 9:56 | 11:27     | 1.5  | No - Short outage | Bleach pumping issues.       | from bleach supply line.                  |

| West                                                | 10/15/2020<br>9:33 | 10/15/2020<br>10:09 | 0.6 | No - Short outage            | Planned outage.                                                                                                                  | Redoing piping to eliminate airlocking in bleach pumps. Temporary bleach totes utilized to minimize outage.                                          |
|-----------------------------------------------------|--------------------|---------------------|-----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Screen<br>Building,<br>Grit<br>Building,<br>and GRF |                    |                     |     | · ·                          | Upon inspection of the carbon scrubbers, it was noticed that there is some air short circuiting the media. Recommended to top up | Planned to coordinate top up of scrubber media with contractor representative and                                                                    |
| Carbon<br>Scrubbers                                 | 12/4/2020          | Ongoing             | 0.0 | No - Scrubbers not shut down | scrubbers with additional media.                                                                                                 | maintenance in 2021. Scrubbers continue to be operational.                                                                                           |
|                                                     |                    |                     |     |                              | Issues with calibrating scrubber outlet H2S sensors                                                                              | Notified AEP (Reference #374529). Ordered and installed replacement H2S sensors and shelf spares. Trialing a 0-20 ppm unit on the Fermenter Scrubber |
| All                                                 | 15-Dec-20          | 18-Dec-20           | 0.0 | No - Scrubbers not shut down | due to over-exposure of H2S. No shelf spares.                                                                                    | outlet to replace the 0-2000 ppb sensor for increased reliability.                                                                                   |
| All                                                 | 13-Dec-20          | 10-Dec-20           | 0.0 | SHUL UOWII                   | 1120. No shell spales.                                                                                                           | 101 Increased reliability.                                                                                                                           |
| West                                                | 12/22/2020<br>7:34 | 12/22/2020<br>12:12 | 4.6 | Yes                          | Mechanical issue with recirculation pump.                                                                                        | Used lime to loosen scale on pump impeller.                                                                                                          |

# 2020 Annual Ambient Air Report

#### Summary of Ambient Air Monitoring

Table 13 shows a summary of the ambient air monitoring results. The grab samples were taken daily when the ambient air temperature was  $> 0^{\circ}$ C using a portable, low-range H<sub>2</sub>S analyzer along the fence line of the Gold Bar Wastewater Treatment Plant. Figure 3 depicts the monitoring locations. Appendix F contains the daily ambient air monitoring data.

Table 13: Summary of Ambient Air Monitoring Results

| Month    |     | H₂S (ppb) |      |       |      |      |      |      |       |  |  |
|----------|-----|-----------|------|-------|------|------|------|------|-------|--|--|
| Wonth    |     | 1         | 2    | 3     | 4    | 5    | 6    | 7    | 8     |  |  |
|          | Avg | 3.10      | 1.29 | 2.30  | 0.56 | 0.16 | 0    | 0.18 | 0.35  |  |  |
| January  | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 19.25     | 9.08 | 9.69  | 7.16 | 3.08 | 0    | 3.47 | 3.46  |  |  |
|          | Avg | 2.25      | 0.84 | 0.50  | 0.15 | 0    | 0.61 | 0.64 | 0     |  |  |
| February | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 13.06     | 4.73 | 3.35  | 3.79 | 0    | 5.01 | 7.28 | 0     |  |  |
|          | Avg | 3.17      | 0.76 | 0.73  | 0.37 | 0.55 | 0.59 | 0.99 | 1.55  |  |  |
| March    | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 20.77     | 3.89 | 5.66  | 3.52 | 4.53 | 5.01 | 4.76 | 24.79 |  |  |
|          | Avg | 1.26      | 0.51 | 0.22  | 0.76 | 0    | 0.54 | 0.34 | 0.12  |  |  |
| April    | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 12.55     | 8.48 | 3.29  | 9.76 | 0    | 4.69 | 3.4  | 3.42  |  |  |
|          | Avg | 0.36      | 0.12 | 0.11  | 1.39 | 0.03 | 0.16 | 0.22 | 0.27  |  |  |
| May      | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 4.63      | 3.57 | 3.54  | 7.46 | 1.04 | 5.05 | 3.44 | 8.36  |  |  |
|          | Avg | 0         | 0    | 0.11  | 0.44 | 0    | 0    | 0    | 0.18  |  |  |
| June     | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
|          | Max | 0         | 0    | 3.40  | 5.12 | 0    | 0    | 0    | 5.27  |  |  |
|          | Avg | 0         | 0    | 0.21  | 1.01 | 0.21 | 0    | 0.23 | 0     |  |  |
| July     | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
|          | Max | 0         | 0    | 3.29  | 14.2 | 3.46 | 0    | 3.97 | 0     |  |  |
|          | Avg | 2.99      | 0.76 | 0.90  | 1.27 | 0.51 | 0.12 | 0.37 | 0.10  |  |  |
| August   | Min | 0         | 0    | 0     | 0    | 0    | 0    | 0    | 0     |  |  |
| l        | Max | 20.54     | 4.51 | 11.82 | 7.59 | 9.21 | 3.84 | 7.45 | 3.17  |  |  |

|           | Avg | 0.55  | 0.16 | 0    | 0.11 | 0    | 0.10 | 0    | 0    |
|-----------|-----|-------|------|------|------|------|------|------|------|
| September | Min | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|           | Max | 7.38  | 4.68 | 0    | 3.33 | 0    | 3.09 | 0    | 0    |
|           | Avg | 0.93  | 0.31 | 0.28 | 0.15 | 0.20 | 0.24 | 0.07 | 0.14 |
| October   | Min | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|           | Max | 5.89  | 4.26 | 4.09 | 3.48 | 3.33 | 4.85 | 2.07 | 3.07 |
|           | Avg | 1.45  | 0.11 | 0.07 | 0.04 | 0.09 | 0.21 | 0.07 | 0.04 |
| November  | Min | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|           | Max | 16.02 | 3.14 | 2.12 | 1.1  | 2.51 | 3.36 | 1.89 | 1.15 |
|           | Avg | 3.79  | 0.22 | 0.11 | 0.63 | 0.18 | 0.11 | 0.11 | 0.11 |
| December  | Min | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|           | Max | 38.12 | 3.25 | 3.05 | 4.26 | 5.18 | 3.11 | 3.06 | 3.22 |



Figure 3: Location of H<sub>2</sub>S Monitoring

#### Summary of Public Odour Complaints

Table 14 shows the number of odour complaints received within the Gold Bar WWTP Odour Response Boundaries and number of complaints where Gold Bar WWTP is the confirmed source of odour based on wind direction, scrubber operation, corroboration with odour model software, ambient H<sub>2</sub>S monitoring results, and plant operations/maintenance.

Table 14: Summary of Gold Bar WWTP Odour Complaints

| Month     | Number of Odour<br>Complaints | Number of Complaints where Gold Bar<br>WWTP is the Confirmed Source of Odour |
|-----------|-------------------------------|------------------------------------------------------------------------------|
| January   | 3                             | 2                                                                            |
| February  | 0                             | 0                                                                            |
| March     | 0                             | 0                                                                            |
| April     | 1                             | 0                                                                            |
| May       | 1                             | 1                                                                            |
| June      | 0                             | 0                                                                            |
| July      | 2                             | 1                                                                            |
| August    | 1                             | 1                                                                            |
| September | 6                             | 2                                                                            |
| October   | 0                             | 0                                                                            |
| November  | 1                             | 1                                                                            |
| December  | 0                             | 0                                                                            |
| Total     | 15                            | 8                                                                            |

Appendix G contains a detailed list of odour complaints including the steps taken to identify the odour sources and remedial actions taken to resolve the odour issues.

# 2020 Summary of Contraventions and Notifications to AEP

Table 15 summarized the contraventions to Approval to Operate 639-03-06. There was one contravention in 2020.

Table 15: Summary of Contraventions

| Date | Summary of Contravention                                                                                                                                                                             | AEP Reference<br>Number |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|      | AEP 24 hour hotline was called to report a contravention to the approval section 5.2. EPT Scrubber daily average ORP dropped below 300 mV on April 27, 2020. 7 day letter required, due May 4, 2020. | 365988                  |

Table 16 summarizes the notifications to AEP under Approval to Operate 639-03-06 as per the 2020 Operations Plan. There were thirteen notifications in 2020, including two reported by the contractor operating the dewatering facility and lagoon dredge.

Table 16: Summary of Notifications to AEP

| Date                | Summary of Notifications                                                                                                                                                                                                                                                                                                                                 | AEP Reference<br>Number |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1/10/2020           | AEP 24 hour hotline was notified of a planned UV outage from 7:30 -                                                                                                                                                                                                                                                                                      |                         |
| 11:33 AM            | 8:30 AM January 14, 2020 for planned maintenance on an electrical transformer.                                                                                                                                                                                                                                                                           | 362620                  |
| 1/30/2020           | Notified of extension to planned temporary reduction in target treatment                                                                                                                                                                                                                                                                                 |                         |
| 9:43 AM             | capacity from 1200 MLD to 570 MLD for conventional and enhanced primary treated wastewater flows for planned capital work. Outage started September 9, 2019 and is planned to proceed until February 29, 2020.                                                                                                                                           | 358652                  |
| 4/30/2020           | AEP 24 hour hotline was notified of a planned UV outage from 7:00 - 8:00 AM May 1, 2020 for planned maintenance on an electrical transformer storage .                                                                                                                                                                                                   | 365957                  |
| 6/30/2020           | AEP 24 hour hotline was notified of a planned UV outage from 7:00 - 11:00 AM July 3, 2020 for planned maintenance on an electrical transformer.                                                                                                                                                                                                          | 368354                  |
| 7/10/2020           | AEP 24 hour hotline was notified of a variance from the target operating capacity listed in the Operations Plan. The summer target operating capacity for Pre-treatment is 1,200 MLD. On July 9, 2020 at approximately 11:30 PM, we reached 1,079 MLD before we had a screened bypass due to an unusually high surge of flow from the collection system. | 368869                  |
| 9/10/2020           | AEP 24 hour hotline was notified of a planned UV outage from 0:30 to                                                                                                                                                                                                                                                                                     | 074444                  |
| 11:30 AM            | 12:30 on September 17, 2020 for planned maintenance on the electrical distribution system (breaker change out).                                                                                                                                                                                                                                          | 371414                  |
| 9/17/2020           | AEP was called and an update was provided to this existing notification                                                                                                                                                                                                                                                                                  |                         |
| 10:00 AM            | and reference number. A second phase of our planned UV shutdown to take place from 11:00 PM September 17 - 11:00 AM September 18.                                                                                                                                                                                                                        |                         |
| AEP Operator: Taryn | The scope of the work is the same as the original notification. It was noted that EPCOR purposely plans the shutdowns to take place over night because this is when wastewater flows are low, and impact to the river is minimized.                                                                                                                      | 371414                  |
| 9/24/2020           | Notified of planned temporary reduction in target treatment capacity                                                                                                                                                                                                                                                                                     |                         |
| 12:08 PM            | from 1200 MLD to 750 MLD for conventional and enhanced primary treated wastewater flows for planned capital work. Outage to start                                                                                                                                                                                                                        | 372020                  |
| AEP Operator: Jason | October 1, 2020 and proceed until March 1, 2021.                                                                                                                                                                                                                                                                                                         |                         |

| 10/3/2020                          | 100 L chlorinated water release at Clover Bar Dewatering Facility. Reported by to AEP by Dewatering Facility operator (Suez). 7 day letter submitted by EPCOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 372433 |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 10/5/2020<br>AEP Operator: Erin    | AEP was notified by phone on October 5 at 3:00 PM that EPCOR is taking Digester 5 out of service for an unplanned structural assessment and repair after a bulge and crack was observed in the masonry veneer exterior wall. The condition of the digester vessel structure is unknown and will be assessed once the damaged masonry is removed. There have been no environmental releases from Digester 5 to date, and EPCOR will still have sufficient digester capacity if Digester 5 is out of service for an extended period of time. To safely remove Digester 5 from service, as noted in EPCOR's approved operations plan, on October 10, 2020 the headspace of Digester 5 will be continuously purged with nitrogen gas and flared until what remains in the headspace is a non-combustible mixture of nitrogen, carbon dioxide, methane, with trace amounts of hydrogen sulfide. The digester hatches will then be opened and fans will be activated to ventilate the purged digester headspace to atmosphere. | 372467 |
| 10/8/2020<br>AEP Operator: Natasha | AEP was notified by phone on October 8 at 1:00 PM that the date of the Digester 5 purge has changed to October 13 <sup>th</sup> , 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 372467 |
| 11/7/2020                          | 50 L biosolids overflow from tank at Clover Bar Lagoons dredge operation. Reported to AEP by dredge operator (Suez). 7 day letter submitted by EPCOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 374529 |
| 12/16/2020<br>AEP Operator: Darren | AEP was notified by phone on December 16 at 12:55 PM that the Gold Bar WWTP is having reliability issues with some of our new scrubber H2S exhaust monitoring instruments that were added by amendment to our approval to operate for July 1, 2020. All the odour scrubbers continue to operate and treat foul air as required by the approval, as these new H2S instruments are for supplementary monitoring purposes only. EPCOR is currently waiting on the repair of the H2S instruments and all our shelf spares by the US vendor. It is EPCOR's opinion that is a notification only, that no contravention to the approval has occurred, and that no 7 day letter is required.                                                                                                                                                                                                                                                                                                                                     | 374529 |

#### **2020 Biosolids Program Summary**

In 2020, the biosolids management program was able to remove 27,144 dry tonnes (DT) of biosolids from the Clover Bar Lagoons for beneficial reuse. We removed another estimated 2,250 DT to landfill during the Cell 3E cleaning and rehabilitation project. Biosolids production from Gold Bar and ACRWC was 30,420 DT, which increased the storage inventory by 1,026 DT. Table 17 shows a summary of the biosolids program.

Table 17: Summary of Biosolids Program

| Beneficial Application Use Method         | Application Weight (dry tonnes) | Application Volume (m³) |
|-------------------------------------------|---------------------------------|-------------------------|
| Nutri-Gold (dewatered material)           | 3,921 (1,428 in stockpile)      | 16,685                  |
| Nutri-Gold (thickened material)           | 6,812                           | 90,826                  |
| Agricultural Land Application (3rd party) | 10,414                          | 138,853                 |
| Non-Agricultural Land Application         | 5,997                           | 25,519                  |
| Landfill (3E Project)                     | 2,250                           | 4,500                   |
| Total                                     | 29,394                          | 276,383                 |

Appendices H, I, and J contain summaries of the Nutri-Gold, third party agricultural, and non-agricultural land application programs, respectively.





PROVIDING MORE EPCOR

Gold Bar Wastewater Treatment Plant Plant Performance Report January 2020

|                                | friftweet | -                |            | ne of Flow M  Disinfected | 7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |            |       |         |                |            |            |          |           |            |            | _            |         |          |      |      | Liquid Stream | n Quality |            |                |             |            |              |        |                | -        |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |            |           |               |
|--------------------------------|-----------|------------------|------------|---------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------|------------|-------|---------|----------------|------------|------------|----------|-----------|------------|------------|--------------|---------|----------|------|------|---------------|-----------|------------|----------------|-------------|------------|--------------|--------|----------------|----------|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|------------|-----------|---------------|
|                                | Influent  |                  | Non UV     | Disinfected               | T    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |            | -     |         |                |            |            |          |           |            |            |              |         |          |      |      |               |           |            |                |             |            |              |        |                |          |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |            |           |               |
|                                | - III     | -                | Non UV     | Disinfected               | T    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |                |            |       |         |                |            |            |          |           |            |            |              |         |          |      |      |               |           |            |                |             |            |              |        |                |          |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |            |           |               |
|                                |           | -                | Non UV     | Disinfected               | 1000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                |            |       |         |                |            |            |          |           |            |            |              |         |          |      |      |               |           |            |                |             |            |              |        |                |          |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | - 1        |           |               |
|                                | 1         |                  | 1111111111 | DIMERCONO                 |      | Contraction of the Contraction o |            | - manage |                |            |       | No real | 21             |            |            | -        | OCAROL IN | 400        |            |              |         | ALDED ST |      |      |               | 3.64      | - American |                | rm land     | and MH3-N  | 20           | -      |                |          |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |            |           |               |
|                                |           |                  |            |                           |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1        |          |                |            |       |         | 1              |            |            |          | Ol COAT   | -          |            |              |         |          |      |      |               | 1         |            |                | DELT THE RE | Section 1  |              | THOMan |                |          |      | The Property lies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | Action Control |            | E. 31     | BC .          |
|                                |           |                  |            |                           |      | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          | 1 3            |            |       |         |                | =          |            | 2 2      |           |            |            |              |         |          | 5    | - 1  |               |           |            | 6 7            |             |            |              |        | 5              |          |      |                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                | 5          |           | 2 2           |
|                                |           |                  | 8          | 8                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 8 3      |                |            | 8     | 8       |                | TRAE .     |            | A A      | E         | 2          | 3          |              | 8 8     |          | TA I |      | 8             | 8         |            | 룉              | 8           | <b>8</b> 3 | 2            | 8      | 8 IAT          |          | 8    | R I               | THE STATE OF THE S | 8          | 2 2            | TAL.       |           | I I           |
| Peak<br>Plow                   | - 1       |                  | TAL.       | TAL.                      | l g  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1        | 8              |            | 1 3 1 | 1 1     |                | 8          | MATE       | 8 8      | - 6       | HE         | - 15       |              | LAT LAT | 2        | 8    |      | 1 2           | 1 2       |            | 8              | _  <u> </u> | <b>1</b>   | Ē            | 1 2    | 1 8 B          |          | TA I |                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                | 3          | 2         | 8 8           |
| OR STATE OF                    | -         | APR              | 5          | 5                         | 5    | rec re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | This I     | 5        | PRO            | 6400       | 5     | 5 5     | PRO            | -          | 900,       | \$10, 90 | h 966     | 1800.      | -          | 444          | 5 5     | 5        | PBC  | HE I | 5             | 5         | <b>6</b>   |                | 5           | 170        | 5            | 5      | 5              | 200      | 5    | P                 | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aum 5      | 5 5            | rec .      | 1 K1976 X | 1946          |
| 5-01 337.9 0.<br>1-02 340.2 0. |           |                  |            | 0.0 12.9                  | 0.0  | 220.7 220.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,6        |          | 7,7            |            |       |         | 3,2            |            | 328        |          | 100       | 1.0        | 1.0        | 7,28         |         |          | 0,25 | 0.25 | 42.7          |           | 1          |                | .45         |            | 62.          |        |                | 52       | 80.0 |                   | 8,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86,5       |                | 107        |           |               |
| 03 341,9 0                     |           |                  |            | 0.0 11.9                  | 0.0  | 230.2 230.2<br>234.9 234.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.6        |          | 7.7            |            |       |         | 3.2            |            | 372        |          |           | 3.0<br>2.0 | 3.0<br>2.0 | 8,31<br>8,49 |         |          | 0.22 | 0.22 | 42.3          | 1 1       | 1.         |                | .74         |            | 67.0         |        |                | 34<br>44 |      |                   | 9.19<br>8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130        |                | 107<br>122 |           |               |
| -04 353.3 0.                   | 0,0       | 242.9            | 0.0        | 0.0 12,3                  | 0,0  | 230,6 230,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.6        |          | 7.7            |            |       |         | 3.7            |            | 302        |          | -         | 3,0        | 3,0        | 7.93         |         |          | 0.26 | 0.26 | 40,6          |           | 1          |                | .51         |            | 62.          |        |                | 23       |      |                   | 8,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94         |                | 113        |           |               |
| +05 359.1 0.<br>+06 343,3 0.   |           |                  |            | 0.0 12.1                  | 0.0  | 233.9 233.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,6        |          | 7.8            |            |       |         | 2.9            |            | 342        |          | 1 1       | 2.0        | 2.0<br>3.0 | 8.55         |         |          | 0.23 | 0.23 | 40.6          |           | 1.         |                | .85         |            | 85.2         |        | 3.7            |          |      |                   | 8.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84         |                | 100        |           |               |
| -07 331,9 0.                   |           |                  |            | 0.0 12.3                  | 0.0  | 239,4 239,4<br>234,5 234,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5        |          | 7.6            |            |       |         | 2.7            | 3,1        | 354<br>370 |          | 1 1       | 3.0<br>2.0 | 2,0        | 8.15<br>7.20 |         |          | 0.18 | 0.18 | 40.7          | 1 1       | 1.         | 59 1.<br>55 1. |             |            | 68,6         |        |                | 28       |      |                   | 8.73<br>8.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99         |                | 94<br>104  |           |               |
| I-08 340.2 0.                  | 0.0       | 242.7            | 0.0        | 0.0 12.3                  | 0.0  | 230.4 230.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        | - 1      | 7.6            |            | 1 1   |         | 2.6            | 2.6        | 310        |          |           | 2.0        | 2.0        | 7.29         |         | 1        | 0.24 | 0.24 | 39.0          | 1 1       | 1          |                | .38         | 11         | 62.4         |        | 3,0            |          | 80,0 |                   | 8,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101        |                | 103        | 2         |               |
| 10 330.4 0.                    |           |                  |            | 0,0 12.4                  | 0,0  | 232.2 232.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,8        |          | 7.8            |            |       |         | 2.8            | 2.8        | 328        |          | 1 1       | 2,0        | 2.0        | 8.41         | 1 1     |          | 0.23 | 0,23 | 42.7          |           | 2.         |                |             |            | 65.6         |        |                | 95       |      |                   | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95         |                | 107        | - 11      |               |
| 11 352.9 0.                    |           |                  |            | 0.0 12.5                  | 0.0  | 236.1 236.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.6        | -1       | 7.7            |            |       |         | 3,5            | 3.5        | 360<br>375 |          | 1 1       | 3.0        | 2.0<br>3.0 | 7,79<br>8,75 |         | 10       | 0,26 | 0.26 | 43.1          | 1 1       | 2.         |                |             |            | 65.0         |        |                | 82<br>90 |      |                   | 7,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90         |                | 100        |           |               |
| -12 363.5 O.                   |           |                  |            | 0.0 12,6                  | 0.0  | 235.1 235.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,5        |          | 7.7            |            | _     |         | 4.5            | 4.1        | 311        |          |           | 3.0        | 3.0        | 8,21         |         |          | 0,28 | 0.28 | 42,2          |           | 3.         |                | .49         |            | 63,8         |        | 5.5            |          |      |                   | 7,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68         |                | 83         | _         |               |
| -13 353,7 0,<br>-14 329,6 0,   |           |                  |            | 0.0 12.2                  | 0.0  | 236.5 236.5<br>236.9 236.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5        |          | 7.6            |            |       |         | 6.7            | 8.7<br>5.3 | 410        | 1 1      | 1 1       | 4.0        | 4.0        | 9,25         |         |          | 0.52 | 0.52 | 44,0          | 11 1      | 4.         |                |             |            | 86,4         |        | 7.2            |          |      |                   | 5,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81         |                | 78         | - 1       |               |
| H15 344.7 0.                   |           |                  |            | 0.0 11.2                  | 0.0  | 236.9 236.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.6        | - 1      | 7.7            |            |       |         | 5.3            | 6,1        | 338<br>364 |          |           | 3,0        | 3.0        | 8.48<br>6.25 |         |          | 0.39 | 0.39 | 44.5          | 1 1       | 5.<br>3.   |                |             |            | 65.5         |        | 7.3            |          | 0.15 |                   | 5.99<br>5.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83         |                | 86         | - 1       |               |
| -16 332.5 QJ                   |           |                  |            | 0.0 11.0                  | 0.0  | 236.7 236.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        | - 1      | 7.6            |            |       |         | 7.4            | 7.4        | 350        |          |           | 4.0        | 4.0        | 8.40         |         |          | 0.41 | 0.41 | 42.8          | 1 1       | 3,         |                |             |            | 68.7         |        | 6.7            |          |      |                   | 5.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77         |                | 79         |           |               |
| 17 328,8 0,1<br>18 377,7 0,1   |           |                  |            | 0.0 11.4                  | 0,0  | 237,4 237,4<br>236,5 236,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5        |          | 7.6            |            | 1 1   |         | 6,0<br>10,0    |            | 361        |          |           | 3.0        | 3,0<br>4,0 | 8.54<br>8.30 |         |          | 0.34 | 0,34 | 43.6          |           | - 4        |                |             |            | 65.4         |        | 6.4            |          |      |                   | 8.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78         |                | 81         | - 1       |               |
| -19 378.1 0.1                  |           |                  | ***        | 0.0 11.5                  | 0.0  | 239.8 239.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        | _        | 7.7            |            |       | -       | 8,3            | _          | 365        |          |           | 4.0        | 4.0        | 7.48         | _       | _        | 0,60 | 0.45 | 39.2          | +         | 4          |                | 30          | _          | 65,1         |        | 6.7            |          |      |                   | 6,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71<br>87   | -              | 85         | -         | $\rightarrow$ |
| -20 360,7 0,5                  |           |                  | 0.0        |                           | 0.0  | 240.2 240.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        | - 10     | 7.5            | 420        |       |         | 4,8            | 4.8        | 345        |          |           | 0.6        | 3.0        | 18,6         |         |          | 0.30 | 0.30 | 40,2          |           | 2          |                | .58         |            | 62,5         |        | 4.8            |          |      |                   | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80         |                | 73         | - 1       |               |
| -21 341,6 0,0<br>-22 381,3 0,0 |           |                  |            | 0.0 11.5                  | 0.0  | 235.0 235.0 237.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,6<br>7.5 |          | 7.8            |            | 1 1   |         | 2.7            | 3.7<br>2.9 | 348<br>370 | - 1      | 1 1       | 3.0        | 3.0        | 7,92<br>8,32 |         |          | 0,24 | 0.24 | 38.2          | 1 1       | 2.5        |                |             |            | 67,0         |        | 3,0            |          | 0.06 |                   | 6.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107        |                | 89         | 2         |               |
| 23 357.4 0.5                   |           |                  | 0,0        |                           | 0,0  | 233.4 233.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,5        |          | 7.0            |            | 1 1   |         | 2.4            | 2.4        | 362        |          | 11        | 2.0        | 2.0        | 8.19         |         | 10       | 0,26 | 0,26 | 36,8          |           | 3.         |                |             |            | 62.3         |        | 6.0            |          | ···· |                   | 8,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149        |                | 119        | - 1       |               |
| 24 386.1 0.6                   |           |                  | 0.0        |                           | 0,0  | 257.3 257.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7        |          | 7.7            |            | 1 1   |         | 3.0            | 3.0        | 302        |          | 1 1       | 2.0        | 2.0        | 8.08         | - 1     |          | 0.24 | 0.24 | 34.7          | 11 1      | 3,5        | 2 3.           |             |            | 80.2         |        | 5.8            |          | - 11 |                   | 7.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140        | -10            | 151        | - 1       |               |
| 25 384,8 0,1<br>-26 370,5 0,1  |           |                  | 0,0        | 1110                      | -    | 240.3 240.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.6        |          | 7.8            | -          | -     | _       | 3.5            | _          | 331        | -        | + +       | 2.0        | 1.0        | 7,73         | -       | +        | 0.23 | 0.23 | 34,8          | +         | 5.         | _              |             | _          | 58,9         |        | 6.2            |          | _    |                   | 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123,0      | -              | 146        | -         | $\rightarrow$ |
| -27 352.2 0.0                  |           |                  | 0.0        |                           |      | 241.9 241.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        |          | 7.7            |            |       |         | 3.7            |            | 282        |          |           | 2.0        | 2.0        | 7,98         |         |          | 0.24 | 0.24 | 34,9<br>35.1  |           | 3.1        |                |             |            | 56.4<br>54.7 |        | 6,4<br>4,5     |          |      |                   | 7,12<br>5,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97,8       |                | 123        |           |               |
| 28 344,9 0,0                   |           |                  | 0,0        |                           | 0.0  | 233.8 233.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.4        |          | 7.6            | 308        |       |         | 5.4            | 5,4        | 371        |          |           | 2.0        | 2.0        | 7.12         |         |          | 0.28 | 0.28 | 35.4          | 1 1       | 2.5        | 5 2.1          | ~~          |            | 53.2         |        | 4.3            | и        |      |                   | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.0      |                | 118        |           |               |
| -29 361.2 D,0<br>30 333.7 D,0  |           |                  | 0.0 0.0    |                           | 0.0  | 244,0 244.0<br>236.0 236.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.8        |          | 7,7            | 340<br>360 |       |         | 3.8            | 3,8        | 358        |          |           | 3,0        | 3,0        | 7.38         |         |          | 0.27 | 0.27 | 31.3          |           | 2.3<br>4.5 |                |             |            | 57.1<br>62.7 |        | 4,9            | 97       | 3.08 |                   | 6,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100,0      |                | 112        |           |               |
| 31 330.9 0.0                   |           |                  | 0.0        |                           | 0.0  | 242.0 242.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5        |          | 7,7            | 320        |       |         | 3,5            | 3.5        | 320        |          |           | 2,0        | 2.0        | 7,58         |         |          | 0.29 | 0.2  | 18.6          |           | 42         |                | 34          |            | 62.7<br>59.4 |        | 6,3<br>6,3     |          |      |                   | 6.85<br>6,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128<br>134 |                | 123<br>136 |           |               |
| age 349 E                      | 0.0       | 1-III.2<br>233.6 | 0.0        | 0.0 10.3                  | 0.0  | 236.5 234.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.8<br>7.4 | Ξ        | _ 1.I<br>_ 7.5 | 329<br>280 |       |         | - 4.2<br>- 2.4 | 4.2        | 346        |          | = =       | 1.0        | 1,0        | 7.36<br>7,39 | _       | = =      | 634  | 0.1  | 96.7<br>81.2  |           | _ 12       | 8 1.3          | 36          |            | - 53.2       |        | - 4.8<br>- 2.2 | 7 0,1    | 5    |                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99<br>67.4 |                | 73.0       | 2         |               |
| NAME 386,1 0,5                 | D 2       | 286,4            | 0.0        | 0.0 12,9                  | 0,0  | 257.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10         |          | - 7.8          | 420        | -     |         | - 10,0         | 10.0       | 410        |          |           | 4.0        | 4.0        | 7.58         |         | _ =      | 8.04 | 0,6  | 91.5          |           | - 5.       |                | 70          |            | 68,T         |        | - 7.3          |          |      |                   | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152        |                | 151        | 2         |               |
| ean — —                        | 0 7       | 7,893            | 0          | 0 362                     | -    | £331 £330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.00       | =        |                |            |       |         |                |            |            | -        |           |            | -          | -            | -       | = =      | -    | -    | -             | -         | _          | _              | _           | -          | -            |        | -              | -        | -    | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                | -          | 2         | -             |

\* Confact Laboratory for information about the quality assurance associated with the results

|                                                                                               | BNF Untreated westewater from collection system BNFs Influent, acrosmed at the Headwarks Diversion Structure | OUTFALL 10<br>OUTFALL 20 | UV-disinfected, discharged via OUTFALL 10<br>Combined Bypess (RAW + PE + EPE) |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|
| Enhanced Primary Treatment (EPT) Usage                                                        | PE Primery Effluent from conventional primaries                                                              | OUTFALL 30               | Combined Bypass (INF + INFS + PE30 + EPE)                                     |
| Total Bypass (hr) EPT Usage (hr) % Usage Total Bypass YTD (hr) EPT Usage YTD (hr) % Usage YTD | PE 30 Primary Effluent from conventional primaries discharged via Outfall 30                                 | MPW                      | Membrane Product Water (Effluent re-use water)                                |
| 0 0 100% 0% 0 100%                                                                            | EPT Enhanced Primary Treatment                                                                               | ML_                      | Megalitre (1,900,000 Litre)                                                   |
|                                                                                               | EPE Enhanced Primary Effluent                                                                                | MPN                      | Most Probable Number                                                          |
|                                                                                               | EPEPS Enhanced Primary Effluent Pump Station                                                                 | NR                       | No Result                                                                     |
| Peoplet Comments                                                                              | FE Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet       | NS                       | No Sample                                                                     |
|                                                                                               | disinfection.                                                                                                | INS                      | Insufficient Sample                                                           |
|                                                                                               | × / 1                                                                                                        | AEP                      | Alberta Environment & Parks                                                   |
|                                                                                               | N/h                                                                                                          |                          |                                                                               |
|                                                                                               | paneys                                                                                                       |                          |                                                                               |
|                                                                                               |                                                                                                              |                          |                                                                               |
|                                                                                               |                                                                                                              | _                        |                                                                               |
|                                                                                               | Alfredo Suarez Shane Harnish                                                                                 |                          |                                                                               |
| AEP Ref #                                                                                     | Arriedo Suarez Snane Harnish                                                                                 |                          |                                                                               |
|                                                                                               | Senior Manager, Operations Senior Manager, Analytical Operation                                              | ns                       |                                                                               |



Gold Bar Wastewater Treatment Plant Plant Performance Report February 2020

Digested Sludge: Total Monthly Volume (ML) 68.9

|                  |                |      |                | V          | olume of FI   | ow (ML)  |                        |           |            |         |      |       |         |         |       |                 |                  |       |                                     |                      |                  |                  |        |           |      | Liquid St | ream Qua     | ality |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 |         |
|------------------|----------------|------|----------------|------------|---------------|----------|------------------------|-----------|------------|---------|------|-------|---------|---------|-------|-----------------|------------------|-------|-------------------------------------|----------------------|------------------|------------------|--------|-----------|------|-----------|--------------|-------|------------|--------------|------------------------|--------|--------------|-------------|---------------------|-----------------------|----------|------------|--------------|------------|--------------|-----------------|---------|
|                  |                |      | lent           |            |               |          |                        |           |            |         |      |       |         |         |       |                 |                  |       |                                     |                      |                  |                  |        |           |      |           |              |       |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 |         |
|                  |                |      | ng e           |            |               | Effluent |                        |           |            |         |      |       |         |         |       |                 |                  |       |                                     |                      |                  |                  |        |           |      |           |              |       |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 |         |
|                  |                |      |                | Non        | UV Disinfecte | d        | UV Disinf              | fected    |            | pH@25°C | 3    |       |         | TSS (mg | a/L)  |                 |                  |       | BOD <sub>5</sub> /cBOD <sub>5</sub> | (mg/L)               |                  |                  |        | TP (mg/L) |      |           |              | NH3   | B-N (mg/L) |              |                        | TKN (r | na/L)        |             | NO <sub>2</sub> +NO | 1 <sub>2</sub> (mg/L) |          | Chle       | oride (mg/L) |            | E.           | coli (Counts/1) | 30 mL)  |
|                  |                |      |                |            |               |          |                        |           |            |         |      |       |         |         |       |                 |                  |       |                                     |                      | L 10             |                  |        |           |      |           |              |       |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 |         |
|                  |                |      |                |            |               |          | OL                     | UTFALL 10 |            |         | 9    |       |         |         |       | L 10            |                  | LL 30 | LL 20                               |                      | TFAL             |                  |        |           |      | LL 10     |              |       |            | LL 10        |                        |        | L 1          |             |                     |                       | LL 10    |            |              | L 10       | <b>1</b> 17  | 1 30 EF 30      | L 10    |
|                  |                |      |                | .L 30      | .L 20         |          |                        |           |            | .L 30   | L 20 |       | .L 30   | L 20    |       | UTFA            |                  | UTFA  | UTFA                                | SEP S                | <u> </u>         | 4                | . L 30 | L 20      |      | UTFA      |              | L 30  |            | UTFA         |                        | .L 30  | L 20<br>UTFA |             | .L 30               | L 20                  | UTFA     | 30         | L 20         | UTFA       | N.           | UTFA            | UTFA    |
|                  | Peak<br>Flow   |      |                | TFAL       | TFAL          | 2        | S                      |           | -          | IFAL    | # H  |       | TFAL    | TEAL    | EPS — | Ī               | RAW              | 5     | ō                                   | th FE                | C FE             | $\dashv$         | TEAL   | TFAL FPC  | 3 -  | ō<br>T    |              | TFAL  | EPS        |              |                        | TFAL   | TFAL O       | -           | TEAL                | TEAL                  | <u> </u> | TFAL       | IF AL        | 5          | 2            | ō   ō           | 0       |
| DATE             | (MLD)          | INFs | RAW            | 9          | Ю             | MPW (    | ⊕ FEC                  | , ,,      | RAW        | 8       | ∂ FE | KAV   | v 3     | 00      |       | EC FE           | BOD <sub>5</sub> |       |                                     | BOD <sub>5</sub> cBO | -                |                  | 8      | 8 8       | FEC  | FE        | RAW          | 0 0   | <u></u>    | FEC F        | E RAW                  | 9      | ∂ FE         | RAW         | 8                   | ПО                    | FEC RA   | AW 3       | 8 8          | FEC        |              |                 | 0^6 FEC |
| Sat-01<br>Sun-02 | 447.8<br>371.7 |      | 263.0<br>250.9 | 5.6<br>0.0 |               |          | 0.0 247.               |           | 7.6        | 7.6     |      | _     | 244 108 |         |       | 3.2 3           | _                | 145   |                                     |                      | 2.0 2.           |                  | 7.12   |           | 0.29 | _         | 33.4<br>37.6 | 42.5  |            |              | 3.22 54.8<br>4.42 69.1 | 62.7   |              | .62         | 0.25                |                       |          | 103        | 412          | 167<br>210 | $\leftarrow$ | 3               | - 8     |
| Mon-03           | 338.5          |      | 250.1          | 0.0        |               |          | 0.0 240.3              |           | 7.5        |         |      |       | 176     |         | I     | 4.0 4           | .                | 1     |                                     |                      | 2.0 2.           | II .             |        |           | 0.25 |           | 40.2         |       |            |              | 4.85 63.8              |        |              | .38         |                     |                       |          | 97         |              | 127        | 1            |                 | 6       |
| Tue-04           | 334.0          | 0.0  | 246.0          | 0.0        | 0.0           | 9.3 0    | 0.0 236.               | I .       | 7.5        |         |      | 7.7 3 | 116     |         |       | 3.0 3           | .0 33            | 7     |                                     |                      | 3.0 3.           | 0 7.33           |        |           | 0.24 | 4 0.24    | 41.2         |       |            | 3.73         | 3.73 63.1              |        |              | .19         |                     |                       | 6.53     | 103        |              | 107        | 1            |                 | 23      |
| Wed-05           | 353.0          | 0.0  | 245.9          | 0.0        | 0.0           | 10.2 0   | 0.0 235.               | .7 235.7  | 7.4        |         |      | 7.7 3 | 112     |         |       | 3.1 3           | .1 336           | 5     |                                     |                      | 1.0 1.           | 0 7.53           |        |           | 0.25 | 5 0.25    | 38.6         |       |            | 3.72         | 3.72 57.9              |        |              | i.41 0.04   | 9                   |                       | 6.73     | 183        |              | 119        | 1            |                 | 2       |
| Thu-06           | 360.3          | 0.0  | 263.2          | 0.0        |               | I        | 0.0 253.4              |           |            |         |      |       | 156     |         |       | 9.6 9           |                  | 1     |                                     |                      | 3.0 3.           | -                |        |           | 0.33 |           | 38.9         |       |            | 1 1          | 4.87 61.2              |        |              | 1.09        |                     |                       |          | 470        |              | 265        | 1            |                 | 7       |
| Fri-07           | 343.3<br>354.8 |      | 254.2<br>246.1 | 0.0        |               | I        | 0.0 245.9              | I .       | 7.6<br>7.6 |         |      |       | 172     |         | - 1   | 3.8 3<br>3.4 3  | · II             | 1     |                                     |                      | 3.0 3.<br>2.0 2. |                  |        |           | 0.28 |           | 36.8<br>37.6 |       |            | 1 1          | 4.84 62.3<br>3.80 71.3 |        |              | 1.15        |                     |                       |          | 153        |              | 337<br>187 | 1            |                 | 5       |
| Sat-08<br>Sun-09 | 354.8          |      | 246.1          | 0.0        |               |          | 0.0 236.4              |           | 4          |         |      | _     | 112     |         |       | 4.1 4           |                  | -     |                                     |                      | 3.0 3.           | _                |        |           | 0.26 |           | 37.6         |       |            |              | 4.44 66.5              |        |              | .63         |                     |                       |          | 78         |              | 118        |              |                 | 5       |
| Mon-10           | 340.2          |      | 253.3          | 0.0        |               |          | 0.0 243.4              | I .       | 7.6        |         |      |       | 163     |         | - 1   | 4.7 4           | ll l             |       |                                     |                      | 3.0 3.           | .                |        |           | 0.27 |           | 41.2         |       |            |              | 5.14 58.0              |        | I            | .25         |                     |                       | ll ll    | 97         |              | 95         | 1            |                 | 4       |
| Tue-11           | 334.4          | 0.0  | 251.1          | 0.0        | 0.0           | 10.2 0   | 0.0 240.0              | I .       | 7.4        |         |      | 7.7 3 | 176     |         |       | 5.7 5           | .7 318           | 3     |                                     | ;                    | 3.0 3.           | 0 8.74           |        |           | 0.39 | 9 0.39    | 45.8         |       |            | 5.96         | 5.96 73.3              |        |              | 1.77        |                     |                       | 5.56     | 272        |              | 116        | 1            |                 | 5       |
| Wed-12           | 340.1          | 0.0  | 249.0          | 0.0        | 0.0           | 9.7 0    | 0.0 239.3              | .3 239.3  | 7.6        |         |      |       | 244     |         |       | 5.4 5           | .4 30            | 7     |                                     |                      | 3.0 3.           | 0 7.50           |        |           | 0.39 | 9 0.39    | 40.8         |       |            | 5.94         | 5.94 61.0              |        |              | i.19 < 0.0° | 1                   |                       | 5.74     | 118        |              | 167        | 1            |                 | 13      |
| Thu-13           | 342.4          | 0.0  | 254.2          | 0.0        |               |          | 0.0 245.2              | I .       | 7.8        |         |      |       | 128     |         | - 1   | 4.9 4           |                  | ´     |                                     |                      | 2.0 2.           |                  |        |           | 0.34 |           | 39.8         |       |            | 1 1          | 6.16 66.1              |        | I            | 1.62        |                     |                       |          | 117        |              | 128        |              |                 | 13      |
| Fri-14<br>Sat-15 | 351.0<br>347.0 | 0.0  | 252.2<br>243.2 | 0.0        |               |          | 0.0 242.4              |           | 7.6<br>7.6 |         |      |       | 132     |         |       | 3.4 3<br>3.6 3  | II .             |       |                                     |                      | 3.0 3.           |                  |        |           | 0.27 |           | 39.6<br>33.0 |       |            |              | 5.58 64.5<br>5.25 63.9 |        |              | .91         |                     |                       |          | 143<br>109 |              | 130        | 1            |                 | 10      |
| Sun-16           | 341.2          |      | 238.2          | 0.0        |               |          | 0.0 232.0              | _         | 7.7        |         |      |       | 72      |         |       | 3.6 3           |                  |       |                                     |                      | 2.0 2.           | _                |        |           | 0.24 |           |              |       |            |              | 5.28 70.6              |        |              | .31         |                     |                       |          | 95         |              | 111        | $\vdash$     |                 | 5       |
| Mon-17           | 349.9          | 0.0  | 242.0          | 0.0        | 0.0           | 9.9 0    | 0.0 232.               |           | 7.5        |         |      | 7.6 2 | 180     |         |       | 5.2 5           | .2 312           | 2     |                                     | ;                    | 3.0 3.           | 0 7.41           |        |           | 0.30 | 0 0.30    | 36.0         |       |            | 4.68         | 4.68 62.3              |        |              | .46         |                     |                       | 6.51     | 98         |              | 102        | 1            |                 | 6       |
| Tue-18           | 335.3          | - 1  | 249.1          | 0.0        | 0.0           | 10.6 0   | 0.0 238.               | .5 238.5  | 7.6        |         |      | 7.8 3 | 148     |         | I     | 5.0 5           | .0 30            | 1     |                                     |                      | 2.0 2.           | II .             |        |           | 0.27 | 7 0.27    | 36.0         |       |            | 5.33         | 5.33 27.3              |        |              | 1.17        |                     |                       | 6.12     | 102        |              | 102        | 1            |                 | 2       |
| Wed-19           | 335.1          |      | 249.6          | 0.0        |               |          | 0.0 239.0              |           |            |         |      | .     | 112     |         | - 1   | 3.7 3           |                  | ´     |                                     |                      | 5.0 5.           | · II             |        |           | 0.26 |           | 34.8         |       |            |              | 3.16 57.0              |        |              | < 0.0       | 1                   |                       |          | 110        |              | 103        | 2            |                 | 4       |
| Thu-20           | 332.4          | - 1  | 250.1          | 0.0        |               | I        | 0.0 239.               |           | 7.6        |         |      |       | 116     |         |       | 3.5             |                  | 1     |                                     |                      | 3.0 3.           |                  |        |           | 0.27 |           | 38.7         |       |            |              | 3.61 60.0              |        |              | .03         |                     |                       |          | 142        |              | 124        | 1            |                 | 4       |
| Fri-21<br>Sat-22 | 350.9<br>361.7 | 0.0  | 256.9<br>251.1 | 0.0        |               | I        | 0.0 247.4<br>0.0 241.5 |           | 7.6        |         |      |       | 124     |         | - 1   | 4.6 4<br>3.9 3  | ll l             | ´     |                                     |                      | 2.0 2.<br>3.0 3. | ll .             |        |           | 0.29 |           | 39.6<br>37.1 |       |            |              | 4.52 59.9<br>3.96 63.5 |        |              | .64         |                     |                       | ll ll    | 215<br>170 |              | 205        | 1            |                 | 4       |
| Sun-23           | 360.6          |      | 249.6          | 0.0        |               |          | 0.0 241.               |           | 7.6        |         |      |       | 110     |         |       | 4.9 4           |                  |       |                                     |                      | 3.0 3.           |                  |        | _         | 0.29 |           | 37.1         |       | +          |              | 4.05 61.7              |        |              | .25         |                     |                       |          | 107        | _            | 174        |              |                 | 4       |
| Mon-24           | 346.3          | - 1  | 254.1          | 0.0        |               |          | 0.0 244.0              |           | 7.5        |         |      |       | 132     |         | - 1   | 5.2 5           |                  | 1     |                                     |                      | 3.0 3.           |                  |        |           | 0.29 |           | 32.1         |       |            | 1 1          | 3.24 59.9              |        |              | .33         |                     |                       | ll ll    | 123        |              | 122        | 1            |                 | 6       |
| Tue-25           | 345.1          | 0.0  | 247.1          | 0.0        | 0.0           | 10.2 0   | 0.0 236.0              |           | 7.7        |         |      | 7.7 2 | 188     |         |       | 4.0 4           | .0 312           | 2     |                                     | ;                    | 3.0 3.           | 0 7.43           |        |           | 0.28 | 8 0.28    | 37.6         |       |            | 3.42         | 3.42 59.4              |        |              | i.67        |                     |                       | 6.61     | 113        |              | 123        | 1            |                 | 6       |
| Wed-26           | 339.4          |      | 249.5          | 0.0        |               | I        | 0.0 239.4              |           |            |         |      | · II  | 186     |         | - 1   | 3.5             |                  |       |                                     |                      | 2.0 2.           | II .             |        |           | 0.28 |           | 36.0         |       |            | 1 1          | 2.88 60.9              |        |              | < 0.0       |                     |                       |          | 133        |              | 114        | 1            |                 | 4       |
| Thu-27           | 431.6          | - 1  | 271.4          | 9.5        |               | I        | 0.0 252.               | I .       | 7.5        | 7.4     |      |       | 196 144 |         |       | 4.3 4           |                  |       |                                     |                      | 3.0 3.           | II .             |        |           | 0.29 |           | 38.4         | 38.1  |            | 1 1          | 3.38 57.5              |        |              | i.18        | 0.94                |                       | ll ll    |            | 455          | 156        | 1            | 3               | 3       |
| Fri-28<br>Sat-29 | 475.3<br>655.4 | 0.0  | 286.8          | 21.7       |               | I        | 0.0 256.0<br>0.0 253.0 |           | 7.5        | 7.5     |      | 7.7 3 | 144 103 |         | - 1   | 4.2 4<br>15.4 1 | ll l             | 3 151 |                                     |                      | 3.0 3.           | 0 7.12<br>0 7.26 | 4.77   |           | 0.30 |           | 30.1<br>31.4 | 30.3  |            | 2.80<br>3.25 | 2.80 55.9<br>3.25 59.4 | 46.8   |              | i.36        | 0.83                |                       | 6.62     | 250        | 409          | 233        | 1            | 2               | 7       |
| Average          | _              | 0.0  | 252.7          | 1.3        | 0.0           | 9.8 0    | 0.0 241.               |           | 7.6        | 7.5     |      | 7.7 3 | 135 118 |         |       | 4.7 4           | .7 316           | 5 163 |                                     | :                    | 2.7 2.           | 7.28             | 5.63   |           | 0.30 |           | 37.2         | 37.0  |            | 0.00         | 4.33 61.1              | 53.4   | (            | 0.63 0.0    | 9 0.67              |                       | 6.24     | 156        | 425          | 154        |              |                 |         |
| Minimur          | 332.4          |      | 238.2          | 0.0        | 0.0           | 8.7 0    | 0.0 229.0              |           | 7.4        | 7.4     |      | 7.6 2 | 103     |         |       | 3.0 3           | .0 214           | 1 145 |                                     |                      | 1.0 1.           | 0 3.42           | 4.77   |           | 0.24 |           | 30.1         | 30.3  |            |              | 2.80 27.3              |        |              | .64 < 0.0   |                     |                       | 5.26     | 77.9       | 409          | 95         | 2            | 2               | 2       |
| Maximur          |                | 0.0  | 286.8          | 21.7       | 0.0           | 10.8 0   | 0.0 256.0              | .0 256.0  | 7.8        | 7.6     |      | 7.9 5 | 40 144  |         |       | 15.4 1          | 5.4 385          | 194   |                                     | !                    | 5.0 5.           | 0 8.84           | 7.12   |           | 0.62 | 2 0.62    | 45.8         | 42.5  |            | 6.16         | 6.16 73.3              | 62.7   | 8            | .77 0.0     | 9 0.94              |                       | 7.11     | 470        | 455          | 337        | 2            | 3               | 23      |
| TOTAL            |                | 0    | 7,329          | 37         | 0             | 284      | 0 7,008                | 18 7,008  |            |         |      |       |         |         |       |                 |                  |       |                                     |                      |                  |                  |        |           |      |           |              |       |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 | 5       |
|                  |                |      |                |            |               |          | ,,,,,,                 |           |            |         |      |       |         |         |       |                 |                  |       |                                     |                      |                  |                  |        |           |      |           |              |       |            |              |                        |        |              |             |                     |                       |          |            |              |            |              |                 |         |

|                   | Er             | hanced Primary T | reatment (EPT) Usage  |                    |             |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |
| 16                | 16             | 100%             | 0%                    | 0                  | 100%        |

| Report Cor | mments |
|------------|--------|
|            |        |
|            |        |
|            |        |
|            |        |
|            |        |
|            |        |
| AEP Ref #  |        |
|            |        |
|            |        |

Untreated influent into the plant
Untreated wastewater from collection system
Influent, screened at the Headworks Diversion Structure
Primary Effluent from conventional primaries
Primary Effluent from conventional primaries discharged via Outfall 30
Enhanced Primary Treatment
Enhanced Primary Effluent
Enhanced Primary Effluent Pump Station
Final Effluent from secondary treatment process (with biological nutrient removal).
Pre-Ultraviolet disinfection. RAW INF INFS PE PE 30 EPT EPE EPEPS

FEC Combined post-UV disinfection (FE+EPEPS)
OUTFALL 10 UV-disinfected, discharged via OUTFALL 10
OUTFALL 20 Combined Bypass (RAW + PE + EPE)
OUTFALL 30 Combined Bypass (INF + INFS + PE30 + EPE)
MPW Membrane Product Water (Effluent re-use water)
ML Megalitre (1,000,000 Litre)
MPN Most Probable Number
NR No Result
NS No Sample
INS Insufficient Sample
AEP Alberta Environment & Parks

for Alfredo Suarez

Senior Manager, Operations

Senior Manager, Analytical Operations

the of the

PROVIDING MORE EPCOR

#### Gold Bar Wastewater Treatment Plant Plant Performance Report

| Martin   M  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                 |                                                 |                                                                                                                                                                                                                                                                                             |                       |          |          |                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                       |                                     |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |          |          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                   |                                         |                                              |           |                                                                                                                                                                                                                                                                                                     | Digested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sludge Tot                             | al Monthly Vo                                                                                                         | dume (ML) |            | 732        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                               | olume of F                                                         | low (ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                 |                                                 |                                                                                                                                                                                                                                                                                             |                       |          |          |                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                       |                                     |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |      | Liquid                                                                                                                                                                                        | Stream Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uality                                                                                      |          |          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                   |                                         |                                              |           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                       |           |            |            |
| Part     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                                                    | Effluen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t_                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                 |                                                 |                                                                                                                                                                                                                                                                                             |                       |          |          |                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                       |                                     |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |          |          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                   |                                         |                                              |           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                       |           |            |            |
| Part     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Non                                             | UV Disinfect                                                       | ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UVE                                     | Disinfected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pi                                         | H@25°C          |                                                 |                                                                                                                                                                                                                                                                                             |                       | T33 (r   | ng/L)    |                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 | В                                     | D <sub>s</sub> /cBOD <sub>s</sub> ( | (mg/L) |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | TP (m    | 9/L) |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | NH3-P    | N (mg/L) |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | TKN (mg/L)                                   |                                                                                                                                                                                                                                                   |                                         | NO <sub>2</sub> +NO                          | (mg/L)    |                                                                                                                                                                                                                                                                                                     | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hloride (mg/l                          | )                                                                                                                     |           | coll (Cour | ts/100 mL) |
| Model |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UTFALL 30                                       | UTFALL 20                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PEP8                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UTFALL 30                                  | JTFALL 20       | OUTFALL                                         |                                                                                                                                                                                                                                                                                             | JTFAEL 30             | TFALL 20 | EP&      | OUTFALL 10                                                                                                                                                           |                                                                                                                                                                                                                       | 74.41                                                                                                                                                                                                                                                                                                                           | OUTFALL 30                            | OUTFALL 20                          |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | TFALL 30                                             | TFALL 20 | £PS  | OUTFALL 10                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TFALL 30                                                                                    | TFALL 20 | EP8      | OUTFALL 10                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | TFALL 30                                     | OUTFALL 10                                                                                                                                                                                                                                        |                                         | JIFALL 30                                    | JTFALL 20 | OUTFALL 18                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JIFALL 20                              | OUTFALL 10                                                                                                            | RAW       | OUTFALL 30 | OUTFALL 20 |
| Month   Mont  | Sun-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                  | 250,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,0                                             | 0.0                                                                | MPW 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                          | 8               |                                                 | RAW                                                                                                                                                                                                                                                                                         | 8                     | ठ        | <u>a</u> |                                                                                                                                                                      | FE                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 | BOD <sub>s</sub> I                    | 000 <sub>5</sub> B                  |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                    | 3        | â l  |                                                                                                                                                                                               | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                           | 3        | <u>a</u> |                                                                                                                                                                                                                                                                                                      | FE                                                                                                                                                                                                                                                                                                                                                                                                  | 10.00                                                                                                                                                                                        | 8 8                                          | 1 1110                                                                                                                                                                                                                                            | RAW                                     | 3                                            | 8         |                                                                                                                                                                                                                                                                                                     | AW 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 3                                    | 120                                                                                                                   | R .       | X10^6      | X10^8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mon-02 Tus-03 Wed-04 Thu-05 Fri-06 Sat-07 Sat-07 Tus-10 Wed-11 Thu-12 Fri-13 Sat-14 Mon-16 Tus-17 Tus-17 Mon-16 Tus-17 Sat-18 Sat-14 Sat-14 Sat-14 Sat-15 Mon-15 Tus-17 Sat-21 Sat-22 Mon-23 Tus-24 Mon-23 Tus-25 Thu-26 Fri-27 Sat-28 Sat-29 Mon-30 Tus-31 Tus-17 Tus-18 Tu | 557.7<br>362.7<br>360.9<br>351.4<br>336.9<br>355.6<br>343.0<br>355.5<br>328.0<br>355.1<br>359.9<br>339.1<br>339.0<br>337.2<br>339.1<br>339.0<br>337.2<br>345.3<br>509.2<br>534.6<br>437.7<br>424.1<br>379.7<br>458.8<br>457.0<br>468.8<br>470.7<br>426.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3<br>366.3 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 283.0<br>225.5<br>272.2<br>250.3<br>256.9<br>246.3<br>240.4<br>258.9<br>255.1<br>253.6<br>249.5<br>252.2<br>250.6<br>252.8<br>257.2<br>254.2<br>252.8<br>252.0<br>252.0<br>252.0<br>252.0<br>252.0<br>252.0<br>252.0<br>253.0<br>273.2<br>270.6<br>283.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2<br>273.2 | 14.8 24.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 9.5<br>9.5<br>9.8<br>11.3<br>10.7<br>9.6<br>9.8<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>10.5<br>9.3<br>10.5<br>9.8<br>9.7<br>11.1<br>10.4<br>9.5<br>10.2<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10. | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 258.7 258.8 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 | 1.7 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9.1.3 7.9. | 7.6 F. | 5 5 5 5 5 5 5 5 | 7.7 7.5 7.6 7.7 7.7 7.7 7.7 7.7 7.6 7.7 7.7 7.7 | 344<br>396<br>331<br>276<br>377<br>312<br>340<br>460<br>328<br>332<br>317<br>324<br>308<br>304<br>336<br>306<br>320<br>356<br>224<br>388<br>300<br>356<br>224<br>388<br>300<br>356<br>325<br>325<br>326<br>327<br>327<br>328<br>328<br>328<br>328<br>328<br>328<br>328<br>328<br>328<br>328 | 74<br>52<br>73<br>101 |          |          | 6.1<br>4.8<br>4.9<br>3.2<br>3.7<br>4.3<br>3.8<br>4.2<br>4.2<br>4.4<br>5.4<br>5.7<br>4.8<br>5.4<br>4.3<br>4.5<br>3.6<br>3.6<br>3.8<br>3.1<br>5.1<br>5.0<br>3.8<br>4.2 | 6.1<br>4.6<br>4.9<br>3.2<br>3.7<br>4.3<br>3.8<br>4.2<br>4.2<br>4.4<br>5.4<br>5.4<br>5.4<br>5.5<br>4.3<br>3.6<br>3.6<br>3.8<br>3.6<br>3.6<br>3.8<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3 | 301 342 294 336 303 327 362 314 332 361 366 377 328 360 266 293 343 247 271 336 369 369 370 363 364 369 369 369 370 363 364 370 363 364 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 365 370 370 370 370 370 370 370 370 370 370 | 146<br>111<br>151<br>166<br>179<br>99 |                                     |        | 6.0 | 5.0 6.78 6.0 6.88 6.0 6.88 6.0 6.84 6.0 6.84 6.0 6.84 6.0 6.84 6.0 6.84 6.0 6.84 6.0 6.83 6.0 7.65 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 8.33 6.0 6.38 6.0 6.38 6.0 6.38 6.0 6.38 6.0 6.38 6.0 6.38 6.0 6.88 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 7.86 6.0 6.89 6.0 6.89 6.0 6.89 6.0 6.89 6.0 6.89 6.0 6.89 6.0 6.89 | 4.24<br>2.64<br>5.98<br>6.36<br>5.75<br>5.28<br>3.19 |          |      | 0.34 0.29 0.27 0.24 0.23 0.23 0.25 0.27 0.26 0.24 0.30 0.32 0.31 0.26 0.32 0.31 0.26 0.22 0.30 0.32 0.31 0.26 0.22 0.20 0.19 0.22 0.20 0.19 0.24 0.27 0.20 0.24 0.27 0.21 0.22 0.21 0.22 0.23 | 0.34 3.0.29 3.0.29 3.0.22 4.0.20 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0.22 3.0. | 36.3 37.6 8.0 9.0 4 8.0 8.0 8.3 2.0 2.5 8.6 5.6 0.2 7.7 7.1 41.4 41.4 41.4 41.4 41.4 41.4 4 |          |          | 4.52<br>3.32<br>5.24<br>6.15<br>5.68<br>5.83<br>4.97<br>5.46<br>4.89<br>5.47<br>4.56<br>4.43<br>4.36<br>4.21<br>3.79<br>4.24<br>3.60<br>4.21<br>3.79<br>4.24<br>4.36<br>4.21<br>3.70<br>4.21<br>4.21<br>4.21<br>4.21<br>4.22<br>4.21<br>4.22<br>4.21<br>4.22<br>4.21<br>4.22<br>4.21<br>4.22<br>4.22 | 4.52<br>3.32<br>5.24<br>6.15<br>5.58<br>5.58<br>5.58<br>5.83<br>4.97<br>5.46<br>4.89<br>5.47<br>4.56<br>4.43<br>4.36<br>4.37<br>4.29<br>4.00<br>4.52<br>4.00<br>4.52<br>4.00<br>4.52<br>4.00<br>4.52<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.53<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.0 | 53.5<br>51.5<br>56.4<br>64.2<br>64.0<br>67.5<br>64.5<br>61.3<br>62.6<br>67.5<br>67.5<br>63.4<br>60.1<br>62.8<br>63.2<br>61.3<br>62.9<br>65.1<br>60.2<br>61.6<br>57.5<br>60.7<br>58.8<br>57.6 | 49.2<br>44.2<br>53.7<br>51.2<br>38.8<br>37.0 | 6.1<br>6.1<br>6.3<br>7.7<br>7.8<br>6.3<br>7.1<br>7.8<br>6.3<br>7.1<br>7.7<br>7.7<br>7.7<br>7.3<br>7.1<br>6.5<br>6.5<br>7.2<br>6.1<br>6.5<br>7.0<br>6.5<br>6.5<br>7.0<br>6.5<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 8 a a a a a a a a a a a a a a a a a a a | 0.06<br>0.21<br>0.04<br>0.06<br>0.05<br>0.36 |           | 5.28<br>4.61<br>4.76<br>5.34<br>5.68<br>6.12<br>6.57<br>5.44<br>5.94<br>6.96<br>6.34<br>7.69<br>7.38<br>7.20<br>7.14<br>7.15<br>7.28<br>8.23<br>8.36<br>8.36<br>8.36<br>8.37<br>7.20<br>7.14<br>8.23<br>8.36<br>7.20<br>7.14<br>8.23<br>8.36<br>8.36<br>8.36<br>8.36<br>8.36<br>8.36<br>8.36<br>8.3 | 227   256   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177 | 148<br>148<br>144<br>499<br>205<br>209 | 1555 222 1888 1772 124 110 100 232 168 1556 1556 107 84 83 102 104 105 101 106 122 144 159 166 1166 1166 1166 167 168 | 2.2       | 3.4<br>1.7 |            |
| 70.7 0.0 352.2 88.2 0.0 11.3 0.0 262.9 252.9 7.7 7.8 - 7.8 460 101 6.1 6.1 447 179 6.0 6.0 8.43 6.36 0.34 0.34 45.6 41.4 6.15 71.5 53.7 - 8.05 0.08 0.85 - 9.34 268 458 - 244 2.2 3.4 - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                  | 8,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                             | 0.                                                                 | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                          | _               |                                                 |                                                                                                                                                                                                                                                                                             | _                     | -        | -        | -                                                                                                                                                                    | -                                                                                                                                                                                                                     | =                                                                                                                                                                                                                                                                                                                               | -                                     |                                     |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                    |          |      | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |          |          |                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                              | = =                                                                                                                                                                                                                                               | -                                       | 1-1                                          | -         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                       | 1,0       | 1,7        |            |

\* Contact Laboratory for information about the quality assurance associated with the results

|                   | E              | hanced Primary T | reatment (EPT) Usage  |                    |             |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |
| 41                | 41             | 100%             | 57                    | 57                 | 100%        |

| 1 | OUTFALL 10 - March 8: Analysis of the sample exceeded the recommended hold time for E. coli |
|---|---------------------------------------------------------------------------------------------|
| 2 | OUTFALL 10 - March 9. Analysis of the sample exceeded the recommended hold time for E. coli |
| 3 | RAW - March 25: Analysis of the sample exceeded the recommended hold time for BOD           |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |

RAW Untracted influent into the plant Untracted influent into the plant Untracted influent accepted was develor from collection system OUTFALL 10 UV-distributed, discharged via OUTFALL 10 UV-distributed, discharged via OUTFALL 10 OUTFALL 20 Combined Bypass (RAW + PE + EPE) PE 30 Primary Effluent from conventional primaries of sicharged via Outfall 30 MPW Membrane Product Visiter (Effluent re-use water) Primary Effluent from conventional primaries discharged via Outfall 30 MPW Membrane Product Visiter (Effluent re-use water) MPW Membrane Product Visiter (Ef

Muldo Suarez Shane Harnish

Senior Manager, Analytical Operations

May 05/2020



# Gold Bar Wastewater Treatment Plant Plant Performance Report

|                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                    |                                                                                                                                                                                 |                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                 |                                                                                                                                                                                    |                                                                                    |         |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                |                                    |                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                             |        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                            |                                         |                                                                                                      |         |                                                                                                                                                                                                                                                                              | Digested                                                                | Sludge: Tota                                                                    | I Monthly Vo                                                                                | lume (ML) |                                                                                  | 64.3       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                    |                                                                                                                                                                                 | V                                                                                                                                                                     | olume of                                | Flow (M                                                                                                                                                                                                                                                                       | IL)                                                                |                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                 |                                                                                                                                                                                    |                                                                                    |         |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                |                                    |                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |      | Liquid                                                                                                                                                | Stream Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uality                                                                                                                                                                                 |                                                             |        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                            |                                         |                                                                                                      |         |                                                                                                                                                                                                                                                                              |                                                                         |                                                                                 |                                                                                             |           |                                                                                  |            |
|                                                                                                                                                                                                     |                                                                                                                                                                                                                      | Influent                                                           |                                                                                                                                                                                 |                                                                                                                                                                       |                                         | Eff                                                                                                                                                                                                                                                                           | fluent                                                             |                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                 |                                                                                                                                                                                    |                                                                                    |         |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                |                                    |                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                             |        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                            |                                         |                                                                                                      |         |                                                                                                                                                                                                                                                                              |                                                                         |                                                                                 |                                                                                             |           |                                                                                  |            |
|                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                    | L                                                                                                                                                                               | Non                                                                                                                                                                   | UV Disinfe                              | ted                                                                                                                                                                                                                                                                           |                                                                    | UV Disinfected                                                                                                                                                                                                                                                                                                                      |      | pHo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | @25°C   |                                                 |                                                                                                                                                                                    |                                                                                    | TSS (m  | ng/L) |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                         | ВС                                                                                             | OD <sub>5</sub> /cBOD <sub>5</sub> | (mg/L)             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | TP (m                                 | /L)  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        | NH3-N                                                       | (mg/L) |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Т                                                                                                    | KN (mg/L)                                                                                            |                                                                                                                                                                                                                                                            |                                         | NO <sub>2</sub> +NO <sub>3</sub> (r                                                                  | mg/L)   |                                                                                                                                                                                                                                                                              | Ch                                                                      | loride (mg/L)                                                                   | )                                                                                           | E.        | coli (Count                                                                      | s/100 mL)  |
|                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                 | FALL 30                                                                                                                                                               | FALL 20                                 |                                                                                                                                                                                                                                                                               | S <sub>S</sub>                                                     | OUTFALL 10                                                                                                                                                                                                                                                                                                                          |      | FALL 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FALL 20 | OUTFALL 10                                      |                                                                                                                                                                                    | FALL 30                                                                            | FALL 20 | S     | OUTFALL 10                                                                                                                                                                                                                         |                                                                                                                                                                                                                              | RAW                                                                                                                                                                                                     | OUTFALL 30                                                                                     | OUTFALL 20                         | EPEPS              | OUTFALL 10                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FALL 30                                | FALL 20                               | Sd   | OUTFALL 10                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FALL 30                                                                                                                                                                                | FALL 20                                                     | Sa     | OUTFALL 10                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FALL 30                                                                                              | FALL 20                                                                                              | OUTFALL 10                                                                                                                                                                                                                                                 |                                         | FALL 30                                                                                              | FALL 20 | OUTFALL 10                                                                                                                                                                                                                                                                   | FALL 30                                                                 | FALL 20                                                                         | OUTFALL 10                                                                                  | RAW       | OUTFALL 30                                                                       | OUTFALL 20 |
| DATE                                                                                                                                                                                                | Flow<br>(MLD)                                                                                                                                                                                                        | INFs                                                               | RAW                                                                                                                                                                             | IT UO                                                                                                                                                                 | OUTI                                    | MPW                                                                                                                                                                                                                                                                           | EPEF                                                               | FEC FE                                                                                                                                                                                                                                                                                                                              | RAW  | ,   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l lo    | FEC                                             | RAW                                                                                                                                                                                | UO<br>T                                                                            | 100     | EPER  | FEC                                                                                                                                                                                                                                | FE                                                                                                                                                                                                                           | BOD <sub>5</sub>                                                                                                                                                                                        | BOD <sub>5</sub>                                                                               | BOD <sub>5</sub>                   | BOD <sub>5</sub> C | BOD <sub>5</sub> cB                                                                                                                                                                                                                                    | oD₅ RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T UO                                   | LUO                                   | EPEF | FEC FE                                                                                                                                                | E RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v   150                                                                                                                                                                                | L DO                                                        | EPE    | FEC                                                                                                                                                                                                                          | FE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aw   5                                                                                               | 9                                                                                                    | FEC                                                                                                                                                                                                                                                        | RAW                                     | 100<br>TT                                                                                            | 100 F   | FEC F                                                                                                                                                                                                                                                                        | RAW   5                                                                 | L NO                                                                            | FEC                                                                                         | X10^6     | X10^6                                                                            | X10^6 FE   |
| Wed-01 Thu-02 Fri-03 Sat-04 Sun-05 Mon-06 Tue-07 Wed-08 Thu-09 Fri-10 Sat-11 Sun-12 Mon-13 Tue-14 Wed-15 Thu-16 Fri-17 Sat-18 Sun-19 Mon-20 Tue-21 Tue-21 Tue-24 Sat-26 Mon-27 Tue-28 Wed-29 Thu-30 | 333.5<br>325.5<br>352.9<br>387.2<br>556.8<br>540.6<br>466.8<br>740.1<br>445.7<br>365.2<br>472.2<br>601.7<br>534.0<br>565.9<br>491.2<br>408.8<br>369.2<br>366.5<br>340.1<br>332.0<br>342.1<br>357.3<br>347.9<br>328.5 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 248.1 250.8 249.8 246.7 243.7 261.1 261.2 294.2 295.4 327.6 393.7 301.8 261.0 279.5 378.4 25 378.4 25 287.6 282.9 291.2 287.6 282.9 258.8 257.4 261.6 266.2 255.6 265.5 4 255.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>30.9<br>26.6<br>64.4<br>4.7<br>0.0<br>20.3<br>69.6<br>46.5<br>55.9<br>80.9<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 8.9<br>9.1<br>8.7<br>9.2<br>8.4<br>9.1<br>8.9<br>8.7<br>9.6<br>8.5<br>9.4<br>9.4<br>8.4<br>8.4<br>8.4<br>8.5<br>8.5<br>9.0<br>9.2<br>9.0<br>9.1<br>8.5<br>9.1<br>8.7<br>9.6<br>8.9<br>8.7<br>8.9<br>8.7<br>8.9<br>8.7<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 241.7 241.7 241.1 241.1 237.5 237.5 235.3 235.3 252.0 252.0 254.4 254.4 260.1 260.1 253.6 253.6 280.0 280.0 287.7 287.7 251.6 251.0 251.0 251.0 260.0 260.0 288.5 288.5 278.2 278.2 289.1 289.1 291.3 291.3 271.7 271.7 278.2 278.2 273.9 273.9 271.1 271.1 253.9 253.9 249.4 249.4 247.7 247.7 252.3 252.3 255.8 256.8 246.4 246.4 | 77   | 7.5   7.5   7.6   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5 |         | 7.5 7.5 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 332<br>304<br>216<br>368<br>332<br>400<br>356<br>320<br>328<br>260<br>300<br>316<br>288<br>244<br>196<br>260<br>276<br>266<br>255<br>328<br>337<br>196<br>304<br>288<br>311<br>364 | 68<br>56<br>65<br>57<br>66<br>82<br>78<br>51<br>60<br>78<br>58<br>90<br>105<br>130 |         |       | 2.8<br>3.7<br>2.6<br>1.7<br>4.1<br>4.6<br>5.5<br>3.9<br>5.6<br>24.6<br>4.1<br>3.9<br>3.5<br>5.5<br>7.8<br>3.6<br>5.0<br>4.0<br>4.3<br>7.1<br>7.6<br>4.4<br>4.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8 | 2.8<br>3.7<br>2.6<br>1.7<br>4.1<br>4.6<br>5.5<br>3.9<br>5.6<br>4.1<br>3.9<br>3.5<br>6.5<br>7.8<br>3.6<br>5.0<br>4.0<br>4.3<br>7.1<br>7.6<br>4.4<br>4.0<br>5.8<br>8.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | 335<br>305<br>314<br>212<br>302<br>284<br>349<br>321<br>218<br>220<br>263<br>303<br>319<br>296<br>254<br>288<br>187<br>228<br>302<br>290<br>310<br>287<br>280<br>310<br>289<br>361<br>293<br>361<br>293 | 117<br>135<br>116<br>119<br>125<br>193<br>134<br>130<br>345<br>103<br>132<br>133<br>150<br>292 |                                    |                    | 3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>4.0<br>3.0<br>3.0<br>4.0<br>2.0<br>3.0<br>4.0<br>4.0<br>3.0<br>3.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6 | 200 7.3 3.0 7.7 3.0 7.7 3.0 7.7 3.0 7.7 3.0 7.7 3.0 8.8 3.0 8.8 3.0 8.8 3.0 6.6 6.0 6.6 4.0 8.8 3.0 8.8 3.0 6.1 4.0 6.6 4.0 6.1 4.0 6.6 4.0 6.6 4.0 7.7 3.0 6.6 6.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7.7 5.0 7. | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 1 1 6 6 9 9 4 4 5 5 D 2 2 4 4 1 D D |      | 0.22 0.21 0.19 0.24 0.26 0.27 0.28 0.22 0.91 0.24 0.23 0.21 0.21 0.36 0.44 0.19 0.28 0.20 0.53 0.30 0.29 0.20 0.53 0.33 0.29 0.25 0.28 0.26 0.50 0.36 | 0.22 4.0.21 4.0.20 4.0.22 3.0.21 3.0.24 3.0.22 2.21 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.23 3.0.21 3.0.21 3.0.36 2.0.24 3.0.22 3.0.21 3.0.20 3.0.21 3.0.20 3.0.20 3.0.20 3.0.28 3.0.28 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 3.0.20 | 2.2 0.8 3.9 0.8 6.1 38.7 1.7 35.0 0.8 6.1 37.2 2.2 8.2 6.3 31.4 2.2 8.2 6.3 32.2 2.8 26.3 32.2 2.7 7.7 27.4 9.0 24.2 3.5 0.5 7.7 32.0 49.0 6.9 5.7 7.5 9.0 6.9 6.9 5.7 5.7 6.6 6.6 8.0 | 2 2 3 3 3 3 4 4 2 2 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 |        | 2.92<br>3.97<br>4.32<br>4.42<br>4.64<br>5.17<br>5.03<br>3.99<br>3.22<br>1.45<br>5.40<br>4.91<br>2.70<br>2.10<br>3.05<br>2.80<br>3.66<br>5.50<br>4.97<br>3.66<br>4.48<br>4.46<br>2.70<br>2.16<br>2.29<br>2.55<br>2.31<br>2.25 | 3.97<br>4.32<br>4.42<br>4.64<br>5.17<br>5.03<br>3.99<br>3.22<br>1.45<br>2.70<br>2.10<br>3.05<br>2.80<br>3.66<br>5.50<br>3.66<br>5.50<br>4.91<br>2.70<br>2.10<br>3.66<br>5.40<br>4.91<br>2.70<br>2.10<br>3.66<br>5.50<br>4.91<br>2.70<br>2.80<br>3.66<br>5.50<br>4.91<br>2.70<br>2.70<br>2.10<br>2.80<br>3.66<br>5.50<br>4.91<br>2.70<br>2.70<br>2.10<br>2.80<br>3.66<br>5.50<br>4.91<br>2.70<br>2.80<br>3.66<br>5.50<br>4.91<br>3.66<br>5.50<br>4.91<br>3.66<br>5.50<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>3.66<br>5.70<br>4.91<br>4.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91<br>5.91 | 57.5<br>50.6<br>43.7<br>52.1<br>63.3<br>59.6<br>51.0<br>47.0<br>48.3<br>49.0<br>51.9<br>57.3<br>52.7 | 50.4<br>47.1<br>42.5<br>36.6<br>36.0<br>42.6<br>43.1<br>44.8<br>46.9<br>47.2<br>53.6<br>46.8<br>65.8 | 5.4<br>5.8<br>6.7<br>6.1<br>6.4<br>6.9<br>7.1.1<br>5.7<br>5.0<br>3.3<br>5.8<br>6.9<br>7.1<br>4.8<br>4.5<br>5.3<br>5.1<br>6.7<br>6.7<br>6.1<br>4.8<br>4.5<br>6.2<br>4.6<br>4.4<br>4.7<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.20<br>0.26<br>0.37<br>0.42<br>0.20<br>0.04<br>0.60<br>0.28<br>0.39<br>0.56<br>0.62<br>0.45<br>0.48 |         | 8.27<br>8.72<br>9.38<br>8.72<br>10.6<br>9.64<br>6.70<br>6.66<br>6.07<br>6.89<br>7.15<br>6.17<br>5.25<br>6.14<br>7.02<br>6.17<br>5.25<br>6.14<br>7.02<br>6.17<br>5.25<br>6.14<br>7.05<br>6.21<br>7.14<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.99<br>8.86 | 119<br>126<br>140<br>102<br>83<br>100<br>104<br>106<br>100<br>106<br>95 | 204<br>138<br>148<br>148<br>1331<br>112<br>118<br>111<br>110<br>110<br>99<br>99 | 129 113 114 1122 126 113 177 157 1262 135 1323 104 94 104 102 103 112 107 103 99 106 102 97 | 2.1       | 1.6<br>2.2<br>1.4<br>1.3<br>1.0<br>4.6<br>6.5<br>3.3<br>1.6<br>1.5<br>1.5<br>1.8 |            |
| Average<br>Minimum                                                                                                                                                                                  |                                                                                                                                                                                                                      | 0.0                                                                | 286.6<br>243.7                                                                                                                                                                  | 18.1<br>0.0                                                                                                                                                           | 0.0                                     | 9.1<br>8.2                                                                                                                                                                                                                                                                    | 0.0                                                                | 259.4 259.4<br>235.3 235.3                                                                                                                                                                                                                                                                                                          | - 11 | .5 7.5<br>.4 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 7.6<br>7.4                                      |                                                                                                                                                                                    | 75<br>51                                                                           |         |       | 6.0<br>1.7                                                                                                                                                                                                                         | 6.0<br>1.7                                                                                                                                                                                                                   | 288<br>187                                                                                                                                                                                              | 159<br>103                                                                                     |                                    |                    |                                                                                                                                                                                                                                                        | 3.5 7.4<br>2.0 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 5.58<br>8 4.19                       |                                       |      | 0.31<br>0.19                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0 33.0<br>5.8 24.2                                                                                                                                                                   |                                                             |        | 3.55<br>1.45                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.4<br>43.7                                                                                         | 46.9<br>36.0                                                                                         | 5.6<br>3.3                                                                                                                                                                                                                                                 | 4 0.02<br>0 < 0.01                      | 0.37<br>0.04                                                                                         |         | 7.62<br>5.25                                                                                                                                                                                                                                                                 |                                                                         | 126<br>98                                                                       | - 114<br>- 94                                                                               |           | 1.0                                                                              | !          |
| Maximum                                                                                                                                                                                             | 740.1                                                                                                                                                                                                                | 0.0                                                                | 393.7                                                                                                                                                                           | 105.2                                                                                                                                                                 | 0.0                                     | 11.2                                                                                                                                                                                                                                                                          | 0.0                                                                | 291.3 291.3                                                                                                                                                                                                                                                                                                                         | 7.   | .7 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 8.0                                             | 400                                                                                                                                                                                | 130                                                                                |         |       | 24.6                                                                                                                                                                                                                               | 24.6                                                                                                                                                                                                                         | 361                                                                                                                                                                                                     | 345                                                                                            |                                    |                    | 6.0                                                                                                                                                                                                                                                    | 6.0 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 10.5                                 | 5                                     |      | 0.91                                                                                                                                                  | 0.91 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.9 49.0                                                                                                                                                                               | )                                                           |        | 5.50                                                                                                                                                                                                                         | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.9                                                                                                 | 65.8                                                                                                 | 7.8                                                                                                                                                                                                                                                        | 0 0.08                                  | 0.62                                                                                                 |         | 10.6                                                                                                                                                                                                                                                                         | 174                                                                     | 204                                                                             | - 171                                                                                       | 2.6       | 6.5                                                                              |            |
| GeoMean<br>TOTAL                                                                                                                                                                                    |                                                                                                                                                                                                                      | 0                                                                  | 8,599                                                                                                                                                                           | 543                                                                                                                                                                   | 0                                       | 274                                                                                                                                                                                                                                                                           | 0                                                                  | 7,782 7,782                                                                                                                                                                                                                                                                                                                         | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                 |                                                                                                                                                                                    |                                                                                    |         |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                |                                    |                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                             |        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                            |                                         |                                                                                                      |         |                                                                                                                                                                                                                                                                              |                                                                         |                                                                                 |                                                                                             | 2.3       | 1.9                                                                              |            |

\* Contact Laboratory for information about the quality assurance associated with the results

|                   | En             | hanced Primary T | reatment (EPT) Usage  |                    |             |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |
| 108               | 108            | 100%             | 165                   | 165                | 100%        |

| Penort | Comment |
|--------|---------|

| report ou |                                                                                   |
|-----------|-----------------------------------------------------------------------------------|
| 1         | RAW - April 6: Analysis of the sample exceeded the recommended hold time for BOD. |
| 2         | OUTFALL 30 - Not enough sample to run Chloride or N-TOX analyses.                 |
|           |                                                                                   |
|           |                                                                                   |
|           |                                                                                   |
|           |                                                                                   |

AEP Ref #

RAW Untreated Influent into the plant
INF Untreated wastewater from collection system
INFs Influent, screened at the Headworks Diversion Structure
PE Primary Effluent from conventional primaries
PE 30 Primary Effluent from conventional primaries discharged via Outfall 30
EPT Enhanced Primary Treatment
EPE Enhanced Primary Effluent
EPEPS Enhanced Primary Effluent
FE Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet disinfection.

Shane Harnish

Senior Manager, Operations

Alfredo Suarez

FEC Combined post-UV disinfection (FE+EPEPS)
OUTFALL 10 UV-disinfected, discharged via OUTFALL 10
OUTFALL 20 Combined Bypass (RAW + PE + EPE)
OUTFALL 30 Combined Bypass (INF + INFS + PE30 + EPE)
MPW Membrane Product Water (Effluent re-use water)
ML Megalitre (1,000,000 Litre)
MPN Most Probable Number
NR No Result
NS No Sample
INS Insufficient Sample
AEP Alberta Environment & Parks

Senior Manager, Analytical Operations



Gold Bar Wastewater Treatment Plant Plant Performance Report May 2020

Digested Sludge: Total Monthly Volume (ML) 68.5 Liquid Stream Quality Volume of Flow (ML) ALL 30 0.0 245.2 235.5 235.5 9.4 10.6 9.4 0.0 283.0 0.0 Sun-03 666.3 0.0 243.5 243.5 7.5 172 7.69 2.34 0.21 0.29 0.16 0.17 0.19 0.21 732.9 0.0 1,497.1 16.7 413.7 0.0 308.6 18.2 1.60 Mon-04 308.6 7.4 356 304 4.9 4.9 4.0 4.32 1.34 6.48 0.0 0.0 0.0 Tue-05 430.1 316.3 5.4 301.5 120 3.0 3.0 3.19 301.5 7.6 7.5 2.8 2.8 2.9 223 3.0 5.33 26.7 43.0 1.85 1.04 6.34 10.0 285.6 370.0 275.6 275.6 2.9 6.98 3.58 7.20 0.0 275.7 0.0 9.2 2.0 266.5 266.5 7.6 243 3.0 6.76 3.56 8.12 333.5 0.0 9.2 288.3 324 3.0 28.4 7.15 3.3 10.7 10.3 3.0 3.0 Sat-09 353.6 0.0 274.5 0.0 0.0 0.0 263.8 263.8 3.2 7.53 0.19 0.26 0.22 0.25 0.26 0.41 0.33 0.29 0.34 0.37 0.29 0.25 0.26 0.18 0.16 0.19 0.22 0.22 0.22 0.22 0.22 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.0 268.0 0.0 257.7 Sun-10 356.4 257.7 3.4 3.4 8.29 0.0 0.0 274.7 8.8 0.0 Mon-11 344.4 265.9 265.9 3.8 3.0 3.0 3.0 3.0 3.0 36.3 35.5 35.4 39.3 39.7 35.4 39.4 39.3 44.6 37.9 14.1 12.4 8.17 0.0 0.0 0.0 10.1 274.3 0.0 Tue-12 339.6 264.2 264.2 4.6 3.0 0.25 3.15 8.16 10.3 337.0 270.9 0.0 Wed-13 260.6 260.6 4.9 4.9 6.17 8.04 0.0 269.3 9.2 260.1 Thu-14 260.1 300 3.2 3.2 3.0 6.96 8.02 10.3 8.99 6.87 0.0 0.0 0.0 9.8 10.0 Sat-16 0.0 254.4 254 2.0 9.5 4.4 252.7 0.0 Sun-17 322.7 242.7 242.7 10.2 3.0 3.0 3.0 3.0 Mon-18 346.0 0.0 269.4 9.6 259.8 259.8 0.0 263.3 9.5 10.1 Tue-19 320.3 0.0 0.0 0.0 253.8 253.8 5.7 5.7 3.52 9.75 0.0 Wed-20 316.5 260.6 328 222 184 250.5 250.5 4.83 7.64 34.6 519.8 0.0 9.9 311.7 Thu-21 1,506.8 311.7 4.2 4.2 3.46 2.97 5.28 7.4 1,503.5 23.0 298.3 < 2.0 2.89 298.3 178 192 Sat-23 576.1 0.0 393.1 74.2 0.0 10.0 9.7 308.9 308.9 7.6 3.2 < 2.0 2.84 2.70 23.6 6.47 0.0 338.5 0.0 0.0 Sun-24 447 4 324.7 324.7 < 2.0 0.79 7.22 Mon-25 409.8 0.0 328.2 0.0 33.5 0.0 9.7 0.0 318.5 318.5 252 280 292 250 3.0 3.0 8.58 10.3 9.7 Tue-26 500.9 327.3 0.0 283.5 283.5 7.7 4.8 4.8 128 113 3.88 5.81 31.6 33.7 35.2 33.3 6.37 42.4 0.10 6.53 112 0.9 0.0 0.0 Wed-27 445.8 306.2 6.2 290.3 3.0 3.0 3.0 0.11 7.49 7.53 290.3 7.7 3.5 3.5 6.77 0.20 3.1 102 0.0 10.9 0.0 0.0 286.0 Thu-28 379.4 296.9 0.0 286.0 5.2 0.26 7.6 5.2 3.0 3.62 102 100 7.04 283.5 283.5 4.9 8.35 336 6.92 3.60 Sat-30 372.7 0.0 286.7 0.0 9.6 0.0 277.1 277.1 204 5.6 5.6 0.43 33.4 7.92 9.48 5.6 3.0 6.49 4.63 275.8 275.8 315.9 245.2 235.5 235.5 178 < 2.0 < 2.0 2.87 1.64 0.16 0.16 12.4 0.09 21.9 1.20 < 0.01 2.89 1.4

\* Contact Laboratory for information about the quality assurance associated with the results

105 10,667 1,862 0

|                    | E-               | hancad Drimary T | reatment (EPT) Usage   |                     |              |
|--------------------|------------------|------------------|------------------------|---------------------|--------------|
| Total Bypass (hr)  | EPT Usage (hr)   | % Usage          |                        | EPT Usage YTD (hr)  | % Usage YTD  |
| Total Bypass (III) | LF I Osage (III) | 70 Usage         | Total Dypass TTD (III) | LFT Osage TTD (III) | 70 Usage 11D |

305 0 8,499 8,499

| D         |                                                                                 |
|-----------|---------------------------------------------------------------------------------|
| Report Co |                                                                                 |
| 1         | RAW - May 9: Analysis of the sample exceeded the recommended hold time for BOD. |
|           |                                                                                 |
|           |                                                                                 |
|           |                                                                                 |
|           |                                                                                 |
|           |                                                                                 |
| AEP Ref # |                                                                                 |
|           |                                                                                 |
|           |                                                                                 |
|           |                                                                                 |

Untreated Influent into the plant Untreated wastewater from collection system Influent, screened at the Headworks Diversion Structure PE
PE 30
EPT
EPE
EPEPS Primary Effluent from conventional primaries Primary Effluent from conventional primaries discharged via Outfall 30 Enhanced Primary Treatment

Enhanced Primary Effluent Enhanced Primary Effluent Pump Station Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet disinfection.

Alfredo Suarez

Senior Manager, Operations

March & Shane Harnish

Senior Manager, Analytical Operations

Combined post-UV disinfection (FE+EPEPS) OUTFALL 10 UV-disinfected, discharged via OUTFALL 10
OUTFALL 20 Combined Bypass (RAW + PE + EPE) OUTFALL 30 Combined Bypass (INF + INFS + PE30 + EPE)

Megalitre (1.000.000 Litre) Most Probable Number No Result MPN No Sample Insufficient Sample Alberta Environment & Parks



Gold Bar Wastewater Treatment Plant Plant Performance Report June 2020

Liquid Stream Quality Volume of Flow (ML) ALL 30 ALL 20 399.9 0.0 307.4 0.0 297.8 0.0 Wed-03 0.0 309.5 0.0 0.0 299.9 299.9 258 < 0.0 0.21 0.25 0.26 0.25 0.19 0.18 0.36 0.45 0.26 0.20 0.18 0.36 0.20 0.18 0.36 0.20 0.20 1.02 1.00 1.25 0.58 0.11 0.13 0.91 2.10 294.8 0.0 Thu-04 0.0 0.0 285.3 285.3 < 2.0 < 2.0 Fri-05 0.0 355.9 0.0 289.5 0.0 9.6 279.9 279.9 7.7 5.3 5.3 217 2.0 2.0 3.0 7.23 3.77 40.4 56.0 33.4 0.0 Sat-06 1,440.4 142.9 0.0 8.8 308.3 308.3 3.0 27.3 14.8 0.0 Sun-07 932.4 573.2 9.3 14.9 349.9 3.0 3.0 24.8 349.9 7.6 7.6 3.6 102 143 3.27 12.5 6.38 27.8 29.8 0.0 468.5 108.5 25.0 3.0 4.52 196 197 0.0 0.0 0.0 0.0 Tue-09 0.0 365.4 7.5 10.1 0.0 347.8 3.0 5.88 30.5 Wed-10 349.0 10.1 10.3 0.0 433.5 0.0 0.0 338.9 338.9 7.7 4.0 4.0 322.6 0.0 Thu-11 392.7 0.0 312.3 312.3 4.0 2.63 1.68 1.56 1.21 0.18 0.31 0.48 1.46 2.10 1.48 1.27 1.33 11.5 0.0 Fri-12 313.3 0.0 0.0 390.0 301.8 301.8 7.8 5.9 215 4.0 4.0 51.3 0.0 0.0 0.0 0.0 Sat-13 428.8 321.0 309.5 309.5 420 540 274 256 163 181 5.0 6.89 5.21 34.0 21.4 22.7 52.6 556.3 223.7 11.3 37.3 Sun-14 321.3 2.0 321.3 7.6 5.0 2.0 3.0 2.75 1.82 25.6 8.70 3.0 554.4 0.0 327.3 Tue-16 367.5 350.5 35.1 10.9 0.0 321.5 234 27.6 33.7 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 Wed-17 10.9 464.1 0.0 29.9 309.7 309.7 192 2.3 0.39 268 528 100 99 Thu-18 403.4 0.0 333.1 2.1 10.6 320.4 320.4 330 28.7 34.7 0.8 10.2 Fri-19 327.9 399.9 0.0 0.0 317.7 317.7 7.6 4.4 227 3.0 3.0 32.4 10.8 Sat-20 309.0 0.0 0.0 298.2 100 97 298.2 266 2.0 3.0 2.0 32.3 Sun-21 298.4 10.8 287.6 287.6 0.0 7.6 3.8 219 3.0 7.37 39.4 57.1 3.3 12.8 292.1 292.1 3.0 243 1.12 0.39 Tue-23 0.0 322.7 20.4 0.0 10.6 0.0 291.7 7.6 632 368 3.0 3.0 10.8 41.3 75.3 2.0 0.22 0.23 0.38 0.24 0.20 54.1 10.4 0.0 Wed-24 763.2 0.0 385.3 320.8 320.8 224 1.8 0.30 0.0 0.0 0.0 0.0 0.0 0.0 Thu-25 0.0 298.4 292.1 0.0 10.4 288.0 288.0 0.50 0.79 0.67 0.93 Fri-26 356.3 0.0 10.4 281.7 281.7 4.8 311 3.0 60.0 44.4 Sat-27 339.0 14.6 10.4 0.0 314.0 240 346 259 2.0 30.5 37.4 0.15 1.0 314.0 412 368 4.8 2.0 6.34 7.23 294.7 11.7 0.0 10.4 0.0 4.0 0.20 0.06 Sun-28 0.0 272.6 272.6 101 5.0 42.3 1.7 7.6 4.0 63.3 2.6 Mon-29 0.0 314.5 0.24 32.2 308.5 Average 383.9 63.2 310.4 3.0 3.0 6.28 < 2.0 < 2.0 3.27 0.26 0.26 0.18 0.18 272.6 272.6 24.8 1,606.6 14.9 932.4 573.2 0.0 11.5 0.0 350.1 350.1 5.0 10.8 5.71 0.45 0.45 41.3 42.3 2.63 2.63 75.3 50.1 0.07 3 89

\* Contact Laboratory for information about the quality assurance associated with the results

22 11,516 1,895 0 311

|                   | En             | hanced Primary T | reatment (EPT) Usage  |                    |             |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |
| 163               | 163            | 100%             | 449                   | 449                | 100%        |

| Penort | Comments |
|--------|----------|

TOTAL

| ſ | 1         | OUTFALL10 - June 23: Analysis of the sample exceeded the recommended hold time for BOD. |
|---|-----------|-----------------------------------------------------------------------------------------|
| [ |           |                                                                                         |
| [ |           |                                                                                         |
|   |           |                                                                                         |
|   |           |                                                                                         |
| ſ |           |                                                                                         |
|   | AEP Ref # |                                                                                         |

Untreated Influent into the plant

Untreated wastewater from collection system
Influent, screened at the Headworks Diversion Structure Primary Effluent from conventional primaries

Primary Effluent from conventional primaries discharged via Outfall 30 Enhanced Primary Treatment Enhanced Primary Effluent

EPEPS Enhanced Primary Effluent Pump Station

Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet disinfection.

Shane Harnish

Senior Manager, Operations

Menn Alfredo Suarez

Senior Manager, Analytical Operations

Page 1 of 1

Digested Sludge: Total Monthly Volume (ML)

OUTFALL 10 UV-disinfected, discharged via OUTFALL 10
OUTFALL 20 Combined Bypass (RAW + PE + EPE) OUTFALL 30 Combined Bypass (INF + INFS + PE30 + EPE)
MPW Membrane Product Water (Effluent re-use water) Megalitre (1,000,000 Litre)

Combined post-UV disinfection (FE+EPEPS)

No Result No Sample Insufficient Sample Alberta Environment & Parks



Gold Bar Wastewater Treatment Plant Plant Performance Report July 2020

Digested Sludge: Total Monthly Volume (ML) Liquid Stream Quality Volume of Flow (ML) ALL 30 17.5 32.8 24.4 665.2 485.1 143.4 10.5 331.2 0.23 0.24 0.23 0.24 0.34 370.3 0.0 111 Fri-03 497.7 0.0 26.3 10.5 0.0 333.5 333.5 7.8 1.07 1.94 0.54 2.41 3.66 0.46 0.44 0.27 0.48 0.42 401.7 68.8 0.0 10.4 163 Sat-04 1,014.8 0.0 322.5 322.5 7.6 111 2.0 2.0 0.0 Sun-05 1,270.3 0.0 460.7 116.7 11.0 333.0 47 28.2 30.5 333.0 7.6 7.6 148 3.0 3.0 24.5 35.9 40.4 0.07 73 1.3 0.41 355.2 0.0 338.8 338.8 7.8 271 < 2.0 < 2.0 4.58 30.3 2.4 471.7 135.8 0.0 10.9 25.8 325.0 < 2.0 0.71 325.0 7.6 396 296 153 186 73 < 2.0 19.5 44.5 28.5 9.2 1.6 Wed-08 8.2 744.2 399.4 0.0 333.7 333.7 0.14 2.0 0.13 0.14 31.5 19.8 Thu-09 1.855.7 445.4 94.0 0.1 10.1 0.0 341.2 < 2.0 Fri-10 0.0 10.3 10.7 1.716.8 12.0 640.6 288.4 0.0 341.9 341.9 7.8 < 2.0 0.3 0.22 0.25 0.44 0.76 1.54 Sat-11 388.3 39.0 485.2 0.0 338.6 338.6 7.8 < 2.0 0.21 0.28 0.45 0.54 0.40 27.4 27.9 31.9 383.9 0.0 10.6 0.0 35.3 Sun-12 0.0 338.0 338.0 7.8 129 179 3.0 3.0 4.14 28.3 0.25 40.4 41.8 0.09 1.7 0.0 Mon-13 403.8 62.8 10.8 0.0 0.02 0.0 330.2 330.2 113 221 2.0 2.0 27.2 26.2 26.7 40.8 2.2 1.2 348.7 10.7 280 4.51 Tue-14 336.4 31.9 0.20 336.4 164 3.0 3.0 2.88 20.7 8.2 1.3 Wed-15 315.8 8.74 20.0 28.6 22.4 0.4 Thu-16 Fri-17 611.4 287.4 171.1 11.2 312.4 312.4 552 0.27 3.0 1.16 0.10 0.17 0.44 0.43 0.79 0.50 529.1 1.060.9 0.0 11.4 0.0 346.6 < 2.0 0.16 0.15 0.18 0.22 0.21 0.21 0.0 0.0 0.0 Sat-18 457.6 0.0 374.3 31.5 12.1 0.0 330.7 330.7 0.31 1.29 12.4 Sun-19 1.161.6 0.0 398.2 70.0 0.0 315.8 315.8 7.7 238 2.0 2.0 25.7 23.4 12.3 0.0 358.3 Mon-20 525.8 0.0 322.6 328 264 26.0 0.14 322.6 275 2.0 27.9 30.6 0.9 Tue-21 333.9 12.3 25.1 5.8 315.8 315.8 7.8 212 168 2.0 2.0 6.09 47.9 0.92 8.5 2.0 2.5 Wed-22 318.7 318.7 278 23.4 1.8 0.50 3.0 Thu-23 398.0 55.9 0.0 12.2 0.0 329.9 329.9 7.6 336 186 3.0 3.0 0.17 26.7 25.7 0.39 0.91 0.9 Fri-24 494 4 0.0 355.3 7.4 12.0 0.0 335.9 335.9 0.19 0.20 0.19 0.21 0.22 0.22 Sat-25 600.4 350.6 28.1 0.0 0.0 0.0 12.2 0.0 0.0 0.0 310.3 310.3 26.8 1.06 0.71 Sun-26 396.2 0.0 313.5 0.0 11.4 302.1 302.1 4.0 4.0 313.0 Mon-27 0.0 0.0 10.8 7.7 0.96 0.74 0.69 302.2 302.2 3.0 3.0 6.25 9.7 0.0 10.9 0.0 Tue-28 0.0 312.0 0.0 301.1 301.1 5.0 4.0 7.7 227 4.0 8.4 5.0 6.14 30.1 45.7 2.3 Wed-29 0.0 300.2 300.2 232 4.0 4.0 6.32 48.0 8.2 Thu-30 373.8 308.4 0.0 10.6 0.0 297.8 297.8 236 4.0 4.0 0.21 39.1 1.04 308 4.0 6.48 4.8 Fri 31 292.2 292.2 1.23 0.16 292.2 292.2 7.5 7.6 < 2.0 < 2.0 2.83 0.13 0.13 14.5 8.74 0.43 0.08 0.08 15.4 0.8 1.2 < 0.01 0.02 0.35 2.75 40

44 13,210 2,839 \* Contact Laboratory for information about the quality assurance associated with the results

TOTAL

|                   | En             | hanced Primary T | reatment (EPT) Usage  |                    |             |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |
| 200               | 200            | 1009/            | 720                   | 720                | 1000/       |

| Report Co |                                                                               |
|-----------|-------------------------------------------------------------------------------|
| 1         | OUTFALL10 - July 3: UV was shutdown at the time of E. Coli sample collection. |
|           |                                                                               |
|           |                                                                               |
|           |                                                                               |
|           |                                                                               |
|           |                                                                               |
| AEP Ref # |                                                                               |
| 368354    | July 3 - UV maintenance shutdown                                              |

Untreated Influent into the plant Untreated wastewater from collection system Influent, screened at the Headworks Diversion Structure Primary Effluent from conventional primaries

Primary Effluent from conventional primaries discharged via Outfall 30 Enhanced Primary Treatment EPE Enhanced Primary Effluent EPEPS Enhanced Primary Effluent Pump Station

unn

Alfredo Suarez

Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet disinfection.

Manufa &

Shane Harnish

Senior Manager, Operations Senior Manager, Analytical Operations

Megalitre (1.000.000 Litre) Most Probable Number No Result No Sample

Combined post-UV disinfection (FE+EPEPS)

OUTFALL 10 UV-disinfected, discharged via OUTFALL 10
OUTFALL 20 Combined Bypass (RAW + PE + EPE)

OUTFALL 30 Combined Bypass (INF + INFS + PE30 + EPE)

Alberta Environment & Parks

Page 1 of 1

Gold Bar Wastewater Treatment Plant Plant Performance Report August 2020

| Contract of the Contract of th | -                | - 60      | and the same   |              |              |           |     |                            |            |      |      |               |                  |       |        |            |               |                    |                    |                        | Au                | gust 202          | .0           |              |        |        |                        |              |              |              |      |       |                |           |              |        |                                     |         |                    |              |              |               |           |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|----------------|--------------|--------------|-----------|-----|----------------------------|------------|------|------|---------------|------------------|-------|--------|------------|---------------|--------------------|--------------------|------------------------|-------------------|-------------------|--------------|--------------|--------|--------|------------------------|--------------|--------------|--------------|------|-------|----------------|-----------|--------------|--------|-------------------------------------|---------|--------------------|--------------|--------------|---------------|-----------|-------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 110       |                |              |              |           |     |                            |            |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        |        |                        |              |              |              |      |       |                |           |              |        |                                     |         |                    | Digested Six | dge: Total M | onthly Volume | (ML)      | 69.6        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |                | V-           |              | Flow (ML) |     |                            |            |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        |        | Liquid Str             | eam Qua      | litv         |              |      |       |                |           |              |        |                                     |         |                    |              |              |               |           |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |           |                | Vo           | iume oi r    | FIOW (ML) |     |                            |            |      |      | $\overline{}$ |                  |       |        |            | $\neg$        |                    |                    |                        |                   |                   |              |              |        |        |                        |              | ,            |              |      |       |                |           |              |        |                                     |         | $\overline{}$      |              |              |               |           |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ugu       |                |              |              |           |     |                            |            |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        |        |                        |              |              |              |      |       |                |           |              |        |                                     |         |                    |              |              |               |           |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                | <u> 1</u> |                |              |              | Effluent  |     |                            | -          |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        |        |                        |              |              |              |      |       |                |           |              |        |                                     |         |                    |              |              |               |           |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           | -              | Non t        | UV Disinfect | led       | UVI | Disinfected                | 1          | pH@2 | 5°C  | +             |                  | TS    | (mg/L) |            | $\rightarrow$ |                    | BOD;               | /cBOD <sub>s</sub> (mg | rL)               | -                 |              |              | TP (mg | IL)    |                        |              |              | NH3-N (mg/L) | _    | _     | T              | KN (mg/L) | _            |        | NO <sub>2</sub> +NO <sub>3</sub> (r | ng/L)   | +                  | Chlor        | de (mg/L)    | -             | E. coli   | (Counts/100 | mL)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |                |              |              |           |     |                            |            |      | 2    |               |                  |       |        | 9          |               |                    | 8 8                |                        | FALL              | ۽ ا               |              |              |        |        | 2                      |              |              |              | 9    |       |                |           | 2            |        |                                     | 2       |                    |              |              | 8             | 8         | 8           | 2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |                | 8            | 8            |           |     | OUTFALL 10                 |            | 8    | ω L  |               | 8                | R     |        | FALL       |               |                    | 1 I                | bS.                    | 9                 |                   |              | 8            | R      |        | FALL                   |              | 8            | R            | FALL |       | 8              | 8         | FALL         |        | 8                                   | ω L     |                    | 8            | 8            | .FALL         | , FALL    | FALL        | L EALL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak             |           |                | FALL         | FALL         |           | 8   |                            | _          | FALL | FALL | _             | FALL             | FALL  | S      | 5          | _             | RAW                | 5 5                | EPE                    | FEC               | FE                |              | FALL         | FALL   | S      | 5                      |              | FALL         | FALL         | 5    |       | FALL           | FALL      | 5            |        | FALL                                | FAL FAL |                    | FALL         | FALL         | 5             | RA DO     | 5           | 5      |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow<br>(MLD)    | INFs      | RAW            | 770          | 100          | MPW       | EPE | FEC FE                     | RAW        | 50   | 5 FI | C R           | AW 5             | 50    | EPE    | FEC        | FE            | BOD <sub>5</sub> B | OD <sub>5</sub> BO | o <sub>s</sub> BOD     | cBOD <sub>s</sub> | cBOD <sub>3</sub> | RAW          | 5            | 50     | 3d3 FI | C FE                   | RAW          | 770          | OUT          | FEC  | FE RA | w 5            | 50        | FEC          | RAW    | 50                                  | 5 FE    | C RAW              | 700          | 100          | FEC X         | C10^6 X10 | ^6 X10^     | FEC    |
| Sat-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 356.0            |           | 284.2          | 0.0          | 0.0          |           |     | 273.2 273.2                | 7.6        |      |      |               | 260              |       |        | 5.1        | 5.1           | 260                |                    |                        | 5.0               |                   | 7.04         |              |        |        | 0.22 0.22              | 35.9         |              |              | 0.98 |       | 55.4           |           | 2.7          |        |                                     |         | 10.1 90            |              |              | 95            |           |             | 4      |
| Sun-02<br>Mon-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 349.8<br>1.928.8 |           | 276.9<br>487.0 | 0.0<br>195.2 | 0.0          |           |     | 266.7 266.7                | 7.6        |      |      |               | 231              |       |        | 6.9        | 6.9           | 308                |                    |                        | 5.0               |                   | 6.62         |              |        |        | 0.25                   | 36.7         |              |              | 1.08 |       | 49.8           |           | 2.9          |        |                                     |         | 10.6 90            |              |              | 93            |           |             | 4      |
| Tue-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 948.8            |           | 487.0          | 59.5         | 0.0          |           | - 1 | 281.4 281.4<br>349.3 349.3 | 7.4        |      |      |               | 384 12           |       | 1      | 6.2        | 6.2           |                    | 72 1               | 17                     | 5.0               | 5.0<br>4.0        | 5.54<br>4.94 | 2.16         | 2.52   |        | 0.28 0.28              | 23.2<br>23.9 | 11.6<br>23.1 | 5.1          | 0.73 |       |                | 7.2 16:   | 6 2.5<br>1.9 |        | 0.98                                |         | 11.9 59            |              | 32           | 94            |           | 1.7 0.      | 6      |
| Wed-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 410.9            |           | 331.0          | 0.0          | 0.0          |           |     | 349.3 349.3<br>320.1 320.1 | 7.6<br>7.6 | 7.6  |      |               | 360 40<br>268    |       |        | 6.2<br>4.9 | 6.2<br>4.9    | 222                | 47                 |                        | 4.0               | 4.0               | 5.67         | 2.12         |        |        | 0.24 0.24              | 30.5         | 23.1         |              | 0.28 |       | 36.8 2<br>43.5 | 7.9       | 2.3          | < 0.01 | 1.43                                |         | 3.40 72<br>10.5 88 |              |              | 68<br>87      | ,         | 1.9         | 13     |
| Thu-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 388.5            | 0.0       | 315.2          | 0.0          | 0.0          | 10.9      |     | 304.3                      | 7.6        |      |      |               | 238              |       |        | 4.6        | 4.6           | 201                |                    |                        | 3.0               | 3.0               | 5.92         |              |        |        | 0.24 0.24              | 31.0         |              |              | 0.52 |       | 46.7           |           | 2.1          | - 0.01 |                                     |         | 0.1 89             |              |              | 93            |           |             | 20     |
| Fri-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 913.7            | 0.0       | 414.8          | 102.7        | 0.0          | 10.7      | 0.0 | 301.4 301.4                | 7.5        | 7.6  |      | 7.9           | 276 55           |       |        | 5.3        | 5.3           | 209                | 81                 |                        | 4.0               | 4.0               | 5.27         | 2.86         |        |        | 0.24 0.24              | 20.1         | 25.1         |              | 0.24 | 0.24  | 37.2 3         | 0.7       | 1.8          |        | 0.31                                | 8       | 8.87 61            | 74           |              | 87            |           | 1.0         | 10     |
| Sat-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 402.1            | 0.0       | 303.7          | 0.0          | 0.0          |           |     | 293.1 293.1                | 7.6        |      |      | 7.8           | 220              |       |        | 4.0        | 4.0           | 227                |                    |                        | 3.0               | 3.0               | 5.60         |              |        |        | 0.21 0.21              | 31.0         |              |              | 0.48 | 0.48  | 45.0           |           | 1.7          |        |                                     | 8       | 8.59 85            |              |              | 78            |           |             | 12     |
| Sun-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 363.0            |           | 286.8          | 0.0          | 0.0          |           |     | 275.7 275.7                | 7.7        |      |      |               | 256              |       |        | 4.6        | 4.6           | 213                |                    |                        | 3.0               | 3.0               | 5.99         |              |        |        | 0.23 0.23              | 34.5         |              |              | 0.92 |       | 45.8           |           | 2.4          |        |                                     |         | 11.3 89            |              |              | 91            |           |             | 6      |
| Mon-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 355.5<br>1.152.1 | 0.0       | 293.6<br>378.0 | 83.4         | 0.0          |           |     | 283.0 283.0                |            |      |      |               | 237              |       |        | 4.8        | 4.8           | 203                |                    |                        | 3.0               | 3.0               | 6.45         |              |        |        | 0.24 0.24              | 34.5         |              |              | 0.86 |       | 50.4           |           | 2.4          |        |                                     |         | 11.6 89            |              |              | 90            |           |             | 6      |
| Tue-11<br>Wed-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,152.1          | 0.0       | 503.0          | 144.4        | 0.0          |           |     | 283.9 283.9<br>347.6 347.6 | 7.6<br>7.5 | 7.6  |      |               | 150 83<br>236 30 |       |        | 4.9<br>5.0 | 4.9<br>5.0    | 171<br>166         | 101                |                        | 4.0               | 4.0<br>3.0        | 5.14<br>4.45 | 3.94<br>1.52 |        |        | 0.24 0.24<br>0.21 0.21 | 27.1<br>21.2 | 25.6<br>17.7 |              | 0.74 |       |                | 5.0       | 2.4          | < 0.01 | 0.45                                |         | 10.5 73<br>1.92 52 |              |              | 95<br>65      |           | 1.5         | 12     |
| Thu-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 397.0            | 0.0       | 302.9          | 0.0          | 0.0          |           |     | 292.1 292.1                | 7.7        | 7.4  |      |               | 316              |       |        | 4.2        | 4.2           | 263                | *0                 |                        | 3.0               |                   | 6.84         | 1.32         |        |        | 0.21 0.21              | 32.0         | 17.7         |              | 0.77 |       | 56.0           | 5.0       | 2.3          | < 0.01 | 0.64                                |         | 3.28 77            |              |              | 76            | 0.6       | "           | 9      |
| Fri-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350.8            | 0.0       | 291.4          | 0.0          | 0.0          | 10.0      |     | 281.4 281.4                | 7.7        |      |      |               | 320              |       |        | 5.2        | 5.2           | 304                |                    |                        | 6.0               | 6.0               | 6.84         |              |        |        | 0.26 0.26              | 33.4         |              |              | 2.40 |       | 53.6           |           | 4.2          |        |                                     |         | 10.9 80            | .            |              | 90            |           |             | 16     |
| Sat-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358.0            | 0.0       | 283.8          | 0.0          | 0.0          | 10.3      | 0.0 | 273.5 273.5                | 7.6        |      |      | 7.7           | 236              |       |        | 5.8        | 5.8           | 219                |                    |                        | 6.0               | 6.0               | 6.86         |              |        |        | 0.29 0.29              | 40.8         |              |              | 1.50 | 1.50  | 55.6           |           | 3.2          |        |                                     | 1       | 11.1 77            | .            |              | 92            |           |             | 12     |
| Sun-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357.0            | 0.0       | 280.3          | 0.0          | 0.0          |           |     | 269.6 269.6                | 7.6        |      |      |               | 293              |       |        | 6.0        | 6.0           | 217                |                    |                        | 4.0               | 4.0               | 6.45         |              |        |        | 0.29                   | 34.5         |              |              | 1.29 |       | 55.1           |           | 3.1          |        |                                     |         | 10.8 75            |              |              | 88            |           |             | 9      |
| Mon-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 354.9            | 0.0       | 282.4          | 0.0          | 0.0          |           |     | 271.5                      | 7.6        |      |      |               | 303              |       |        | 10.0       | 10.0          | 239                |                    |                        | 4.0               | 4.0               | 6.26         |              |        |        | 0.41                   | 33.1         |              |              | 1.06 |       | 57.5           |           | 3.0          |        |                                     |         | 11.3 78            |              |              | 85            |           |             | 14     |
| Tue-18<br>Wed-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 367.3<br>348.9   | 0.0       | 285.3<br>286.6 | 0.0          | 0.0          |           |     | 274.6 274.6                | 7.6        |      |      |               | 316              |       |        | 7.8        | 7.8           | 254                |                    |                        | 4.0               | 4.0               | 6.46         |              |        |        | 0.49 0.49              | 34.2         |              |              | 0.89 |       | 53.5           |           | 3.0          |        |                                     |         | 11.5 87            |              |              | 92            |           |             | 7      |
| Thu-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.479.3          |           | 372.3          | 85.7         | 0.0          |           |     | 275.9 275.9<br>275.8 275.8 | 7.6        | 7.5  |      |               | 316<br>472 13    |       |        | 8.8<br>9.1 | 8.8<br>9.1    | 196<br>223         | 130                |                        | 4.0               | 4.0               | 6.38         | 3.81         |        |        | 0.40 0.40              | 32.9<br>26.6 | 22.6         |              | 0.58 |       | 52.6<br>45.2 3 | 2.7       | 2.6<br>2.1   | 0.02   | 0.30                                |         | 11.3 87            |              |              | 92<br>93      | 20 1      | 1.9         | 20     |
| Fri-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 752.8            | 0.0       | 344.3          | 25.6         | 0.0          |           |     | 308.0 308.0                |            |      |      |               | 432 41           | -     |        | 8.2        | 8.2           | 212                | 46                 |                        | 3.0               | 3.0               | 5.87         | 1.81         |        |        | 0.32 0.32              |              | 20.2         |              | 0.47 |       | 46.7 2         |           | 2.0          |        | 0.33                                |         | 1.62 69            |              |              | 77            | 20 2      |             | 8      |
| Sat-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 643.7            | 0.0       | 353.5          | 43.0         | 0.0          | 10.5      | 0.0 | 300.0 300.0                | 7.5        |      |      | 7.7           | 260 33           |       |        | 5.1        | 5.1           |                    | 57                 |                        | 4.0               | 4.0               | 5.68         | 2.75         |        |        | 0.28 0.28              | 28.6         | 30.0         |              | 0.18 | 0.18  | 41.9 3         |           | 1.7          |        | 0.27                                |         | 10.1 69            | 68           |              | 76            |           | 2.0         | 14     |
| Sun-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 321.1            | 0.0       | 284.0          | 0.0          | 0.0          |           |     | 273.6 273.6                | 7.6        |      |      | 7.6           | 264              |       |        | 5.5        | 5.5           | 233                |                    |                        | 3.0               | 3.0               | 6.3          |              |        |        | 0.30 0.30              | 35.3         |              |              | 0.38 | 0.38  | 52.3           |           | 2.7          |        |                                     | 1       | 10.6 80            |              |              | 74            |           |             | 6      |
| Mon-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,158.7          |           | 351.1          | 61.6         | 0.0          |           |     | 279.0 279.0                | 7.5        |      |      | 7.7           | 348 81           |       |        | 6.8        | 6.8           |                    | 88                 |                        | 3.0               | 3.0               | 6.21         | 3.41         |        |        | 0.31 0.31              | 30.5         | 25.4         |              | 0.48 |       | 44.8 3         |           | 2.0          |        | 0.69                                |         | 11.4 73            |              |              | 81            | 1 -       | 3.1         | 57     |
| Tue-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 612.7            | 0.0       | 318.1          | 10.9         | 0.0          |           |     | 296.3                      | 7.5        |      |      |               | 360 44           |       |        | 6.3        | 6.3           | 230                | 61                 |                        | 3.0               | 3.0               | 6.43         | 2.64         |        |        | 0.26                   | 32.6         | 23.7         |              | 1.01 |       |                | 0.8       | 2.7          |        | 0.62                                |         | 3.80 76            |              |              | 75            |           | 1.4         | 6      |
| Wed-26<br>Thu-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 969.1<br>339.6   | 0.0       | 397.1<br>302.9 | 59.0         | 0.0          |           |     | 327.6                      |            | 7.6  |      |               | 452 52           |       |        | 4.6        | 4.6           |                    | 74                 |                        | 3.0               |                   | 6.38         | 3.72         |        |        | 0.29 0.29              | 23.8         | 26.4         |              | 0.90 |       |                | 4.8       | 2.8          | 0.03   | 0.17                                |         | 1.97 64            |              |              | 73            | ,         | 1.4         | 7      |
| Fri-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 340.8            |           | 291.7          | 0.0          | 0.0          |           |     | 292.6<br>281.4<br>281.4    | 7.5        |      |      | - 1           | 404<br>392       |       |        | 3.5<br>5.5 | 3.5<br>5.5    | 239<br>265         |                    |                        | < 2.0<br>3.0      | < 2.0<br>3.0      | 7.59         |              |        |        | 0.20 0.20              | 33.4<br>33.8 |              |              | 0.48 |       | 53.9<br>54.9   |           | 2.2          |        |                                     |         | 3.91 75<br>11.2 85 |              | 1            | 72<br>81      |           |             | 16     |
| Sat-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 339.6            |           | 279.4          | 0.0          | 0.0          |           |     | 269.1 269.1                | 7.7        |      |      |               | 587              |       |        | 7.7        | 7.7           | 470                | - 1                |                        | 4.0               | 4.0               | 8.81         |              |        |        | 0.32 0.32              |              |              |              | 0.79 |       | 65.3           |           | 2.4          |        |                                     |         | 0.77 82            |              |              | 87            |           |             | 10     |
| Sun-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 322.0            | 0.0       | 274.7          | 0.0          | 0.0          | 10.7      | 0.0 | 264.0 264.0                | 7.6        |      |      |               | 350              |       |        | 5.0        | 5.0           | 247                | - 1                |                        | 3.0               | 3.0               | 6.74         |              |        |        | 0.28 0.28              | 37.0         |              |              | 1.09 |       | 56.2           |           | 2.7          |        |                                     |         | 11.5 77            |              |              | 86            |           |             | 12     |
| Mon 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 332.5            | 0.0       | 278.7          | 0.0          | 0.0          | 10.0      | 0.0 | 268.1 268.1                | 7.5        |      |      | 7.6           | 404              |       |        | 4.1        | 4.1           | 239                |                    |                        | 3.0               | 3.0               | 7.00         |              |        |        | 0.26                   | 35.6         |              |              | 0.90 | 0.90  | 57.5           |           | 2.7          |        |                                     | 1       | 11.7 83            |              |              | 82            |           |             | 8      |
| Average<br>Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 612.3<br>321.1   |           | 327.6<br>274.7 | 28.1         | 0.0          |           |     | 288.8 288.8<br>264.0 264.0 | 7.6        |      | 7.2  |               | 321 66           |       |        | 5.9        | 5.9           | 230<br>150         | 73                 | 7 -                    | 3.7<br>< 2.0      |                   |              | 2.79         |        |        | 0.28 0.28              |              | 22.9         |              |      | 0.78  |                | 9.6 16    |              | 0.02   |                                     |         | 10.2 78<br>1.92 52 |              | 32<br>32     | 84<br>65      | 0.6       |             |        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 14.5      |                |              |              |           |     | 264.0 264.0<br>349.3 349.3 |            | 7.9  | 7.2  | 7.9           | 587 13           | 8 220 | _      | 10.0       |               | 470                | 130                | 7 -                    | . < 2.0           |                   |              | 3.94         |        |        | 0.20 0.20              |              |              |              |      | 2.40  |                |           |              |        |                                     |         |                    | 74           |              |               | 2.0 3     | 3.1 0.      | 57     |
| GeoMean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |           |                |              |              |           |     |                            |            |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        | -      |                        |              |              |              |      |       |                |           |              | -      |                                     |         |                    |              |              |               | 1.1 1     | 1.5 0.      | 10     |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 15        | 10,154         | 871          | 0            | 329       | 0   | 8,954 8,954                |            |      |      |               |                  |       |        |            |               |                    |                    |                        |                   |                   |              |              |        |        |                        |              |              |              |      |       |                |           |              |        |                                     |         |                    |              |              |               |           |             |        |

|            |          | Eni            | hanced Primary T | reatment (EPT) Usage  |                    |             | PE           | Prin  |
|------------|----------|----------------|------------------|-----------------------|--------------------|-------------|--------------|-------|
| Total Bypa | ass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD | PE 30        | Prin  |
| 77         |          | 77             | 100%             | 806                   | 806                | 100%        | EPT          | Enh   |
|            |          |                | •                |                       | •                  |             | EPE          | Enh   |
|            |          |                |                  |                       |                    |             | EPEPS        | Enh   |
| Report Cor | mments   |                |                  |                       |                    |             | FE           | Fina  |
|            |          |                |                  |                       |                    |             |              | rem   |
|            |          |                |                  |                       |                    |             |              |       |
|            |          |                |                  |                       |                    |             |              |       |
|            |          |                |                  |                       |                    |             |              | 0     |
|            |          |                |                  |                       |                    |             |              | 1)    |
|            | _        |                |                  |                       |                    |             | <br>-        | _     |
|            |          |                |                  |                       |                    |             | Alfredo      | Sur   |
| AEP Ref #  |          |                |                  |                       |                    |             | renedo       | Jui   |
|            | _        |                |                  |                       |                    |             | <br>Senior N |       |
|            | _        |                |                  |                       |                    |             | <br>Serior i | Mai i |

Unreaded Whater line the paint
Unreaded waterwater from collection system
Whater, scored of the Nadewich Streamson Shaulzer
Phinary Elliheart fine conventione jammates
Phinary Elliheart from conventione jammates
Phinary Elliheart from conventione jammates
Christopher Streamson (Constitution of Constitution of Constitution of Constitution of Constitution of Phinary Elliheart From Stored Phinary the state

Suarez

anager, Operations

FEC Contened positivity distriction (FE-EFPS)
OUTHAL 10 Undistriction distriction (FE-EFPS)
OUTHAL 20 Contended Spaces (RM + CF EFE)
OUTHAL 30 Contended Spaces (RM + CF EFE)
OUTHAL 30 Contend Spaces (RM + CF EFE)
MPW Morror Product Visur (EFE - RF EFE) - EFFE)
MB Megalter (0,000,000 Line)
MB Megalter (0,000,000 Line)
MB No Broad

Shane Harnish

Senior Manager, Analytical Operations

Gold Bar Wastewater Treatment Plant Plant Performance Report September 2020

|                    |                |       |                |       |               |          |       |                            |       |      |       |            |            |      |           |      |      |            |                    |                    |                       |                     |            |      |      |        |     |       |          |              |       |             |     |                  |                    |        |      |            |        |                                     |       |                    | Digested Sli | ludge: Total | l Monthly Volur | ne (ML)    | 65            | 7      |
|--------------------|----------------|-------|----------------|-------|---------------|----------|-------|----------------------------|-------|------|-------|------------|------------|------|-----------|------|------|------------|--------------------|--------------------|-----------------------|---------------------|------------|------|------|--------|-----|-------|----------|--------------|-------|-------------|-----|------------------|--------------------|--------|------|------------|--------|-------------------------------------|-------|--------------------|--------------|--------------|-----------------|------------|---------------|--------|
|                    |                |       |                | Voli  | ume of Flo    | ow (ML)  |       |                            |       |      |       |            |            |      |           |      |      |            |                    |                    |                       |                     |            |      |      |        |     | Liqui | d Stream | Quality      |       |             |     |                  |                    |        |      |            |        |                                     |       |                    |              |              |                 |            |               |        |
|                    |                | ort   |                |       |               |          |       |                            |       |      |       |            |            |      |           |      |      |            |                    |                    |                       |                     |            |      |      |        |     |       |          |              |       |             |     |                  |                    |        |      |            |        |                                     |       |                    |              |              |                 |            |               |        |
|                    | L              | Jul 1 |                |       |               | Effluent |       |                            |       |      |       |            |            |      |           |      |      |            |                    |                    |                       |                     |            |      |      |        |     |       |          |              |       |             |     |                  |                    |        |      |            |        |                                     |       |                    |              |              |                 |            |               |        |
|                    |                |       |                | Non U | V Disinfected |          | UV DI | sinfected                  |       | pН   | 825°C |            |            |      | TSS (mg/l | -)   |      |            |                    | BODs               | /cBOD <sub>s</sub> (m | g/L)                |            | 1    |      | TP (mg | /L) |       |          |              | N     | H3-N (mg/L) |     |                  |                    | TKN (r | g/L) |            |        | NO <sub>2</sub> +NO <sub>3</sub> (m | (g/L) |                    | Chlor        | oride (mg/L) |                 | E. cc      | oli (Counts/1 | 10 mL) |
|                    |                |       |                |       |               |          |       |                            |       |      |       | 9          |            |      |           |      | 9    |            | ş                  | . 2                |                       |                     | PALL<br>10 |      |      |        |     | 9     |          |              |       |             |     | 9                |                    |        |      | 9          |        |                                     | ą.    |                    |              |              | 2               |            | 2 2           | 0      |
|                    |                |       |                | 8     | R             |          |       | OUTFALL 10                 |       | 8    | 8     | FALL       |            | 8    | R         |      | FALL |            | 144                | FALL               | S                     |                     | 9          |      | 8    | 8      |     | FALL  |          |              | R R   |             |     | FALL             |                    | 8      | R    | FALL       |        | 8 1                                 | E ALL |                    | 8            | 8            | FALL            |            | FALL          | FALL   |
|                    | Peak           |       |                | FALL  | IFALL         |          | Se    |                            |       | FALL | FALL  | 9          |            | FALL | FALL      | S    | 9    | R          | w E                | 5                  | EPE                   | FEC                 | FE         |      | FALL | FALL   | S . | 9     | _        |              | IFALL | S G         | -   | 5                | 4                  | FALL   | FALL | 9          |        | FALL                                | 9     |                    | FALL         | FALL         | 9               | RA .       | 9 9           | Ю      |
| DATE               | Flow<br>(MLD)  | INFs  | RAW            | 50    | 5             | MPW      | _     | FEC FE                     | RAW   | 5    | 5     | FEC        | RAW        | 50   | 50        | E FI | C F  | E B        | DD <sub>6</sub> BC | D <sub>S</sub> BOO | D <sub>S</sub> BOI    | D <sub>S</sub> cBOI | 5 6000     | RAW  | 50   | 5      | EPE | EC I  | FE R     | AW           | 5 5   | EPE         | FEC | FE               | RAW                | 50     | 50   | FEC F      | RAW    | 5 6                                 | 5 FE  | RAW                | 5            | 5            | FEC             | X10^6 X1   | 10^6 X1       | re FEC |
| Tue-01<br>Wed-02   | 320.7<br>535.3 | 0.0   |                |       |               |          |       | 962.6 262.6<br>902.4 302.4 |       |      |       | 7.6        | 322<br>380 | 66   |           |      |      |            | 245<br>250         | 127                |                       |                     | 0 < 2      |      |      |        |     |       | 0.24     | 37.9         | 31.0  |             | 1.  |                  |                    | 41.8   |      | 2.9        | 0.02   | 0.68                                |       | 11.4 88<br>10.3 76 |              | 4            | 89              |            | 1.4           | 7 12   |
| Thu-03             | 341.7          | 0.0   | 275.5          | 0.0   | 0.0           | 10.5     | 0.0 2 | 165.0 265.0                | 0 7.5 |      |       | 7.5        | 500        | -    |           |      | 3.8  |            | 262                | -                  |                       | 2                   | 0 2        |      |      |        |     | 0.25  | 0.25     | 16.4         |       |             |     | 30 1.3           |                    |        |      | 2.8        |        |                                     | 1     | 10.3 84            |              |              | 83              |            |               | 10     |
| Fri-04<br>Sat-05   | 335.5<br>325.2 | 0.0   | 274.3<br>258.8 | 0.0   |               |          |       | 963.2 263.2<br>949.0 249.0 |       |      |       | 7.5        | 592<br>572 |      |           |      |      | · II       | 319<br>276         |                    |                       | < 2                 |            |      |      |        |     |       | 0.24     | 35.7         |       |             |     | 64 1.6<br>47 1.4 | 55.7<br>7 63.7     |        |      | 3.2<br>2.8 |        |                                     |       | 10.8 87<br>11.4 85 | -            |              | 90              |            |               | 6      |
| Sun-06             | 329.0          | 0.0   | 254.5          | 0.0   |               |          |       | 44.0 244.0                 | 0 7.7 |      |       | 7.6        | 396        |      |           |      | 3.8  |            | 266                |                    |                       | 2                   | 0 2        | 7.15 |      |        |     | 0.25  | 0.25     | 33.7         |       |             |     | 53 1.5           |                    |        |      | 3.5        |        |                                     | 1     | 12.2 81            | 1            |              | 88              |            |               | 11     |
| Mon-07<br>Tue-08   | 494.5<br>350.9 | 0.0   | 280.5<br>272.7 | 9.8   |               |          |       | 159.9 259.9<br>162.1 262.1 |       | 7.6  |       | 7.5<br>7.6 | 420<br>416 | 65   |           |      |      |            | 297<br>317         | 127                |                       |                     | 0 2        |      | 5.18 |        |     |       | 0.24     | 35.6         | 43.1  |             | 1.  | 06 2.0<br>25 1.2 |                    | 52.2   |      | 2.6<br>3.4 |        | 2.56                                |       | 12.4 80<br>11.1 92 | 0 90         | 2            | 84              |            | 2.2           | 5      |
| Wed-09             | 339.9          | 0.0   | 270.6          | 0.0   |               | 10.7     | 0.0 2 | 259.9 259.9                |       |      |       | 7.5        | 476        |      |           |      |      |            | 239                |                    |                       |                     | 0 2        |      |      |        |     |       | 0.23     | 38.0         |       |             |     | 65 1.6           |                    |        |      |            | < 0.01 |                                     |       | 11.1 85            | 5            |              | 90              |            |               | 7      |
| Thu-10<br>Fri-11   | 331.9<br>322.5 | 0.0   | 270.2<br>269.1 |       |               |          |       | 159.3 259.3<br>158.1 258.1 |       |      |       | 7.8<br>7.5 | 468<br>452 |      |           |      |      | · II       | 354<br>304         |                    |                       | < 2                 |            | 0.0. |      |        |     |       | 0.25     | 39.8<br>39.1 |       |             |     | 02 2.0<br>92 1.9 | 12 69.2<br>12 57.9 |        |      | 3.6        |        |                                     |       | 10.8 94<br>10.3 93 |              |              | 90              |            |               | 11     |
| Sat-12             | 330.5          | 0.0   | 258.6          |       |               |          |       | 147.8 247.8                |       |      |       | 7.6        | 320        |      |           |      |      |            | 301                |                    |                       | 3                   |            |      |      |        |     |       | 0.25     | 35.6         |       |             |     | 97 1.9           |                    |        |      | 3.4        |        |                                     |       | 11.8 80            | -            |              | 88              |            |               | 6      |
| Sun-13<br>Mon-14   | 350.8<br>331.6 | 0.0   | 260.3<br>267.4 |       |               |          |       | 148.6 248.6<br>155.9 255.9 |       |      |       | 7.6        | 376        |      |           |      |      |            | 262                |                    |                       |                     | 0 2        |      |      |        |     |       | 0.25     | 42.8         |       |             |     | 80 2.8           |                    |        |      | 4.1        |        |                                     |       | 13.1 80            | -            |              | 85              |            |               | 7      |
| Tue-15             | 337.4          | 0.0   | 266.3          | 0.0   |               |          |       | 55.9 255.9<br>54.7 254.7   |       |      |       | 7.7        | 432<br>452 |      |           |      |      | 3.4<br>4.4 | 280                |                    |                       | 2                   | 0 2        |      |      |        |     |       | 0.23     | 36.0<br>41.6 |       |             | 2   |                  |                    |        |      | 3.8<br>4.9 |        |                                     |       | 11.4 77<br>12.4 75 | 5            |              | 83              |            |               | 7 9    |
| Wed-16             | 337.9          | 0.0   |                |       |               |          |       | 256.2                      |       |      |       | 7.6        | 436        |      |           |      |      |            | 252                |                    |                       | 3                   | 0 3.       |      |      |        |     |       | 0.27     | 44.0         |       |             |     | 82 2.8           |                    |        |      |            | < 0.01 |                                     | 1     | 12.5 83            | -            |              | 89              |            |               | 16     |
| Thu-17<br>Fri-18   | 326.4<br>324.8 | 0.0   | 267.4<br>266.4 |       |               |          |       | 56.5 256.5<br>55.6 255.6   |       |      |       | 7.6        | 508<br>432 |      |           |      |      |            | 275                |                    |                       |                     | 0 3        |      |      |        |     |       | 0.27     | 43.4         |       |             | 2.  | 42 2.4<br>45 2.4 | 63.1<br>64.2       |        |      | 4.1        |        |                                     |       | 13.1 83<br>12.9 71 | 1            |              | 91              | 2.4        |               | 8      |
| Sat-19             | 332.8          | 0.0   | 259.5          |       |               |          |       | 148.4 248.4                | 4 7.6 |      |       | 7.7        | 288        |      |           |      |      |            | 292                |                    |                       |                     | 0 2        |      |      |        |     |       | 0.25     | 41.8         |       |             | 2   |                  |                    |        |      | 3.7        |        |                                     |       | 12.5 80            | a            |              | 80              |            |               | 9      |
| Sun-20<br>Mon-21   | 340.9<br>327.4 | 0.0   | 261.1<br>269.5 | 0.0   |               |          |       | 50.0 250.0<br>58.2 258.2   |       |      |       | 7.7<br>7.6 | 356<br>512 |      |           |      |      |            | 257<br>273         |                    |                       | 2                   | 0 2        |      |      |        |     | 0.24  | 0.24     | 42.2         |       |             | 1.  | 96 1.9<br>61 1.6 | 63.8               |        |      | 3.8        |        |                                     |       | 13.2 74<br>13.0 85 |              |              | 89              |            |               | 8 10   |
| Tue-22             | 326.1          | 0.0   | 261.3          | 0.0   | 0.0           | 11.5     | 0.0 2 | 49.8 249.8                 |       |      |       | 7.6        | 856        |      |           |      |      |            | 397                |                    |                       | < 2                 |            |      |      |        |     |       | 0.26     | 25.6         |       |             |     | 66 1.6           |                    |        |      | 3.5        |        |                                     |       | 14.1 73            |              |              | 88              |            |               | 4      |
| Wed-23<br>Thu-24   | 324.1          | 0.0   | 264.0<br>263.0 |       |               |          |       | 151.9 251.9<br>151.2 251.2 |       |      |       | 7.5        | 440<br>468 |      |           |      |      | 3.6<br>4.5 | 293                |                    |                       | < 2                 |            |      |      |        |     |       | 0.26     | 44.2<br>45.3 |       |             | 1.  | 61 1.6<br>03 1.0 | 69.6<br>64.1       |        |      | 3.7        | 0.05   |                                     |       | 14.9 80<br>15.8 79 | ~            |              | 86              | 2.5        |               | 10     |
| Fri-25             | 316.9          | 0.0   | 265.0          |       |               |          |       | 53.4 253.4                 |       |      |       | 7.5<br>7.5 | 488        |      |           |      |      |            | 256<br>287         |                    |                       | < 2                 |            |      |      |        |     | 0.28  | 0.28     | 43.9         |       |             |     | 72 0.7           | 2 65.9             |        |      | 2.4        |        |                                     |       | 13.8 76            | 6            |              | 86              | 2.5        |               | 9      |
| Sat-26             | 338.1          | 0.0   |                |       |               |          |       | 944.6                      |       |      |       | 7.5        | 264        |      |           |      |      |            | 276                |                    |                       |                     | 0 3.       |      |      |        |     |       | 0.27     | 44.5         |       |             |     | 31 1.3           |                    |        |      | 3.2        |        |                                     |       | 13.9 76            | ś            |              | 85              |            |               | 4      |
| Sun-27<br>Mon-28   | 336.5<br>326.3 | 0.0   | 256.8<br>256.9 |       |               |          |       | 945.2 245.2<br>944.9 244.9 |       |      |       | 7.5<br>7.6 | 376<br>432 |      |           |      |      | · II       | 331<br>223         |                    |                       |                     | 0 3        |      |      |        |     |       | 0.26     | 51.8<br>41.6 |       |             | 1.  | 39 2.3<br>98 1.9 | 19 71.2<br>18 60.4 |        |      | 4.0<br>3.9 |        |                                     |       | 13.1 78<br>12.9 77 | 7            |              | 83<br>79        |            |               | 8      |
| Tue-29             | 315.1          | 0.0   | 255.0          | 0.0   |               |          | 0.0 2 | 43.2 243.2                 | 2 7.6 | 1    |       | 7.6        | 360        |      |           |      |      |            | 257                |                    |                       | 3                   |            |      |      |        |     | 0.23  | 0.23     | 31.5         |       |             | 0.  | 18 0.1           | 18 50.9            |        |      | 1.9        |        |                                     |       | 9.6 78             | 8            |              | 85              |            |               | 11     |
| Wed-30<br>Average  | 318.6          | 0.0   | 264.0          | 0.0   |               | 12.0     |       | 51.4 251.4<br>55.1 255.1   | 7.0   | 7.6  |       | 7.7        | 488<br>443 | 66   |           |      | 3.2  | 3.9        | 346<br>284         | 127 -              |                       | - 2                 | 4 2        | 8.63 | 4.69 |        | -   | 0.25  | 0.25     | 31.4         | 37.1  |             | 0.  | 26 0.2<br>71 1.7 | 60.4               | 47.0   |      | 2.0        | 0.01   | 1.62                                | 7     | 7.93 80<br>12.1 81 | 1 84         | 4            | 82<br>86        |            |               | 6      |
| Minimum            | 315.1          | 0.0   | 254.5          | 0.0   | 0.0           | 9.8      | 0.0 2 | 43.2 243.2                 | 2 7.4 | 7.6  |       | 7.5        | 264        | 65   |           |      | 2.5  | 2.5        | 223                | 127 -              | -                     | < 2                 | 0 < 2      | 6.61 | 4.20 |        | -   | 0.23  | 0.23     | 16.4         | 31.0  |             | 0.  | 18 0.1           | 8 50.9             | 41.8   |      | 1.9        | < 0.01 | 0.68                                | 7     | 7.93 71            | 78           | -            | 79              | 2.4        | 1.4           | 4      |
| Maximum<br>GeoMean | 535.3          | 0.0   |                | 12.4  | 0.0           | 12.6     |       | 302.4                      |       | 7.6  |       | 7.8        | 856        | 66   |           |      | 5.2  | 5.2        | 397                | 127 -              | -                     | 4                   | 0 4.       | 14.6 | 5.18 |        |     | 0.28  | 0.28     | 51.8         | 43.1  |             | 2   | 84 2.8           | 14 88.0            | 52.2   |      | 5.1        | 0.05   | 2.56                                | 1     | 15.8 94            | 90           |              | 92              | 2.5<br>2.4 | 1.8           | 16     |
| TOTAL              |                | 0     | 8,011          | 22    | 0 :           | 336      | 0 7   | ,653 7,653                 | 3     |      |       | ***        | -          |      | -         |      |      |            | -                  |                    | -                     |                     |            |      |      |        |     |       |          |              | -     |             |     | -                |                    | -      | -    |            |        |                                     |       |                    | -            |              |                 |            |               |        |

Director, Quality Assurance and Environment

Senior Manager, Operations

|            |          |                           |                      |                          |                    |             | INFs   | Influent, screened at the Headworks Diver | rsion Structure                  | OUTFALL 20 | Combined Bypass (RAW + PE + EPE)               |
|------------|----------|---------------------------|----------------------|--------------------------|--------------------|-------------|--------|-------------------------------------------|----------------------------------|------------|------------------------------------------------|
|            |          | Enl                       | hanced Primary T     | reatment (EPT) Usage     |                    |             | PE     | Primary Effluent from conventional prima  | ries                             | OUTFALL 30 | Combined Bypass (INF + INFS + PE30 + EPE)      |
| Total Byp: | ass (hr) | EPT Usage (hr)            | % Usage              | Total Bypass YTD (hr)    | EPT Usage YTD (hr) | % Usage YTD | PE 30  | Primary Effluent from conventional prima  | ries discharged via Outfall 30   | MPW        | Membrane Product Water (Effluent re-use water) |
| 6          |          | 6                         | 100%                 | 812                      | 812                | 100%        | EPT    | Enhanced Primary Treatment                |                                  | ML         | Megalitre (1,000,000 Litre)                    |
|            |          |                           |                      |                          |                    |             | EPE    | Enhanced Primary Effluent                 |                                  | MPN        | Most Probable Number                           |
|            |          |                           |                      |                          |                    |             | EPEPS  | Enhanced Primary Effluent Pump Station    |                                  | NR         | No Result                                      |
| Report Cor | mments   |                           |                      |                          |                    |             | FE     | Final Effluent from secondary treatment p | rocess (with biological nutrient | NS         | No Sample                                      |
| 1          | OUTFALL  | 10 - September 11: Analys | sis of the sample ex | ceeded the recommended I | hold time for BOD. |             |        | removal). Pre-Ultraviolet disinfection.   |                                  | INS        | Insufficient Sample                            |
|            |          |                           |                      |                          |                    |             |        | ~ //                                      | 16 0 .                           | AEP        | Alberta Environment & Parks                    |
|            |          |                           |                      |                          |                    |             |        | 1 2                                       | Mart Port                        |            |                                                |
|            |          |                           |                      |                          |                    |             |        | kning                                     | 1180-100                         |            |                                                |
|            |          |                           |                      |                          |                    |             | 1/4    | non                                       | 9                                |            |                                                |
|            |          |                           |                      |                          |                    |             | U-7-   |                                           |                                  | -          |                                                |
|            |          |                           |                      |                          |                    |             | Alfred | o Suarez                                  | Steve Craik                      |            |                                                |
| AEP Ref #  |          |                           |                      |                          |                    |             |        |                                           |                                  |            |                                                |



Gold Bar Wastewater Treatment Plant Plant Performance Report October 2020

| 71010   | INC HOR       | 100  | -     |                   |               |       |                |                    |                  |        |            |            |           |         |            |            |                  |                  |                                         | Oc                               | tober 202           | 20           |      |          |      |            |              |        |             |       |                    |                  |          |              |                 |                         | _            |           |                |                |            | _              |            | _    |
|---------|---------------|------|-------|-------------------|---------------|-------|----------------|--------------------|------------------|--------|------------|------------|-----------|---------|------------|------------|------------------|------------------|-----------------------------------------|----------------------------------|---------------------|--------------|------|----------|------|------------|--------------|--------|-------------|-------|--------------------|------------------|----------|--------------|-----------------|-------------------------|--------------|-----------|----------------|----------------|------------|----------------|------------|------|
|         |               | _    |       |                   |               |       |                |                    |                  |        |            |            |           |         |            |            |                  |                  |                                         |                                  |                     |              |      |          |      |            |              |        |             |       |                    |                  |          |              |                 |                         |              | Digesti   | ted Sludge: To | ital Monthly V | olume (ML) |                | 94.8       |      |
|         |               |      |       | Volum             | ne of Flow (N | IL)   |                |                    |                  |        |            |            |           |         |            |            |                  |                  |                                         |                                  |                     |              |      |          | Lic  | juid Strea | m Quality    |        |             |       |                    |                  |          |              |                 |                         |              |           |                |                |            |                |            |      |
|         |               | No.  |       |                   |               |       |                |                    |                  |        |            |            |           |         |            |            |                  |                  |                                         |                                  |                     |              |      |          |      |            |              |        |             |       |                    |                  |          |              |                 |                         |              |           |                |                |            |                |            |      |
|         |               | Ĕ    |       |                   | Eff           | Nuent |                |                    |                  |        |            |            |           |         |            |            |                  |                  |                                         |                                  |                     |              |      |          |      |            |              |        |             |       |                    |                  |          |              |                 |                         |              |           |                |                |            |                |            |      |
|         |               |      |       | Non UV D          | isinfected    | U     | V Disinfected  |                    | pH               | 1@25°C |            |            |           | TSS (mg | /L)        |            |                  |                  | BOD <sub>5</sub> /cBOD <sub>5</sub> (mg | /L)                              |                     | ļ.,,         |      | TP (mg/L |      |            |              | N      | H3-N (mg/L) |       |                    | тк               | I (mg/L) |              | NO <sub>2</sub> | +NO <sub>3</sub> (mg/L) |              |           | Chloride (mg/L | L)             | E          | E. coli (Count | ts/100 mL) |      |
|         |               |      |       |                   |               |       |                |                    |                  |        | 9          |            |           |         |            | 9          |                  | 2                | 8                                       |                                  | ± .                 |              |      |          |      | 2          |              |        |             | 9     |                    |                  |          | 9            |                 |                         | 2            |           |                | 9              |            | 8              | 8          | 9    |
|         |               |      |       | 2 2               |               |       | OUTFALI        | L 10               | 9                | 2      | FALL       |            | 2         | 2       |            | Į.         |                  | FALL             | FALL                                    |                                  | P .                 |              | 2    | 2        |      | . ALL      |              | 2 2    |             | FALL  |                    | 2                | 2        | FALL         | 2               | 2                       | FALL         |           | 2 2            | FALL           |            | FALL           | FALL       | FALL |
|         | Peak          |      |       | FALL              |               | 8     |                |                    | FALL:            | FALL   | 50         |            | FALL      | FALL    | S          | 5          | RAW              | EJ0              | OUT                                     | FEC                              | FE                  |              | FALL | FALL     |      | 8          |              | FALL   | 85          | 5     |                    | FALL             | FALL     | 50           | FALL 3          | FALL                    | E70          |           | FALL           | 50             | RAW        | 5              | 5          | 50   |
| DATE    | Flow<br>(MLD) | INFs | RAW   | 50                | MPW           | EPE   | FEC            | FE RAW             | . 5 <sub>0</sub> | 50     | FEC        | RAW        | 50        | 50      | H FEC      | FE         | BOD <sub>5</sub> | BOD <sub>5</sub> | BOD <sub>6</sub> BO                     | D <sub>S</sub> cBOD <sub>3</sub> | s cBOD <sub>3</sub> | RAW          | 50   | 50       | FEC  | FE         | RAW          | 5 5    | EPE         | FEC I | FE RAW             | 50               | 50       | FEC          | RAW 5           | 50                      | FEC          | RAW       | 50             | FEC            | X10^6      | X10^6          | X10^6      | FEC  |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 234.7 7            | '.7<br>'.8       |        | 7.6<br>7.6 | 143        |           |         | 4.4        | 4.4<br>4.6 | 184<br>231       |                  |                                         | 3.0                              |                     |              |      |          | 0.25 |            | 32.5<br>17.5 |        |             | 0.44  | 0.44 47            |                  |          | 1.90<br>2.20 |                 |                         | 7.91<br>8.66 | 79<br>80  |                | 82<br>82       |            |                |            | 4 4  |
| Sat-03  | 411.7         | 0.0  | 238.4 | 0.0               | .0 11.4       | 0.0   |                | 227.0 7            |                  |        | 7.6        | 92         |           |         | 4.3        |            | 104              |                  |                                         | 3.0                              |                     | 6.24         |      |          | 0.29 |            | 5.81         |        |             |       | 0.43 15            |                  |          | 2.00         |                 |                         | 7.91         | 79        |                | 80             |            |                |            | 7    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 241.6 €<br>244.8 3 |                  |        | 7.5        | 5900       |           |         | 4.3        | 4.3<br>4.4 | 2750             |                  |                                         | 3.0                              |                     |              |      |          | 0.24 |            | 20.7         |        |             | 0.68  | 0.68 39            | -                |          | 2.00         |                 |                         | 7.37         | 78        |                | 78             |            |                |            | 8    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | '.6<br>'.6       |        | 7.7        | 355<br>336 |           |         | 4.4        | 4.4        | 373<br>292       |                  |                                         | 3.0                              |                     | 8.82<br>6.89 |      |          | 0.24 |            | 34.3         |        |             | 0.62  | 0.62 58            |                  |          | 1.90         |                 |                         | 6.31<br>6.58 | 78<br>100 |                | 76<br>82       |            |                |            | 5    |
|         |               |      |       | 0.0               |               | 0.0   |                | 239.2 7            | 1.5              |        | 7.6        | 324        |           |         | 4.2        | 4.2        | 266              |                  |                                         | 3.0                              | 3.0                 | 6.70         |      |          | 0.22 | 0.22       | 27.9         |        |             | 0.51  | 0.51 50            | .7               |          | 2.20         | 0.08            |                         | 7.74         | 86        |                | 83             |            |                |            | 3    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 238.6 7            | 1.6              |        | 7.7        | 540<br>532 |           |         | 3.9<br>5.5 | 3.9<br>5.5 | 283<br>275       |                  |                                         | 3.0                              |                     | 7.00         |      |          | 0.23 |            | 33.8         |        |             | 0.51  | 0.51 55            |                  |          | 2.20         |                 |                         | 7.25<br>6.08 | 79<br>76  |                | 84             | 3.1        |                |            | 5    |
|         |               |      |       | 0.9 0.            |               | 0.0   |                |                    | .5 7.6           |        | 7.6        | 376        | 36        |         | 2.9        |            | 265              | 80               |                                         | 4.0                              |                     | 6.50         | 2.03 |          | 0.24 |            | 32.5         | 13.5   |             |       | 0.87 52            |                  | 2        | 2.70         | 0.              | 34                      | 6.42         |           | 43             | 88             | ı          | 2.3            |            | 27   |
|         |               |      |       | 59.0 0.           |               | 0.0   |                |                    | .5 8.0           |        | 7.5        | 460        | 160       |         | 2.8        |            | 218              | 119              |                                         | 4.0                              |                     |              | 6.28 |          | 0.18 |            | 21.8         | 32.3   |             | 1.17  | 1.17 39            |                  | 3        | 2.60         | 3.              | 27                      | 5.15         |           | 53             | 73             |            | 1.5            |            | 15   |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | 5.5              |        | 7.6<br>7.6 | 436<br>396 |           |         | 4.4        | 4.4        | 324<br>263       |                  |                                         | 3.0                              |                     | 6.83         |      |          | 0.20 |            | 35.9<br>33.9 |        |             | 1.70  | 1.70 55            |                  |          | 3.10         |                 |                         | 5.78<br>6.16 | 70<br>73  |                | 72             |            |                |            | 21   |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | .6               |        | 7.7        | 300        |           |         | 3.5        | 3.5        | 308              |                  |                                         | 3.0                              |                     | 7.31         |      |          | 0.09 |            | 35.2         |        |             |       | 2.01 56            |                  |          | 1.90         | < 0.01          |                         | 7.71         | 78        |                | 85             |            |                |            | 4    |
|         |               |      |       | 0.0               |               | 0.0   |                |                    | .6               |        | 7.7        | 296        |           |         | 3.8        | 3.8        | 302              |                  |                                         | 3.0                              |                     | 7.18         |      |          | 0.19 |            | 29.7         |        |             |       | 2.00 53            | -                |          | 3.60         |                 |                         | 8.09         | 76        |                | 83             |            |                |            | 2    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | 1.5              |        | 7.6<br>7.6 | 384<br>608 |           |         | 3.7        | 3.7        | 291<br>507       |                  |                                         | 2.0                              |                     | 8.49         |      |          | 0.20 |            | 36.8<br>34.0 |        |             | 2.30  | 2.30 61            |                  |          | 3.80         |                 |                         | 7.44<br>7.97 | 75<br>67  |                | 83             |            |                |            | 4    |
| Sun-18  | 371.8         |      |       | 0.0               | .0 11.2       | 0.0   |                |                    | .6               |        | 7.6        | 448        |           |         | 4.4        | 4.4        | 329              |                  |                                         | 2.0                              |                     | 9.28         |      |          | 0.20 |            | 42.4         |        |             |       | 2.81 75            | .5               |          | 4.70         |                 |                         | 9.02         | 69        |                | 75             |            |                |            | 8    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | .6               |        | 7.6        | 328        |           |         | 3.6        | 3.6        | 274              |                  |                                         | 2.0                              |                     | 8.11         |      |          | 0.20 | 0.20       | 37.9         |        |             | 2.50  | 2.50 59            | -                |          | 4.20         |                 |                         | 8.82         | 73        |                | 73             |            |                |            | 6    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 244.4 7            | 6                |        | 7.5<br>7.5 | 300<br>284 |           |         | 3.3        | 3.3<br>4.0 | 271              |                  |                                         | 2.0                              |                     | 8.37         |      |          | 0.21 | 0.21       | 37.7<br>37.4 |        |             | 1.84  | 1.84 65            | -                |          | 3.80         | < 0.01          |                         | 9.40         | 84<br>83  |                | 83             |            |                |            | 6    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 242.1 7            | .6               |        | 7.5        | 292        |           |         | 3.6        | 3.6        | 310              |                  |                                         | 3.0                              |                     | 8.46         |      |          | 0.23 | 0.23       | 38.1         |        |             | 2.00  | 2.00 63            | .3               |          | 4.00         |                 |                         | 11.7         | 77        |                | 86             |            |                |            | 4    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 239.3 7            |                  |        | 7.7        | 276        |           |         | 3.7        | 3.7        | 326              |                  |                                         | 3.0                              |                     | 8.58<br>8.49 |      |          | 0.23 |            | 37.0         |        |             | 1.10  | 1.10 63            |                  |          | 3.10         |                 |                         | 10.6         | 76        |                | 86             | · II I     |                |            | 4    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                |                    | '.5<br>'.6       |        | 7.7        | 336<br>260 |           |         | 3.6<br>4.2 | 3.6<br>4.2 | 300<br>334       |                  |                                         | 3.0                              |                     | 8.49<br>8.58 |      |          | 0.25 |            | 39.5<br>38.9 |        |             | 1.22  | 1.22 67<br>1.52 61 | -                |          | 3.40<br>4.00 |                 |                         | 8.98<br>9.28 | 73<br>69  |                | 85<br>77       |            |                |            | 7    |
|         |               |      |       | 0.0               |               | 0.0   |                | 248.3 7            | .7               |        | 7.6        | 292        |           |         | 4.2        | 4.2        | 353              |                  |                                         | 3.0                              | 3.0                 | 8.02         |      |          | 0.22 | 0.22       | 29.3         |        |             | 1.40  | 1.40 60            | .3               |          | 3.40         |                 |                         | 8.33         | 84        |                | 75             | . [        |                |            | 6    |
|         |               |      |       | 0.0 0.            |               | 0.0   |                | 246.0 7            | 4                |        | 7.4        | 340<br>316 |           |         | 3.9        | 3.9        | 331<br>344       |                  |                                         | 3.0<br>< 2.0                     |                     | 8.27<br>8.78 |      |          | 0.23 |            | 38.4         |        |             |       | 0.70 59            |                  |          | 2.60         | 0.04            |                         | 8.85<br>10.2 | 97        |                | 95             | .          |                |            | 5    |
|         |               |      |       | 0.0 0.            | .0 10.9       | 0.0   |                |                    | 1.6              |        | 7.6        | 300        |           |         | 3.5        | 3.5        | 380              |                  |                                         | 2.0                              |                     |              |      |          | 0.23 |            | 37.1         |        |             |       | 0.41 63            | _                |          | 2.40         | 0.04            |                         | 11.7         | 78        |                | 93             |            |                |            | 3    |
|         |               |      | 270.0 | 7.0 0.            | 0 12.0        | 0.0   |                | 251.0 7            | .5 7.7           | 1      | 7.5        | 380        | 107       |         | 2.9        | 2.9        | 368              | 134              |                                         | 2.0                              | 2.0                 | 8.82         | 6.30 |          | 0.23 | 0.23       | 38.8         | 42.8   |             | 0.50  | 0.50 60            | 1.6 58.          | 3        | 2.20         | 0.              | 02                      | 12.1         | 82        | 104            | 88             |            | 2.2            |            | 3    |
| Average | 378.3         | 0.0  | 256.0 | 2.2 0.            | .0 11.5       | 0.0   | 242.3          | 242.3 7.           |                  |        | 7.6        | 256<br>518 | 101       | -       | 3.9        |            | 285<br>380       | 111              |                                         | 2.8                              |                     |              | 4.87 | -        | 0.22 |            | 33.2         | 29.5 - |             | 1.00  | 1.22 67            |                  |          | 2.70         |                 | 21                      | 12.0<br>8.45 | 78        | 67             | 83             |            | -              |            |      |
|         |               |      |       | 0.0 0.<br>59.0 0. |               | 0.0   | 227.0<br>278.5 |                    |                  |        | 7.4        | 92<br>5900 | 36<br>160 |         | 2.8        | 2.8        | 104<br>2750      | 80<br>134        | -                                       | < 2.0                            | 0 < 2.0             | 5.88         | 2.03 | -        | 0.09 |            | 5.81<br>42.4 | 13.5 - |             | 0.32  | 0.32 15            | i.8 19.<br>in 58 |          | 1.90         | < 0.01 0.       |                         | 5.15<br>12.1 | 58<br>100 | 43 -           | 72             | 2.8        | 1.5            |            | 2 27 |
| GeoMean |               |      | -     |                   |               |       |                |                    | - 8.0            |        |            |            | -         |         |            |            |                  |                  | -                                       |                                  | - 4.0               |              |      |          |      |            |              |        |             |       |                    |                  | -        |              |                 |                         |              |           | -              |                | 2.9        | 2.0            |            | 6    |
| TOTAL   | ***           | 0    | 7,935 | 67 (              | 358           | 0     | 7,510          | 7,510              | -                |        |            | ***        |           | ***     |            |            | ***              |                  | ***                                     |                                  |                     |              | ***  |          |      | ***        | ***          |        |             | ***   |                    |                  | ***      |              |                 | -                       |              | ***       |                |                |            |                | ***        | ***  |

\* Contact Laboratory for information about the quality assurance associated with the results

|                   |                |                  |                       |                    |             | II II | NFs   | Influent, screened at the He |
|-------------------|----------------|------------------|-----------------------|--------------------|-------------|-------|-------|------------------------------|
|                   | Enl            | hanced Primary T | reatment (EPT) Usage  |                    |             | F     | Æ     | Primary Effluent from conv   |
| Total Bypass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD | F     | PE 30 | Primary Effluent from conv   |
| 10                | 10             | 100%             | 822                   | 822                | 100%        | E     | PT    | Enhanced Primary Treatme     |
|                   |                |                  |                       |                    |             | F     | PF    | Enhanced Primary Effluent    |

| Report Co | mments                                                                                      |
|-----------|---------------------------------------------------------------------------------------------|
| 1         | OUTFALL 10 - October 11: Analysis of the sample exceeded the recommended hold time for BOD. |
| 2         | RAW - October 11: Analysis of the sample exceeded the recommended hold time for BOD.        |
|           |                                                                                             |
|           |                                                                                             |
|           |                                                                                             |
|           |                                                                                             |
| AEP Ref # |                                                                                             |

NF Urrando sustained from collection system OUTFALL 10 Underfected, declared size of UTFALL 10 Underfected size of UTFALL 10 Underfected

Alfredo Suarez Steve Craik

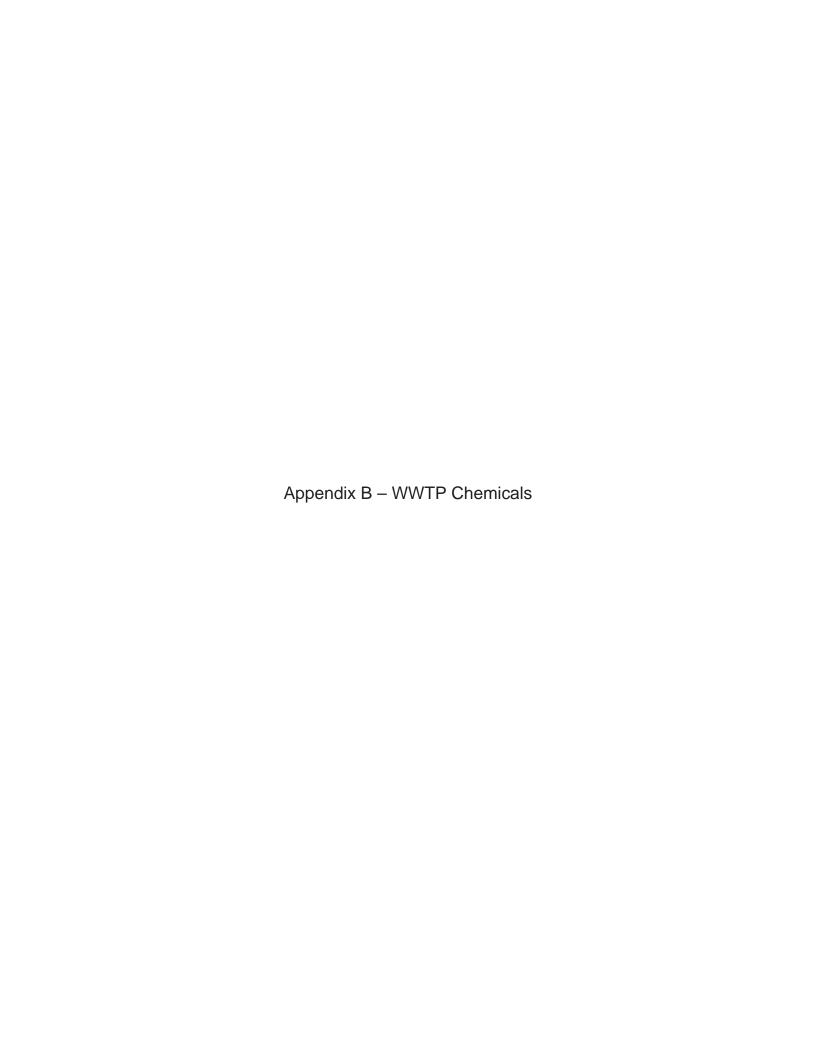
nager, Operations Director, Quality Assurance and Environment

Gold Bar Wastewater Treatment Plant Plant Performance Report November 2020

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |                                                                                                       |     |          |            |            |                                         |                                                     |                  |                       |                       |                                          |                   |      |         |                                         |              |                                                                                                                              |         |         |            |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                |                               |                                     |         |                                                                                                                                                                           | Digeste                                                                                                                                                                                   | ed Sludge: To | Total Monthly                           | Volume (ML      | .)         | 63.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------------------------------------------------------------------------------------------------|-----|----------|------------|------------|-----------------------------------------|-----------------------------------------------------|------------------|-----------------------|-----------------------|------------------------------------------|-------------------|------|---------|-----------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|-----------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vo          | lume of F                              | low (ML)                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |                                                                                                       |     |          |            |            |                                         |                                                     |                  |                       |                       |                                          |                   |      |         |                                         | Li           | iquid Stre                                                                                                                   | am Qual | ty      |            |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                |                               |                                     |         |                                                                                                                                                                           |                                                                                                                                                                                           |               |                                         |                 |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | Immen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                        | Effluent                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |                                                                                                       |     |          |            |            |                                         |                                                     |                  |                       |                       |                                          |                   |      |         |                                         |              |                                                                                                                              |         |         |            |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                |                               |                                     |         |                                                                                                                                                                           |                                                                                                                                                                                           |               |                                         |                 |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non         | UV Disinfecto                          | ed                                                                                                                                                                                          | UVD                                     | isinfected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | рН⊜     | 25°C    |                                                                                                       |     |          | TSS (mg/L) |            |                                         |                                                     |                  | BOD <sub>s</sub> /cBO | D <sub>s</sub> (mg/L) |                                          |                   |      |         | TP (mg/L)                               |              |                                                                                                                              |         |         | NH3-N (mg/ | /L)  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TKN (r       | ng/L)   |                                                                                                                                                                                                |                               | NO <sub>2</sub> +NO <sub>3</sub> (m | ng/L)   |                                                                                                                                                                           |                                                                                                                                                                                           | Chloride (mg/ | 9/L)                                    |                 | E. coli (C | Counts/100 m | -)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FALL 30     | FALL 20                                |                                                                                                                                                                                             | Sd.                                     | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FALL 30 | FALL 20 | OUTFALL 10                                                                                            |     | FALL 30  | PS FRANCES |            | OUTFALL 10                              | RAW                                                 | OUTFALL 30       | OUTF ALL 20           | EPEPS                 | SOUTFALL<br>10                           | FE                |      | FALL 30 | FALL 20                                 | of East      |                                                                                                                              |         | FALL 30 | FALL 20    | so   | OUTF ALL 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFALL 30     | FALL 20 | OUTFALL 10                                                                                                                                                                                     |                               | FALL 30                             | FALL 20 | OUTFALL 10                                                                                                                                                                |                                                                                                                                                                                           | FALL 30       | OUTFALL 10                              | RAW             | OUTFALL 30 | OUTF ALL 20  | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow<br>(MLD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INFs                                                               | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50          | 5                                      | MPW                                                                                                                                                                                         | EPE                                     | FEC FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50      | 5 1     | FEC                                                                                                   | RAW | 5        | EP 001     | FEC        | FE                                      | BOD <sub>5</sub>                                    | BOD <sub>5</sub> | BODs                  | BODs                  | cBOD <sub>5</sub>                        | cBOD <sub>s</sub> | RAW  | 5       | EPE                                     | FEC          | FE                                                                                                                           | RAW     | 5       | 5          | E PE | EC FE       | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5            | 5       | FEC F                                                                                                                                                                                          | RAW                           | 5                                   | 5 1     | FEC R                                                                                                                                                                     | RAW                                                                                                                                                                                       | 5 5           | 5<br>FEC                                | C X10^          | 1^6 X10^6  | 6 X10*6      | FEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sun01 Tue03 Wed04 Fr06 Fr06 Fr06 Sun08 Mon09 Wed11 Tue10 Wed11 Tue10 Wed11 Tue10 Sun18 Sun14 Sun14 Sun14 Sun14 Amon96 Amo | 365.4 338.3 332.4 333.1 332.4 333.1 361.8 372.2 351.0 363.5 342.1 368.1 353.8 366.1 331.6 342.9 340.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 346.3 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 2577 2514 247.0 247.5 247.0 247.5 251.4 247.0 252.8 252.4 247.3 253.6 252.4 247.3 253.6 252.4 247.3 250.4 247.3 250.4 247.3 250.4 247.3 250.4 247.3 250.4 247.3 250.4 247.3 250.4 247.3 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 250.5 25 | 21.7        | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 905 1117 1118 1221 1119 1222 1115 1116 1117 1118 1112 1112 1115 1115 1117 1115 1120 124 125 1116 1116 1117 115 117 117 115 120 124 125 1119 120 124 127 127 127 127 127 127 127 127 127 127 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.024.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 | 7.6 1.75 7.6 1.75 7.6 1.75 7.6 1.75 7.6 1.75 7.6 1.75 7.6 1.75 7.75 7.8 1.75 7.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.8 1.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 | 7.6     |         | 7.5<br>7.5<br>7.6<br>7.5<br>7.6<br>7.7<br>7.6<br>7.7<br>7.7<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5 | 244 | 83<br>83 |            | 2.         | 4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 | 363 363 365 366 367 367 367 367 367 367 367 367 367 | 134              |                       |                       | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 |                   | 6.68 | 4.89    |                                         | 0.20         | 0.24 0.27 0.26 0.29 0.22 0.22 0.22 0.22 0.24 0.21 0.25 0.22 0.25 0.24 0.25 0.25 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 | 24.2    |         |            |      | 0.08 0.     | 25 59.7. 26 60.2:24 27. 28 60.2:26 28 60.2:26 29.26 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29 | 48.0<br>48.0 |         | 220<br>230<br>230<br>230<br>230<br>250<br>330<br>240<br>250<br>210<br>250<br>210<br>250<br>200<br>200<br>200<br>200<br>250<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>1 | 0.05 0.06 0.06 0.06 0.06 0.07 | 0.67                                |         | 12.6 12.8 13.8 11.5 10.5 11.1 11.7 12.1 10.7 9.36 10.6 9.64 10.7 11.7 11.7 11.8 12.3 11.8 12.5 12.0 12.1 13.2 11.9 12.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.5 9.69 9.41 | 71<br>87<br>95<br>104<br>275<br>124<br>106<br>106<br>103<br>82<br>90<br>98<br>110<br>120<br>124<br>112<br>97<br>121<br>112<br>112<br>112<br>112<br>112<br>1160<br>138<br>152<br>106<br>87 | 91<br>91      | 111111111111111111111111111111111111111 | 74 2.<br>234 2. | 2.8        |              | 4 4 9 9 9 5 5 3 6 6 4 2 2 5 9 7 7 4 4 4 6 6 5 8 8 4 3 3 2 2 9 9 10 10 10 2 2 6 10 10 5 5 5 6 6 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 6 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                  | 7,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22          | 0                                      | 352                                                                                                                                                                                         | 0                                       | 7,155 7,155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***     | ***     | ***                                                                                                   |     | ***      |            |            |                                         |                                                     |                  |                       |                       |                                          |                   | ***  |         |                                         |              |                                                                                                                              |         | -       | ***        |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | ***                                                                                                                                                                                            |                               | ***                                 |         |                                                                                                                                                                           | ***                                                                                                                                                                                       | -             |                                         |                 |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * Contact Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oratory for in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nformation a                                                       | bout the quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y assurance | associated wi                          | ith the results                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |                                                                                                       |     |          |            | RAW<br>INF | Untreated                               | Influent into to<br>wastewater forcement at the     | rom collectio    |                       | Structure             |                                          |                   |      | .10 UV- | nbined post-UV of<br>disinfected, disci | arged via OU | TFALL 10                                                                                                                     |         |         |            |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                |                               |                                     |         |                                                                                                                                                                           |                                                                                                                                                                                           |               |                                         |                 |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|            |          |                |                  |                       |                    |             | INFs   | Influent, screened at the Headworks Di  | version Structure                   | OUTFALL 20   | Combined Bypass (RAW + PE + E    |
|------------|----------|----------------|------------------|-----------------------|--------------------|-------------|--------|-----------------------------------------|-------------------------------------|--------------|----------------------------------|
|            |          | En             | hanced Primary T | reatment (EPT) Usage  |                    |             | PE     | Primary Effluent from conventional prin | maries                              | OUTFALL 30   | Combined Bypass (INF + INFS + F  |
| Total Byp: | ass (hr) | EPT Usage (hr) | % Usage          | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD | PE 30  | Primary Effluent from conventional prin | naries discharged via Outfall 30    | MPW          | Membrane Product Water (Effluent |
| 4          |          | 4              | 100%             | 826                   | 826                | 100%        | EPT    | Enhanced Primary Treatment              |                                     | ML           | Megalitre (1,000,000 Litre)      |
|            |          |                |                  | •                     |                    |             | EPE    | Enhanced Primary Effluent               |                                     | MPN          | Most Probable Number             |
|            |          |                |                  |                       |                    |             | EPEPS  | S Enhanced Primary Effluent Pump Stati  | on                                  | NR           | No Result                        |
| Report Cor | mments   |                |                  |                       |                    |             | FE     | Final Effluent from secondary treatmen  | t process (with biological nutrient | NS           | No Sample                        |
|            |          |                |                  |                       |                    |             |        | removal). Pre-Ultraviolet disinfection. | 11 0                                | INS          | Insufficient Sample              |
|            |          |                |                  |                       |                    |             |        |                                         | 14 01                               | AEP          | Alberta Environment & Parks      |
|            |          |                |                  |                       |                    |             |        |                                         | March 1. ich                        |              |                                  |
|            |          |                |                  |                       |                    |             |        |                                         | 11111111111                         |              |                                  |
|            |          |                |                  |                       |                    |             |        |                                         | 77                                  |              |                                  |
|            |          |                |                  |                       |                    |             |        |                                         |                                     | _            |                                  |
|            |          |                |                  |                       |                    |             | Alfred | edo Suarez                              | Steve Craik                         |              |                                  |
| AEP Ref #  |          |                |                  |                       |                    |             |        |                                         |                                     |              |                                  |
|            |          |                |                  |                       |                    |             | Senior | or Manager, Operations                  | Director, Quality Assurance a       | nd Environme | ent                              |
|            |          |                |                  |                       |                    |             |        |                                         |                                     |              |                                  |

Gold Bar Wastewater Treatment Plant Plant Performance Report December 2020


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                   | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |                                                                                                                                                                                                                                                   |                                         |                  |                        |                                         |                     |                                             |                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |           |     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |                                                    |                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Digested Slu                             | dge: Total Mor | enthly Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ML)                                      | 64.7           |                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------------|-----------------------------------------|---------------------|---------------------------------------------|--------------------|----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|-----|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------------------------------------------|----------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volum                                   | e of Flow (                              | ML)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |                                                                                                                                                                                                                                                   |                                         |                  |                        |                                         |                     |                                             |                    |                            |                              | Liquid S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stream Qua         | ality    |           |     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |                                                    |                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                   | Import                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                          | Iffluent                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |                                                                                                                                                                                                                                                   |                                         |                  |                        |                                         |                     |                                             |                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |           |     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |                                                    |                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Non UV E                                | isinfected                               | U                                      | V Disinfected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | pH@25°C           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TSS      | (mg/L) |                                                                                                                                                                                                                                                   |                                         |                  | BOD <sub>s</sub> /cBOD | l <sub>s</sub> (mg/L)                   |                     |                                             |                    | TP (mg                     | /L)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          | NH3-N (mg | /L) |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TKN (mg/ | L)         |                                                    | NO <sub>2</sub> +NO <sub>3</sub> | (mg/L)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlori                                   | de (mg/L)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E. coli (C                                | Counts/100 mL) |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak<br>Flow                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TFALL 30                                |                                          | EPS                                    | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | TFALL 30 TFALL 20 | OUTFALL 10 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TFALL 20 | EPS    | OUTFALL 10                                                                                                                                                                                                                                        | RAW                                     | OUTFALL 30       | OUTFALL 20             | EPEPS                                   | OUTFALL 10          | E                                           | TFALL 30           | TFALL 20                   | EPS                          | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | TFALL 30 | TFALL 20  | SS  | OUTFALL 10                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TFALL 30 | OUTFALL 10 |                                                    | TFALL 30                         | TFALL 20 | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TFALL 30                                 | TFALL 20       | OUTFALL 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RAW<br>OUTFALL 30                         | OUTFALL 20     | OUTFALL 10                                                                                                     |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (MLD)                                                 | INFs                                                              | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 5                                     | MPW                                      | EP                                     | FEC FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RAW                                                                                            | 9 9               | FEC        | RAW 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 9      | EP     | FEC F                                                                                                                                                                                                                                             | E BODs                                  | BOD <sub>5</sub> | BODs                   | BOD <sub>5</sub> cB                     | OD <sub>5</sub> cBO | D <sub>2</sub> RAW                          | 9                  | 9                          | E E                          | FEC FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAW                | 9        | 8         | FEC | FE                                      | RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9        | O FEC      | RAW                                                | no                               | o F      | EC RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , 3                                      | 9              | FEC :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X10^6 X10^6                               | 6 X10*6        | FEC                                                                                                            |
| Tue-00 The 02 The 02 The 02 Sun-06 Sun-06 Sun-06 Tue-06 Sun-06 Tue-06 Sun-06 Tue-06 Sun-06 Tue-06 Sun-06 Su | 367.2 2 3 367.3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 246.9 241.7 241.7 247.2 243.9 241.7 241.7 241.7 241.7 241.7 241.7 241.7 241.7 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 241.8 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 11.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 1940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940   2940 | 7.6<br>7.7<br>7.5<br>7.6<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5 |                   |            | 288   340   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360 |          |        | 3.5<br>3.0<br>3.1<br>3.1<br>3.4<br>3.5<br>3.5<br>3.5<br>3.9<br>3.7<br>2.7<br>2.6<br>3.0<br>4.8<br>2.7<br>2.7<br>2.4<br>2.5<br>2.9<br>1.9<br>2.9<br>2.7<br>3.2<br>2.9<br>3.1<br>3.3<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5 | 444 33 33 33 33 33 33 33 33 33 33 33 33 |                  |                        | < < < < < < < < < < < < < < < < < < < < | 30                  | 20 6 20 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 |                    |                            |                              | 0.21 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | 20 36.1<br>15 30.6 |          |           |     | 1.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 | 53.8<br>56.2<br>51.0<br>54.7<br>53.0<br>50.2<br>46.1<br>57.5<br>56.1<br>58.7<br>54.2<br>49.0<br>55.0<br>59.0<br>59.0<br>59.0<br>57.0<br>59.3<br>52.1<br>49.8<br>51.7<br>54.8<br>56.1<br>57.9<br>54.8<br>56.1<br>57.9<br>54.8<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 |          |            | 500 < 0.01 500 500 500 500 700 700 700 700 700 700 |                                  |          | 8.45 1 9.0 1 9.0 1 9.3 9 9.3 9 9.3 9 9.6 1 9.3 9 9.6 1 9.3 9 9.6 1 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.6 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 8 10.7 | 003 003 003 00 00 00 00 00 00 00 00 00 0 |                | 106   106   107   108   107   108   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107 | 2.1 1.A 1.A 1.A 1.A 1.A 1.A 1.A 1.A 1.A 1 |                | 13 4 4 4 2 2 4 5 57 10 6 6 6 4 4 3 3 2 2 4 5 5 5 7 7 4 4 3 3 2 2 4 5 5 6 200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |
| * Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Laboratory for                                        | information al                                                    | bout the qualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y assurance asso                        | ciated with the r                        | esults                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        | aF Untre                                                                                                                                                                                                                                          | eated Influent int<br>eated wastewate   | r from collectio |                        |                                         |                     |                                             | FFALL 10           | UV-disinfecter             | d, discharged                | ction (FE+EPEF<br>1 via OUTFALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |           |     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |                                                    |                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enhanc                                  | ed Primary                               | Treatment                              | (EPT) Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |                                                                                                                                                                                                                                                   | ent, screened at<br>eary Effluent from  |                  |                        | ructure                                 |                     | OL                                          | FALL 20<br>FALL 30 | Combined By<br>Combined By | pass (RAW +<br>pass (INF + I | PE + EPE)<br>INFS + PE30 + I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPE)               |          |           |     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |                                                    |                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                |                                                                                                                |

Manager, Laboratory Customer Relations

| * Contact Laboratory for information about the quality assu | rance associated with the results |
|-------------------------------------------------------------|-----------------------------------|
|-------------------------------------------------------------|-----------------------------------|

| TOTAL          | ***             | 0 7,496 0                          | 0 344                      | 0 7,152 7,152         |                    |             |   | ***        |                                                                              |                                   |                  |                                  |                 |
|----------------|-----------------|------------------------------------|----------------------------|-----------------------|--------------------|-------------|---|------------|------------------------------------------------------------------------------|-----------------------------------|------------------|----------------------------------|-----------------|
| * Contact Labo | ratory for info | ormation about the quality assuran | ce associated with the res | sults                 |                    |             |   | RAW<br>INF | Untreated Influent into the plant<br>Untreated wastewater from collection sy |                                   | FEC<br>OUTFALL 1 |                                  | ITFALL 10       |
|                |                 |                                    | hanned Releases T          |                       |                    |             | - | INFs       | Influent, screened at the Headworks Div                                      |                                   | OUTFALL 2        |                                  |                 |
|                |                 |                                    |                            | reatment (EPT) Usage  |                    |             |   | PE         | Primary Effluent from conventional prim.                                     | aries                             | OUTFALL 3        |                                  |                 |
| Total Bypa     | ass (hr)        | EPT Usage (hr)                     | % Usage                    | Total Bypass YTD (hr) | EPT Usage YTD (hr) | % Usage YTD |   | PE 30      | Primary Effluent from conventional prim.                                     | aries discharged via Outfall 30   | MPW              | Membrane Product Water (Effluent | t re-use water) |
| 0              |                 | 0                                  | 100%                       | 826                   | 826                | 100%        |   | EPT        | Enhanced Primary Treatment                                                   |                                   | ML               | Megalitre (1,000,000 Litre)      |                 |
|                |                 |                                    |                            | •                     | •                  | •           | - | EPE        | Enhanced Primary Effluent                                                    |                                   | MPN              | Most Probable Number             |                 |
|                |                 |                                    |                            |                       |                    |             |   | EPEPS      | Enhanced Primary Effluent Pump Statio                                        | n                                 | NR               | No Result                        |                 |
| Report Cor     | mments          |                                    |                            |                       |                    |             |   | FE         | Final Effluent from secondary treatment                                      | process (with biological nutrient | NS               | No Sample                        |                 |
|                |                 |                                    |                            |                       |                    |             |   |            | removal). Pre-Ultraviolet disinfection.                                      |                                   | INS              | Insufficient Sample              |                 |
|                |                 |                                    |                            |                       |                    |             |   |            |                                                                              |                                   | AEP              | Alberta Environment & Parks      |                 |
|                |                 |                                    |                            |                       |                    |             |   |            |                                                                              | - RE                              | -                |                                  |                 |
|                |                 |                                    |                            |                       |                    |             |   |            |                                                                              | 1                                 |                  |                                  |                 |
| AEP Ref #      |                 |                                    |                            |                       |                    |             |   | Alfred     | o Suarez                                                                     | Daniel Calcines                   |                  |                                  |                 |

Senior Manager, Operations



# 2020 Secondary Alum Usage (kg)

|      | January | February | March | April | May | June  | July  | August | September | October | November | December |
|------|---------|----------|-------|-------|-----|-------|-------|--------|-----------|---------|----------|----------|
| 1    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 472       | 0       | 0        | 0        |
| 2    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 3    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 4    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 5    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 6    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 7    | 0       | 0        | 0     | 0     | 0   | 0     | 884   | 0      | 0         | 0       | 0        | 0        |
| 8    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 9    | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 10   | 0       | 0        | 0     | 0     | 199 | 598   | 0     | 0      | 0         | 0       | 0        | 0        |
| 11   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 12   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 13   | 0       | 0        | 0     | 0     | 0   | 0     | 788   | 0      | 0         | 0       | 0        | 0        |
| 14   | 0       | 0        | 0     | 0     | 0   | 0     | 2413  | 0      | 0         | 0       | 0        | 0        |
| 15   | 0       | 509      | 0     | 64    | 0   | 0     | 98    | 0      | 0         | 0       | 0        | 0        |
| 16   | 0       | 0        | 0     | 932   | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 17   | 0       | 0        | 0     | 0     | 0   | 213   | 0     | 0      | 0         | 0       | 0        | 0        |
| 18   | 0       | 0        | 0     | 586   | 0   | 98    | 0     | 0      | 0         | 0       | 0        | 0        |
| 19   | 0       | 0        | 0     | 0     | 0   | 1046  | 0     | 0      | 0         | 0       | 0        | 0        |
| 20   | 97      | 0        | 0     | 0     | 0   | 0     | 105   | 0      | 0         | 0       | 0        | 0        |
| 21   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 22   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 23   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 24   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 25   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 26   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 1         | 0       | 0        | 0        |
| 27   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 28   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 29   | 0       | 0        | 0     | 0     | 0   | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 30   | 0       |          | 0     | 0     | 276 | 0     | 0     | 0      | 0         | 0       | 0        | 0        |
| 31   | 0       |          | 0     |       | 0   |       | 0     | 0      |           | 0       |          | 0        |
| (ka) | 97      | 509      | 0     | 1 581 | 474 | 1 955 | 4 287 | 0      | 473       | 0       | 0        | 0        |

Total (kg) 97 509 0 1,581 474 1,955 4,287 0 473 0 0 0

# 2020 EPT Alum Usage (kg)

|      | January | February | March  | April  | May    | June    | July    | August | September | October | November | December |
|------|---------|----------|--------|--------|--------|---------|---------|--------|-----------|---------|----------|----------|
| 1    | 0       | 2102     | 0      | 0      | 0      | 5431    | 23391   | 0      | 0         | 0       | 0        | 0        |
| 2    | 0       | 0        | 1853   | 0      | 0      | 0       | 13862   | 0      | 2063      | 0       | 0        | 0        |
| 3    | 0       | 18       | 2461   | 0      | 3020   | 0       | 7482    | 7487   | 0         | 0       | 0        | 0        |
| 4    | 0       | 0        | 0      | 0      | 18226  | 0       | 5559    | 6728   | 0         | 0       | 0        | 0        |
| 5    | 0       | 0        | 0      | 0      | 1527   | 0       | 9625    | 0      | 0         | 0       | 3573     | 0        |
| 6    | 0       | 0        | 0      | 0      | 0      | 9411    | 1444    | 0      | 0         | 0       | 0        | 0        |
| 7    | 0       | 0        | 0      | 5098   | 0      | 17414   | 4004    | 7335   | 3917      | 0       | 0        | 0        |
| 8    | 0       | 0        | 0      | 4402   | 4482   | 13739   | 17531   | 0      | 0         | 0       | 0        | 0        |
| 9    | 0       | 0        | 0      | 5153   | 0      | 1868    | 9610    | 0      | 0         | 0       | 0        | 0        |
| 10   | 0       | 0        | 0      | 8111   | 0      | 0       | 15146   | 0      | 0         | 109     | 0        | 0        |
| 11   | 0       | 0        | 0      | 1643   | 0      | 0       | 7849    | 3269   | 0         | 4278    | 0        | 0        |
| 12   | 0       | 0        | 0      | 0      | 0      | 0       | 6831    | 9556   | 0         | 0       | 0        | 0        |
| 13   | 0       | 0        | 0      | 3399   | 0      | 0       | 4007    | 0      | 0         | 0       | 0        | 0        |
| 14   | 0       | 0        | 0      | 6090   | 0      | 11373   | 334     | 0      | 0         | 0       | 0        | 0        |
| 15   | 0       | 0        | 0      | 6564   | 0      | 13642   | 0       | 0      | 0         | 0       | 0        | 0        |
| 16   | 0       | 0        | 0      | 5949   | 0      | 7345    | 6533    | 0      | 0         | 0       | 0        | 0        |
| 17   | 0       | 0        | 0      | 8097   | 0      | 6112    | 13633   | 0      | 0         | 0       | 0        | 0        |
| 18   | 0       | 0        | 0      | 5335   | 0      | 911     | 6632    | 0      | 0         | 0       | 0        | 0        |
| 19   | 0       | 0        | 0      | 3391   | 169    | 0       | 5713    | 0      | 0         | 0       | 0        | 0        |
| 20   | 0       | 0        | 0      | 363    | 0      | 0       | 5813    | 3750   | 0         | 0       | 0        | 0        |
| 21   | 0       | 0        | 6709   | 0      | 17097  | 0       | 1801    | 2569   | 0         | 0       | 0        | 0        |
| 22   | 0       | 0        | 10704  | 0      | 17346  | 0       | 10135   | 4963   | 0         | 0       | 0        | 0        |
| 23   | 0       | 0        | 1529   | 0      | 8974   | 3765    | 4574    | 0      | 0         | 0       | 0        | 0        |
| 24   | 0       | 0        | 1055   | 0      | 1790   | 4828    | 1035    | 2246   | 0         | 0       | 0        | 0        |
| 25   | 0       | 0        | 0      | 0      | 0      | 0       | 3584    | 1041   | 0         | 0       | 0        | 0        |
| 26   | 0       | 0        | 1858   | 0      | 6439   | 0       | 0       | 4068   | 0         | 0       | 0        | 0        |
| 27   | 0       | 2412     | 5881   | 0      | 1397   | 1830    | 0       | 0      | 0         | 0       | 0        | 0        |
| 28   | 0       | 2545     | 941    | 0      | 0      | 2119    | 0       | 0      | 0         | 0       | 0        | 0        |
| 29   | 0       | 0        | 0      | 0      | 0      | 0       | 0       | 0      | 0         | 0       | 0        | 0        |
| 30   | 0       |          | 0      | 0      | 0      | 14539   | 0       | 0      | 0         | 3410    | 0        | 0        |
| 31   | 0       |          | 0      |        | 5691   |         | 0       | 0      |           | 0       |          | 0        |
| (kg) | 0       | 7,077    | 32,989 | 63,593 | 86,159 | 114,328 | 186,127 | 53,013 | 5,980     | 7,797   | 3,573    | 0        |

Total (kg) 7,077 32,989 63,593 86,159 114,328 186,127 53,013 5,980 7,797 3,573 0

# 2020 EPT Polymer Usage (kg)

|      | January February March April May June July August September October November December |          |       |       |     |      |      |        |           |         |          |          |  |
|------|---------------------------------------------------------------------------------------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|--|
|      | January                                                                               | February | March | April | May | June | July | August | September | October | November | December |  |
| 1    | 0                                                                                     | 3        | 0     | 0     | 0   | 15   | 66   | 0      | 0         | 0       | 0        | 0        |  |
| 2    | 0                                                                                     | 0        | 4     | 0     | 0   | 0    | 37   | 0      | 4         | 0       | 0        | 0        |  |
| 3    | 0                                                                                     | 0        | 6     | 0     | 6   | 0    | 20   | 14     | 0         | 0       | 0        | 0        |  |
| 4    | 0                                                                                     | 0        | 0     | 0     | 50  | 0    | 15   | 19     | 0         | 0       | 0        | 0        |  |
| 5    | 0                                                                                     | 0        | 0     | 0     | 4   | 0    | 26   | 0      | 0         | 0       | 7        | 0        |  |
| 6    | 0                                                                                     | 0        | 0     | 0     | 0   | 22   | 4    | 0      | 0         | 0       | 0        | 0        |  |
| 7    | 0                                                                                     | 0        | 0     | 11    | 0   | 49   | 11   | 21     | 8         | 0       | 0        | 0        |  |
| 8    | 0                                                                                     | 0        | 0     | 12    | 12  | 38   | 59   | 0      | 0         | 0       | 0        | 0        |  |
| 9    | 0                                                                                     | 0        | 0     | 14    | 0   | 5    | 27   | 0      | 0         | 0       | 0        | 0        |  |
| 10   | 0                                                                                     | 0        | 0     | 22    | 0   | 0    | 43   | 0      | 0         | 0       | 0        | 0        |  |
| 11   | 0                                                                                     | 0        | 0     | 4     | 0   | 0    | 22   | 9      | 0         | 9       | 0        | 0        |  |
| 12   | 0                                                                                     | 0        | 0     | 0     | 0   | 0    | 19   | 27     | 0         | 0       | 0        | 0        |  |
| 13   | 0                                                                                     | 0        | 0     | 9     | 0   | 0    | 13   | 0      | 0         | 0       | 0        | 0        |  |
| 14   | 0                                                                                     | 0        | 0     | 17    | 0   | 25   | 1    | 0      | 0         | 0       | 0        | 0        |  |
| 15   | 0                                                                                     | 0        | 0     | 18    | 0   | 36   | 0    | 0      | 0         | 0       | 0        | 0        |  |
| 16   | 0                                                                                     | 0        | 0     | 16    | 0   | 19   | 19   | 0      | 0         | 0       | 0        | 0        |  |
| 17   | 0                                                                                     | 0        | 0     | 22    | 0   | 15   | 39   | 0      | 0         | 0       | 0        | 0        |  |
| 18   | 0                                                                                     | 0        | 0     | 15    | 0   | 2    | 19   | 0      | 0         | 0       | 0        | 0        |  |
| 19   | 0                                                                                     | 0        | 0     | 9     | 0   | 0    | 16   | 0      | 0         | 0       | 0        | 0        |  |
| 20   | 0                                                                                     | 0        | 0     | 1     | 0   | 0    | 16   | 7      | 0         | 0       | 0        | 0        |  |
| 21   | 0                                                                                     | 0        | 7     | 0     | 43  | 0    | 5    | 6      | 0         | 0       | 0        | 0        |  |
| 22   | 0                                                                                     | 0        | 11    | 0     | 48  | 0    | 29   | 14     | 0         | 0       | 0        | 0        |  |
| 23   | 0                                                                                     | 0        | 4     | 0     | 25  | 7    | 13   | 0      | 0         | 0       | 0        | 0        |  |
| 24   | 0                                                                                     | 0        | 3     | 0     | 5   | 13   | 3    | 6      | 0         | 0       | 0        | 0        |  |
| 25   | 0                                                                                     | 0        | 0     | 0     | 0   | 0    | 10   | 3      | 0         | 0       | 0        | 0        |  |
| 26   | 0                                                                                     | 0        | 5     | 0     | 18  | 0    | 0    | 11     | 0         | 0       | 0        | 0        |  |
| 27   | 0                                                                                     | 4        | 17    | 0     | 4   | 5    | 0    | 0      | 0         | 0       | 0        | 0        |  |
| 28   | 0                                                                                     | 6        | 3     | 0     | 0   | 5    | 0    | 0      | 0         | 0       | 0        | 0        |  |
| 29   | 0                                                                                     | 0        | 0     | 0     | 0   | 0    | 0    | 0      | 0         | 0       | 0        | 0        |  |
| 30   | 0                                                                                     |          | 0     | 0     | 0   | 41   | 0    | 0      | 0         | 7       | 0        | 0        |  |
| 31   | 0                                                                                     |          | 0     |       | 16  |      | 0    | 0      |           | 0       |          | 0        |  |
| (ka) | 0                                                                                     | 13       | 60    | 171   | 229 | 297  | 534  | 139    | 12        | 16      | 7        | 0        |  |

Total (kg) 0 13 60 171 229 297 534 139 12 16 7 C

# 2020 DAF Polymer Usage (kg)

|       | 2020 DAI TOTYTTET OSAGE (Kg) |          |       |       |       |      |      |        |           |         |          |          |  |
|-------|------------------------------|----------|-------|-------|-------|------|------|--------|-----------|---------|----------|----------|--|
| _     | January                      | February | March | April | May   | June | July | August | September | October | November | December |  |
| 1     | 26                           | 25       | 39    | 37    | 46    | 28   | 39   | 36     | 31        | 30      | 30       | 26       |  |
| 2     | 25                           | 27       | 40    | 39    | 43    | 28   | 37   | 29     | 29        | 29      | 30       | 25       |  |
| 3     | 25                           | 28       | 45    | 39    | 41    | 32   | 30   | 30     | 32        | 28      | 29       | 26       |  |
| 4     | 27                           | 28       | 55    | 39    | 38    | 10   | 30   | 33     | 34        | 27      | 28       | 26       |  |
| 5     | 26                           | 31       | 52    | 38    | 36    | 27   | 26   | 33     | 31        | 30      | 27       | 25       |  |
| 6     | 25                           | 31       | 46    | 39    | 35    | 38   | 27   | 35     | 33        | 34      | 24       | 27       |  |
| 7     | 25                           | 28       | 41    | 34    | 35    | 30   | 32   | 32     | 33        | 32      | 23       | 14       |  |
| 8     | 25                           | 30       | 38    | 31    | 30    | 30   | 32   | 30     | 32        | 32      | 22       | 24       |  |
| 9     | 24                           | 32       | 36    | 32    | 29    | 29   | 28   | 31     | 31        | 35      | 27       | 23       |  |
| 10    | 25                           | 32       | 39    | 32    | 33    | 31   | 25   | 31     | 30        | 37      | 25       | 23       |  |
| 11    | 24                           | 34       | 41    | 32    | 35    | 29   | 28   | 30     | 29        | 34      | 25       | 23       |  |
| 12    | 28                           | 27       | 39    | 34    | 40    | 30   | 29   | 27     | 29        | 34      | 24       | 23       |  |
| 13    | 21                           | 33       | 41    | 34    | 40    | 34   | 34   | 33     | 29        | 35      | 24       | 23       |  |
| 14    | 19                           | 36       | 38    | 34    | 40    | 32   | 37   | 32     | 31        | 35      | 25       | 22       |  |
| 15    | 19                           | 36       | 40    | 42    | 39    | 29   | 38   | 23     | 28        | 33      | 24       | 23       |  |
| 16    | 20                           | 33       | 45    | 40    | 40    | 30   | 35   | 21     | 27        | 33      | 23       | 25       |  |
| 17    | 24                           | 33       | 38    | 36    | 38    | 27   | 31   | 30     | 28        | 33      | 22       | 25       |  |
| 18    | 22                           | 33       | 39    | 34    | 37    | 29   | 31   | 30     | 28        | 32      | 23       | 22       |  |
| 19    | 25                           | 32       | 43    | 34    | 46    | 30   | 31   | 27     | 29        | 30      | 23       | 23       |  |
| 20    | 39                           | 32       | 48    | 36    | 19    | 33   | 31   | 27     | 31        | 29      | 23       | 29       |  |
| 21    | 44                           | 31       | 48    | 36    | 29    | 34   | 29   | 33     | 9         | 29      | 23       | 25       |  |
| 22    | 32                           | 32       | 44    | 48    | 26    | 33   | 31   | 33     | 30        | 15      | 23       | 22       |  |
| 23    | 29                           | 32       | 40    | 41    | 26    | 39   | 32   | 34     | 19        | 30      | 25       | 15       |  |
| 24    | 27                           | 31       | 36    | 32    | 27    | 39   | 31   | 34     | 29        | 30      | 26       | 16       |  |
| 25    | 29                           | 32       | 39    | 34    | 25    | 46   | 33   | 32     | 36        | 33      | 28       | 17       |  |
| 26    | 31                           | 33       | 34    | 39    | 27    | 41   | 33   | 32     | 37        | 30      | 24       | 17       |  |
| 27    | 28                           | 33       | 32    | 60    | 27    | 38   | 33   | 29     | 36        | 30      | 27       | 18       |  |
| 28    | 23                           | 32       | 34    | 45    | 28    | 41   | 33   | 31     | 31        | 30      | 26       | 18       |  |
| 29    | 27                           | 33       | 34    | 44    | 32    | 40   | 33   | 31     | 30        | 30      | 26       | 21       |  |
| 30    | 26                           |          | 36    | 48    | 29    | 36   | 35   | 32     | 24        | 30      | 26       | 19       |  |
| 31    | 27                           |          | 37    |       | 32    |      | 36   | 32     |           | 29      |          | 22       |  |
| ka) ¯ | 817                          | 911      | 1 255 | 1 139 | 1 048 | 974  | 990  | 953    | 886       | 958     | 755      | 687      |  |

Total (kg) 817 911 1,255 1,139 1,048 974 990 953 886 958 755 687

# 2020 Membrane Bleach Usage (L as delivered 16% sodium hypochlorite solution)

|     | January | February | March  | April | May    | June   | July   | August | September | October |        | December |
|-----|---------|----------|--------|-------|--------|--------|--------|--------|-----------|---------|--------|----------|
| 1   | 518     | 255      | 308    | 208   | 465    | 411    | 400    | 380    | 483       | 668     | 584    | 565      |
| 2   | 436     | 410      | 247    | 214   | 521    | 335    | 333    | 355    | 487       | 405     | 472    | 548      |
| 3   | 563     | 243      | 510    | 216   | 599    | 469    | 447    | 462    | 485       | 646     | 480    | 471      |
| 4   | 490     | 263      | 350    | 241   | 498    | 507    | 433    | 444    | 419       | 596     | 609    | 608      |
| 5   | 411     | 347      | 432    | 221   | 443    | 603    | 370    | 426    | 451       | 606     | 449    | 532      |
| 6   | 512     | 286      | 509    | 271   | 532    | 359    | 370    | 617    | 410       | 584     | 377    | 459      |
| 7   | 495     | 253      | 385    | 199   | 494    | 432    | 572    | 473    | 458       | 557     | 514    | 688      |
| 8   | 487     | 386      | 347    | 299   | 619    | 325    | 404    | 455    | 515       | 621     | 527    | 655      |
| 9   | 493     | 334      | 457    | 213   | 493    | 367    | 419    | 606    | 486       | 657     | 471    | 585      |
| 10  | 328     | 200      | 450    | 279   | 400    | 381    | 479    | 551    | 427       | 528     | 651    | 551      |
| 11  | 395     | 300      | 365    | 301   | 498    | 512    | 511    | 446    | 539       | 683     | 600    | 659      |
| 12  | 402     | 338      | 342    | 224   | 642    | 551    | 372    | 530    | 519       | 578     | 616    | 533      |
| 13  | 467     | 227      | 436    | 197   | 399    | 640    | 661    | 421    | 568       | 591     | 579    | 526      |
| 14  | 425     | 424      | 407    | 268   | 758    | 416    | 486    | 366    | 623       | 691     | 581    | 586      |
| 15  | 554     | 289      | 416    | 236   | 428    | 327    | 565    | 548    | 600       | 646     | 546    | 558      |
| 16  | 438     | 352      | 398    | 220   | 323    | 404    | 647    | 484    | 562       | 484     | 507    | 572      |
| 17  | 520     | 357      | 593    | 194   | 502    | 558    | 495    | 434    | 632       | 429     | 354    | 486      |
| 18  | 541     | 316      | 438    | 263   | 679    | 304    | 414    | 562    | 551       | 343     | 433    | 505      |
| 19  | 341     | 279      | 443    | 195   | 173    | 449    | 695    | 466    | 593       | 337     | 554    | 505      |
| 20  | 363     | 522      | 260    | 197   | 530    | 495    | 438    | 463    | 659       | 457     | 517    | 539      |
| 21  | 516     | 217      | 274    | 271   | 447    | 449    | 705    | 450    | 689       | 408     | 431    | 531      |
| 22  | 287     | 296      | 230    | 211   | 210    | 712    | 585    | 474    | 465       | 279     | 580    | 519      |
| 23  | 863     | 451      | 263    | 274   | 282    | 734    | 797    | 332    | 477       | 478     | 433    | 418      |
| 24  | 334     | 281      | 257    | 266   | 611    | 408    | 424    | 561    | 506       | 496     | 458    | 612      |
| 25  | 253     | 293      | 254    | 319   | 111    | 604    | 676    | 385    | 521       | 526     | 635    | 678      |
| 26  | 241     | 307      | 232    | 249   | 405    | 531    | 621    | 405    | 579       | 404     | 565    | 406      |
| 27  | 359     | 219      | 283    | 266   | 324    | 484    | 495    | 431    | 469       | 478     | 506    | 550      |
| 28  | 250     | 282      | 291    | 395   | 367    | 512    | 633    | 442    | 549       | 464     | 564    | 542      |
| 29  | 303     | 434      | 200    | 373   | 419    | 588    | 579    | 335    | 684       | 518     | 651    | 509      |
| 30  | 328     |          | 236    | 382   | 348    | 349    | 318    | 562    | 569       | 441     | 603    | 511      |
| 31  | 301     |          | 287    |       | 337    |        | 527    | 439    |           | 425     |        | 473      |
| (1) | 13 214  | 9 160    | 10 899 | 7 662 | 13 856 | 14 218 | 15 870 | 14 305 | 15 975    | 16 020  | 15 845 | 16 879   |

Total (L) 13,214 9,160 10,899 7,662 13,856 14,218 15,870 14,305 15,975 16,020 15,845 16,879

# 2020 Ostara Magnesium Chloride Usage (L as delivered 30% magnesium chloride solution)

|        | January | February | March  | April  | May     | June    | July    | August  | September | October | November | December |
|--------|---------|----------|--------|--------|---------|---------|---------|---------|-----------|---------|----------|----------|
| 1      | 0       | 2366     | 2291   | 2557   | 4134    | 4855    | 6228    | 5683    | 4775      | 0       | 0        | 0        |
| 2      | 0       | 2436     | 2094   | 3805   | 4027    | 5754    | 6298    | 5727    | 5496      | 0       | 0        | 0        |
| 3      | 0       | 2243     | 2408   | 3217   | 4061    | 4833    | 6129    | 5556    | 4573      | 0       | 0        | 0        |
| 4      | 0       | 2657     | 2522   | 3874   | 4048    | 4184    | 5854    | 5876    | 5522      | 0       | 0        | 0        |
| 5      | 0       | 2692     | 2554   | 3817   | 3438    | 5336    | 5922    | 5264    | 5201      | 0       | 0        | 0        |
| 6      | 2030    | 2873     | 2651   | 1297   | 4059    | 5422    | 4122    | 5609    | 5311      | 0       | 0        | 0        |
| 7      | 2801    | 2819     | 2801   | 165    | 3992    | 5522    | 3856    | 5582    | 5353      | 0       | 0        | 0        |
| 8      | 742     | 2879     | 2685   | 549    | 4136    | 5752    | 6805    | 5675    | 5385      | 0       | 0        | 0        |
| 9      | 1535    | 2772     | 2610   | 0      | 3991    | 5599    | 5962    | 5592    | 5321      | 0       | 0        | 0        |
| 10     | 1160    | 2825     | 3054   | 0      | 3987    | 6034    | 6139    | 4675    | 4713      | 0       | 0        | 0        |
| 11     | 0       | 2650     | 2973   | 0      | 3649    | 6076    | 6337    | 5764    | 5341      | 0       | 0        | 0        |
| 12     | 0       | 2846     | 2758   | 0      | 4490    | 6059    | 6209    | 5474    | 5271      | 0       | 0        | 0        |
| 13     | 1653    | 2572     | 2648   | 0      | 2205    | 5983    | 4685    | 5576    | 5276      | 0       | 0        | 0        |
| 14     | 2595    | 1838     | 2751   | 0      | 4640    | 6140    | 6515    | 5538    | 5281      | 0       | 0        | 0        |
| 15     | 1584    | 1434     | 2775   | 1079   | 4813    | 5114    | 5692    | 5657    | 5251      | 0       | 0        | 0        |
| 16     | 0       | 1490     | 2615   | 2006   | 4766    | 6470    | 6355    | 5681    | 5221      | 0       | 0        | 0        |
| 17     | 0       | 1727     | 3275   | 3549   | 4843    | 5838    | 5291    | 5522    | 5155      | 0       | 0        | 0        |
| 18     | 0       | 0        | 3302   | 3762   | 4691    | 6261    | 5876    | 4982    | 5161      | 0       | 0        | 0        |
| 19     | 0       | 993      | 3290   | 3676   | 4770    | 5553    | 5853    | 4636    | 5070      | 0       | 0        | 0        |
| 20     | 0       | 4808     | 4774   | 3255   | 7219    | 6265    | 5199    | 5455    | 5282      | 0       | 0        | 0        |
| 21     | 0       | 1903     | 3584   | 3137   | 4649    | 6219    | 5806    | 5610    | 1686      | 0       | 0        | 0        |
| 22     | 0       | 2019     | 3650   | 3699   | 5130    | 6274    | 6009    | 5428    | 0         | 0       | 0        | 0        |
| 23     | 0       | 1828     | 3437   | 3273   | 5309    | 6477    | 5676    | 5564    | 0         | 0       | 0        | 0        |
| 24     | 0       | 1961     | 3848   | 3330   | 5222    | 5789    | 5836    | 5465    | 0         | 0       | 0        | 0        |
| 25     | 0       | 1371     | 5342   | 2850   | 4458    | 6740    | 6150    | 5108    | 0         | 0       | 0        | 0        |
| 26     | 0       | 1697     | 3587   | 3015   | 4455    | 6272    | 5726    | 0       | 0         | 0       | 0        | 0        |
| 27     | 0       | 1900     | 3820   | 2899   | 4845    | 6343    | 5914    | 2553    | 0         | 0       | 0        | 0        |
| 28     | 0       | 2274     | 3730   | 3823   | 5360    | 5414    | 4330    | 5523    | 0         | 0       | 0        | 0        |
| 29     | 1171    | 2225     | 3662   | 5056   | 4907    | 4711    | 5834    | 5393    | 0         | 0       | 0        | 0        |
| 30     | 1323    |          | 1376   | 4019   | 4685    | 6064    | 5680    | 5422    | 0         | 0       | 0        | 0        |
| 31     | 2616    |          | 0      |        | 4523    |         | 5694    | 5466    |           | 0       |          | 0        |
| ıl (L) | 19,210  | 64,098   | 92,867 | 71,709 | 139,502 | 173,353 | 177,984 | 161,058 | 105,647   | 0       | 0        | 0        |

Total (L) 19,210 64,098 92,867 139,502 173,353 177,984 161,058 105,647 71,709

## 2020 Ostara Caustic Usage (kg)

|      | 2020 Ostara Gaustic Osage (kg) |          |        |       |        |        |        |        |           |         |          |          |  |
|------|--------------------------------|----------|--------|-------|--------|--------|--------|--------|-----------|---------|----------|----------|--|
|      | January                        | February | March  | April | May    | June   | July   | August | September | October | November | December |  |
| 1    | 0                              | 361      | 519    | 397   | 601    | 411    | 1022   | 645    | 539       | 0       | 0        | 0        |  |
| 2    | 0                              | 401      | 432    | 533   | 580    | 324    | 970    | 660    | 397       | 0       | 0        | 0        |  |
| 3    | 0                              | 397      | 538    | 443   | 477    | 421    | 817    | 590    | 508       | 0       | 0        | 0        |  |
| 4    | 0                              | 522      | 464    | 522   | 462    | 452    | 808    | 662    | 390       | 0       | 0        | 0        |  |
| 5    | 0                              | 528      | 510    | 548   | 301    | 726    | 869    | 659    | 442       | 0       | 0        | 0        |  |
| 6    | 228                            | 513      | 482    | 213   | 397    | 631    | 785    | 627    | 453       | 0       | 0        | 0        |  |
| 7    | 240                            | 478      | 586    | 21    | 383    | 712    | 688    | 595    | 166       | 0       | 0        | 0        |  |
| 8    | 255                            | 500      | 520    | 21    | 366    | 789    | 1022   | 573    | 371       | 0       | 0        | 0        |  |
| 9    | 49                             | 513      | 595    | 0     | 367    | 828    | 1007   | 592    | 423       | 0       | 0        | 0        |  |
| 10   | 275                            | 496      | 661    | 0     | 386    | 749    | 1062   | 471    | 404       | 0       | 0        | 0        |  |
| 11   | 0                              | 477      | 569    | 0     | 371    | 754    | 1112   | 645    | 600       | 0       | 0        | 0        |  |
| 12   | 0                              | 364      | 519    | 0     | 411    | 850    | 1135   | 616    | 659       | 0       | 0        | 0        |  |
| 13   | 103                            | 319      | 546    | 0     | 120    | 776    | 613    | 300    | 732       | 0       | 0        | 0        |  |
| 14   | 747                            | 345      | 604    | 0     | 320    | 953    | 759    | 567    | 650       | 0       | 0        | 0        |  |
| 15   | 474                            | 336      | 667    | 2     | 315    | 703    | 647    | 577    | 438       | 0       | 0        | 0        |  |
| 16   | 0                              | 334      | 665    | 135   | 366    | 936    | 676    | 607    | 405       | 0       | 0        | 0        |  |
| 17   | 0                              | 329      | 676    | 242   | 232    | 685    | 683    | 617    | 309       | 0       | 0        | 0        |  |
| 18   | 0                              | 141      | 643    | 383   | 263    | 889    | 781    | 588    | 336       | 0       | 0        | 0        |  |
| 19   | 0                              | 145      | 677    | 454   | 334    | 884    | 682    | 426    | 299       | 0       | 0        | 0        |  |
| 20   | 0                              | 383      | 704    | 448   | 454    | 1086   | 673    | 565    | 149       | 0       | 0        | 0        |  |
| 21   | 0                              | 348      | 655    | 498   | 343    | 1101   | 707    | 505    | 0         | 0       | 0        | 0        |  |
| 22   | 0                              | 333      | 654    | 558   | 396    | 1146   | 729    | 512    | 0         | 0       | 0        | 0        |  |
| 23   | 0                              | 356      | 325    | 556   | 420    | 1009   | 700    | 537    | 0         | 0       | 0        | 0        |  |
| 24   | 0                              | 383      | 519    | 621   | 411    | 958    | 805    | 543    | 0         | 0       | 0        | 0        |  |
| 25   | 0                              | 321      | 591    | 469   | 387    | 1074   | 705    | 483    | 0         | 0       | 0        | 0        |  |
| 26   | 0                              | 323      | 701    | 441   | 196    | 1070   | 706    | 14     | 0         | 0       | 0        | 0        |  |
| 27   | 0                              | 401      | 585    | 455   | 232    | 1020   | 703    | 296    | 0         | 0       | 0        | 0        |  |
| 28   | 0                              | 467      | 563    | 681   | 273    | 1001   | 563    | 627    | 0         | 0       | 0        | 0        |  |
| 29   | 183                            | 439      | 575    | 491   | 342    | 881    | 604    | 683    | 0         | 0       | 0        | 0        |  |
| 30   | 292                            |          | 230    | 201   | 273    | 942    | 625    | 635    |           | 0       | 0        | 0        |  |
| 31   | 743                            |          | 0      |       | 256    |        | 574    | 638    |           | 0       |          | 0        |  |
| (ka) | 3 589                          | 11 251   | 16 977 | 9 334 | 11 038 | 24 762 | 24 234 | 17 057 | 8 672     | 0       | 0        | 0        |  |

Total (kg) 3,589 11,251 16,977 9,334 11,038 24,762 24,234 17,057 8,672 0 0 0





Gold Bar Wastewater Treatment Plant 10977 50 Street Edmonton AB T6A 2E9 Canada epcor.com

# Approval 639-03-06 Gold Bar Waste Water Treatment Plant Operations Monthly Summary

## 2020

| SENIOR MANAGER, OPERATIONS MANAGER, OPERATIONS | ALFREDO SUAREZ     KEN GROSSELL (LEVEL IV)                                                                                                                       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEVEL IV OPERATORS                             | <ul> <li>TOM GRAHAM</li> <li>KIRA JONES</li> <li>TOM KWAN</li> <li>DIEGO ESPINOSA</li> <li>JANAKA LEKAMWASAM</li> <li>MIKE NUNES</li> <li>JODY PENNER</li> </ul> |

### January

- 0 secondary bypass events
- 47 dead ducks found and reported in ERS
- Blower 5 O/S for inspection Jan 6<sup>th</sup>
- Fermenter 1 commissioning Jan 7<sup>th</sup>
- Voltus blower shutdown Jan 12<sup>th</sup> and 13<sup>th</sup>
- Boiler 8 O/S for inspection Jan 16<sup>th</sup>
- Sec 3 O/S for chain alignment Jan 27<sup>th</sup>
- BNR Test started Jan 29th

## **February**

- 3 secondary bypass events Feb 1st, 27th and 28th
- Fermenter 1 filled with FE Feb 6th remains O/S needs beach plate adjustment
- EPT 11/12 O/S for shaft repair and inspection Feb 11th
- Bio 5 influent valve opened Feb 11<sup>th</sup>
- Dig 2 heat exchanger acid cleaned Feb 19<sup>th</sup>
- Dig 6 heat exchanger acid cleaned Feb 27<sup>th</sup>
- Influent Channel 2 & Grit Tank 4/5 in service Feb 29th
- Influent Channel 1, Grit Tank 1/2/3, and Primary 3/4 filling with FE

#### March

• 8 secondary bypass events – March 2<sup>nd</sup>, 3<sup>rd</sup>, 21<sup>st</sup>, 22<sup>nd</sup>, 23<sup>rd</sup>, 24<sup>th</sup>, 26<sup>th</sup> and 27<sup>th</sup>

- Grit Tank 5 auger failed March 4<sup>th</sup>
- Fermenter 1 in service March 11th
- Channel 1, Grit Tanks 1/2/3, and Primary 3/4 ready for service March 13<sup>th</sup>
- EPT 11/12 back in service March 13<sup>th</sup>
- Voltus blower shutdown March 13<sup>th</sup> & 21<sup>st</sup>
- Grit Tank 5 pre-screen chain broke, drained grit tank March 20<sup>th</sup>
- Grit Tank 5 back in service March 24<sup>th</sup>

#### April

- 11 secondary bypass events April 7<sup>th</sup>, 8<sup>th</sup>, 9<sup>th</sup>, 10<sup>th</sup>, 13<sup>th</sup>, 14<sup>th</sup>, 15<sup>th</sup>, 16<sup>th</sup>, 17<sup>th</sup>, 18<sup>th</sup>, 19<sup>th</sup> and 20<sup>th</sup>
- Primary 6 drive chain broke April 2<sup>nd</sup>
- Primary 8 sludge pump failed April 3<sup>rd</sup>
- EPT Scrubber off line due to pump failure April 5<sup>th</sup>
- Ostara off line April 6<sup>th</sup> back on line April 16<sup>th</sup>
- Ferm 1 O/S for rake drive VFD replacement April 20th back in service April 29th
- False reading Outfall 30 April 22<sup>nd</sup> due to level in NSR
- Possible toxic load April 23<sup>rd</sup> 2 blowers running (Blower 4 and Blower 6)
- North flare set to lead for Plant Engineering April 23<sup>rd</sup>
- Outfall 20 cleaned of ice due to false reading April 23<sup>rd</sup>
- Blower 5 started and left running April 27<sup>th</sup>
- Blend Tank 1 emptied to retrieve mixer April 28<sup>th</sup>
- Dig 6 recirculation pump replaced, now improvement to flow April 29<sup>th</sup>
- Ferm 4 O/S started to waste blanket to have ready for Projects April 30<sup>th</sup>

## May

- 7 secondary bypass events May 3<sup>rd</sup> 5<sup>th</sup>, May 8<sup>th</sup>, May 21<sup>st</sup> 23<sup>rd</sup>, May 23<sup>rd</sup> 24<sup>th</sup>, May 26<sup>th</sup>, May 27<sup>th</sup> and May 31<sup>st</sup>
- Pre-screens 4/5 plugged May 4<sup>th</sup>
- GRF started May 5<sup>th</sup>
- Grit Tank 7 dewatered for repair May 5<sup>th</sup> back in service May 7<sup>th</sup>
- Grit Tank 6 incline auger MCC replaced May 6<sup>th</sup>
- GRF plugged May 7<sup>th</sup> back in service May 12<sup>th</sup>
- Blend Tank 1 in service May 7<sup>th</sup>
- Fermenter 4 O/S for Projects May 11<sup>th</sup>
- Dig 6 heat exchanger flushed/acid cleaned May 24<sup>th</sup> back in service May 27<sup>th</sup>
- RAS 1 pump replaced May 28<sup>th</sup>
- Voltus blower shutdown May 29<sup>th</sup>
- Bio 7/Clarifier 7 start to fill with FE May 30<sup>th</sup>
- 15 trucks GRF

### June

- 12 secondary bypass events: June 1<sup>st</sup>, June 6<sup>th</sup>, June 7<sup>th</sup> 9<sup>th</sup>, June 14<sup>th</sup>, June 14<sup>th</sup> 16<sup>th</sup>, June 16<sup>th</sup> 17th, June 17<sup>th</sup> 18<sup>th</sup>, June 23<sup>rd</sup>, June 24<sup>th</sup>, June 27<sup>th</sup>, June 28<sup>th</sup> and June 30<sup>th</sup> July 3rd
- Ferm 1 rake VFD repaired June 2<sup>nd</sup>
- Grit Tank 7 dewatered June 2<sup>nd</sup> broken shear pin in service June 3<sup>rd</sup>

- EPT Scrubber bleach pump replaced June 5<sup>th</sup>
- Sec 5 O/S for RAS pump replacement June 5<sup>th</sup>
- Sec 7 in service June 5<sup>th</sup>
- Influent Channel 2 level controller setpoint changed to 2.67 June 6<sup>th</sup>
- Voltus call June 7<sup>th</sup>
- Grit Tank 5 pre-screen failure drained June 8th in service June 11th
- Draining Sec 1 for FE sample line repair June 10<sup>th</sup> in service June 12<sup>th</sup>
- Sec 3 O/S for inspection June 13<sup>th</sup> in service June 17<sup>th</sup>
- Sec 2 O/S for Projects June 17th

## July

- 17 secondary bypass events July 1<sup>st</sup> 3<sup>rd</sup>, July 3<sup>rd</sup>, July 4<sup>th</sup> 5<sup>th</sup>, July 5<sup>th</sup> 6<sup>th</sup>, July 7<sup>th</sup> 9<sup>th</sup>, July 9<sup>th</sup> 11<sup>th</sup>, July 11<sup>th</sup> 12<sup>th</sup>, July 12<sup>th</sup>, July 13<sup>th</sup>, July 16<sup>th</sup> 18<sup>th</sup>, July 18<sup>th</sup> 19<sup>th</sup>, July 19<sup>th</sup> 20<sup>th</sup>, July 20<sup>th</sup> 21<sup>st</sup>, July 21<sup>st</sup>, July 22<sup>nd</sup>, July 23<sup>rd</sup> 24<sup>th</sup>, and July 25<sup>th</sup>
- 4 screened bypass events July 1<sup>st</sup>, July 8<sup>th</sup>, July 9<sup>th</sup>, and July 16<sup>th</sup>
- Screen 6 O/S for chain replacement July 5<sup>th</sup> in service July 13<sup>th</sup>
- UV shutdown July 3<sup>rd</sup> for breaker inspection
- Blend tank heat exchanger 45610 rupture disk replacement July 7<sup>th</sup>
- Grit Tank 7 isolated/drained broken shaft east end back in service until fall due to wet weather season – Maintenance to make new shaft – July 14<sup>th</sup>
- RAS 3 motor replaced July 15<sup>th</sup>, O/S for only dayshift
- Primary 7 isolated/drained July 20<sup>th</sup>, back in service July 25<sup>th</sup>
- 9 GRF trucks for July

#### August

- 9 secondary bypass events Aug 3<sup>rd</sup> 4<sup>th</sup>, Aug 4<sup>th</sup>, Aug 7<sup>th</sup>, Aug 11<sup>th</sup> Aug 12<sup>th</sup>, Aug 20<sup>th</sup> Aug 21<sup>st</sup>, Aug 22<sup>nd</sup>, Aug 24<sup>th</sup> Aug 25<sup>th</sup>, and Aug 26<sup>th</sup> (2 events)
- 1 static weir event Outfall 20 Aug 3<sup>rd</sup> from Influent Channel 3
- Secondary 7 drained for chain tightening Aug 15<sup>th</sup>
- Fermenter Scrubber off line due to caustic pumps tube failure 2.5 hrs Aug 19<sup>th</sup>
- West Scrubber off line due to bleach pump issues 30 min Aug 19<sup>th</sup>
- West Scrubber off line due to bleach pump issues 3.5 hrs Aug 22<sup>nd</sup>
- Motor failed for Influent Channel 1 gate gate left open with chain block Aug 22<sup>nd</sup>
- Voltus shutdown Aug 23<sup>rd</sup>, did not complete in time
- Drain Grit Tank 5 and Influent Chanel 2 to clean around Grit Tank 5 bypass gate to get fully closed – back in service same day – Aug 24<sup>th</sup>
- Grit Tank 6 influent auger broke Aug 30<sup>th</sup> repaired and back in service Aug 31<sup>st</sup>
- GRF 6 trucks confirmed

#### September

- 2 secondary bypass events Sept 2<sup>nd</sup> & 7<sup>th</sup>
- EPT Scrubber off line for bleach line retrofit Sept 14<sup>th</sup> back on Sept 16<sup>th</sup>
- West Scrubber off line for bleach line retrofit Sept 15<sup>th</sup> back on Sept 16<sup>th</sup>
- UV shutdown midnight to 10:22 am Sept 17<sup>th</sup>
- Plant wide solids shutdown Sept 21st
- Grit Tank 5 O/S for dry weather for pre-screen chain pin replacement Sept 23<sup>rd</sup> back Sept 28<sup>th</sup>

- Dig 5 O/S started thinning for the day structural damage noticed on west wall Sept 23<sup>rd</sup>
- Hardisty feed off line Sept 24<sup>th</sup> back on line Oct 1<sup>st</sup>
- Potable water line repaired east of membrane facility Sept 24<sup>th</sup>
- Supernatant off line for Ostara shutdown
- Dig 5 thinning started Sept 30<sup>th</sup>

#### October

- 1 secondary bypass event Oct 11<sup>th</sup>
- Thinning Dig 5 started Oct 1st
- Sec 11 clarifier dewatered for WAS pump replacement Oct 1st
- Potable water line isolated east side of membrane facility leaking Oct 1st
- North Diversion Structure, Channel 3, and Grit Tank 6/7 O/S for cleaning and projects

   Oct 1<sup>st</sup>
- Sec 11 back in service Oct 3<sup>rd</sup>
- Voltus call blower off Oct 9<sup>th</sup> and Oct 26<sup>th</sup>
- Purge Digester 5 Oct 13<sup>th</sup>
- Dig 5 pumped down until loss of flow Oct 14<sup>th</sup>
- Supernatant back on at 2 MLD Oct 14<sup>th</sup>
- West Scrubber off line for pipe retrofit Oct 15<sup>th</sup>
- Sec 3 clarifier drained for equalization valve replacement for Sec 2 Oct 22<sup>nd</sup>
- GRF off line for winter Oct 26th

#### November

- 1 secondary bypass event Nov 5<sup>th</sup>
- Membrane shutdown for new DeltaV card Nov 2<sup>nd</sup>
- GRF off line winterized Nov 6<sup>th</sup>
- Voltus shutdown Nov 11<sup>th</sup>
- K101 pressure switch replaced Nov 12<sup>th</sup>
- EPT 9/10 O/S and thinning Nov 18th
- Blower 1 fuse changed Nov 19<sup>th</sup>
- Blower 1 tripped again after first start after fuse change under voltage Nov 20th
- EPT 9/10 dewatered for inspection Nov 21st
- Compressor K102 low oil flow switch replaced Nov 25<sup>th</sup>
- Dig 3 headspace purged Nov 25<sup>th</sup>
- Started seeding Digester 3 Nov 26<sup>th</sup>
- Temp VFD for Fermenter 2 rake drive Nov 29<sup>th</sup>
- Bleach pump tube failure for Fermenter Scrubber Nov 30<sup>th</sup>
- 2 dead ducks found at UV screens

#### December

- 0 secondary bypass events
- 7 dead ducks found at UV screens
- Ferm 2 VFD replaced Dec 1<sup>st</sup>
- Dig 3 in full service, total digester seed 22.3 ML Dec 8<sup>th</sup>
- DAF 6 VFD replaced Dec 8th
- Blower 1 fuse replaced available for service Dec 10<sup>th</sup>

- Pre-screen 5 O/S for chain replacement Dec 11<sup>th</sup> back in service Dec 18<sup>th</sup>
- Sec 9 one broken flight remains in service Dec 12<sup>th</sup>
- Sec 8 broken drive chain Dec 13<sup>th</sup> replaced Dec 14<sup>th</sup>
- Bio 4 broken air header Dec 15<sup>th</sup> repaired and back in service Dec 24<sup>th</sup>
- Voltus power shutdown Dec 17th & Dec 26th
- Bleach fill line to membrane leaking Dec 18th repaired Dec 23rd
- Pre-screen 4 O/S for chain replacement Dec 19th
- Odour scrubber tower H2S out sensors failing
- Sec 2 clarifier drained to repair wear strips Dec 29<sup>th</sup>
- Prim 7 drive chain broke Prim 7 O/S Dec 31st repaired Jan 3rd, 2021



### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report January 2020

| Dete             | East S | crubber  | Fermente | er Scrubber | West 9 | Scrubber | EPT S | crubber  |                     | GRF Scrub         | ber                |                            |
|------------------|--------|----------|----------|-------------|--------|----------|-------|----------|---------------------|-------------------|--------------------|----------------------------|
| Date             | рН     | ORP (mV) | рН       | ORP (mV)    | рН     | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) |
| January 1, 2020  | 9.50   | 669.9    | 9.50     | 700.0       | 9.51   | 666.1    | 9.50  | 699.0    | 21.45               | -0.3              | -0.2               | 0.1                        |
| January 2, 2020  | 9.50   | 670.1    | 9.50     | 700.0       | 9.50   | 672.1    | 9.50  | 708.1    | 21.66               | -0.3              | -0.2               | 0.1                        |
| January 3, 2020  | 9.50   | 670.0    | 9.50     | 700.1       | 9.52   | 662.2    | 9.50  | 700.9    | 20.97               | -0.3              | -0.2               | 0.1                        |
| January 4, 2020  | 9.50   | 670.1    | 9.50     | 699.7       | 9.50   | 668.4    | 9.50  | 701.3    | 21.70               | -0.3              | -0.2               | 0.1                        |
| January 5, 2020  | 9.50   | 670.0    | 9.50     | 700.2       | 9.50   | 669.1    | 9.50  | 702.2    | 20.81               | -0.3              | -0.2               | 0.1                        |
| January 6, 2020  | 9.50   | 670.1    | 9.50     | 681.9       | 9.51   | 677.3    | 9.50  | 697.1    | 20.59               | -0.3              | -0.2               | 0.1                        |
| January 7, 2020  | 9.50   | 669.9    | 9.50     | 700.3       | 9.50   | 671.4    | 9.50  | 701.1    | 19.43               | -0.3              | -0.2               | 0.1                        |
| January 8, 2020  | 9.50   | 670.1    | 9.50     | 700.7       | 9.50   | 667.9    | 9.50  | 700.6    | 19.23               | -0.3              | -0.2               | 0.1                        |
| January 9, 2020  | 9.50   | 670.2    | 9.50     | 699.8       | 9.49   | 669.5    | 9.49  | 697.9    | 19.18               | -0.3              | -0.2               | 0.1                        |
| January 10, 2020 | 9.50   | 670.1    | 9.50     | 699.5       | 9.51   | 672.4    | 9.50  | 700.3    | 19.04               | -0.3              | -0.2               | 0.1                        |
| January 11, 2020 | 9.50   | 669.8    | 9.50     | 700.5       | 9.49   | 663.3    | 9.51  | 701.6    | 19.19               | -0.3              | -0.2               | 0.1                        |
| January 12, 2020 | 9.50   | 669.9    | 9.49     | 699.6       | 9.50   | 672.4    | 9.50  | 701.4    | 19.00               | -0.3              | -0.2               | 0.1                        |
| January 13, 2020 | 9.51   | 674.9    | 9.50     | 702.4       | 9.56   | 686.4    | 9.49  | 705.7    | 19.12               | -0.3              | -0.2               | 0.1                        |
| January 14, 2020 | 9.50   | 673.9    | 9.50     | 699.6       | 9.50   | 674.2    | 9.32  | 644.8    | 19.23               | -0.3              | -0.2               | 0.1                        |
| January 15, 2020 | 9.50   | 670.4    | 9.50     | 699.9       | 9.50   | 668.2    | 9.27  | 569.4    | 20.47               | -0.3              | -0.2               | 0.1                        |
| January 16, 2020 | 9.47   | 655.3    | 9.50     | 700.3       | 9.50   | 671.1    | 9.50  | 700.2    | 20.06               | -0.3              | -0.2               | 0.1                        |
| January 17, 2020 | 9.52   | 707.6    | 9.50     | 700.3       | 9.50   | 669.1    | 9.50  | 700.1    | 19.32               | -0.3              | -0.2               | 0.1                        |
| January 18, 2020 | 9.50   | 673.5    | 9.50     | 699.8       | 9.49   | 665.2    | 9.50  | 699.7    | 19.23               | -0.3              | -0.2               | 0.1                        |
| January 19, 2020 | 9.50   | 670.0    | 9.50     | 699.8       | 9.49   | 685.2    | 9.50  | 700.8    | 19.10               | -0.2              | -0.2               | 0.1                        |
| January 20, 2020 | 9.50   | 669.8    | 9.50     | 700.1       | 9.50   | 694.1    | 9.49  | 699.8    | 19.36               | -0.2              | -0.2               | 0.0                        |
| January 21, 2020 | 9.50   | 671.7    | 9.51     | 700.5       | 9.51   | 673.0    | 9.50  | 700.1    | 19.55               | -0.3              | -0.2               | 0.1                        |
| January 22, 2020 | 9.50   | 670.1    | 9.50     | 699.7       | 9.50   | 669.6    | 9.50  | 687.6    | 19.12               | -0.3              | -0.2               | 0.1                        |
| January 23, 2020 | 9.50   | 670.0    | 9.50     | 694.4       | 9.50   | 671.6    | 9.50  | 586.8    | 19.21               | -0.3              | -0.2               | 0.1                        |
| January 24, 2020 | 9.50   | 670.1    | 9.50     | 706.9       | 9.50   | 668.4    | 9.50  | 595.5    | 18.95               | -0.3              | -0.2               | 0.1                        |
| January 25, 2020 | 9.50   | 669.9    | 9.50     | 700.5       | 9.49   | 665.9    | 9.50  | 661.3    | 19.39               | -0.3              | -0.2               | 0.1                        |
| January 26, 2020 | 9.50   | 670.0    | 9.50     | 699.5       | 9.50   | 670.3    | 9.50  | 701.3    | 19.31               | -0.3              | -0.2               | 0.1                        |
| January 27, 2020 | 9.49   | 675.5    | 9.50     | 700.8       | 9.48   | 644.7    | 9.50  | 648.3    | 19.64               | -0.3              | -0.2               | 0.1                        |
| January 28, 2020 | 9.50   | 670.0    | 9.50     | 699.7       | 9.49   | 683.4    | 9.49  | 700.7    | 19.59               | -0.3              | -0.2               | 0.1                        |
| January 29, 2020 | 9.50   | 669.9    | 9.50     | 699.4       | 9.50   | 670.0    | 9.50  | 667.0    | 19.25               | -0.3              | -0.2               | 0.1                        |
| January 30, 2020 | 9.50   | 670.0    | 9.50     | 700.1       | 9.51   | 672.5    | 9.50  | 700.3    | 19.65               | -0.3              | -0.2               | 0.1                        |
| January 31, 2020 | 9.50   | 670.0    | 9.50     | 700.4       | 9.50   | 648.5    | 9.50  | 512.0    | 20.00               | -0.3              | -0.2               | 0.1                        |
| Avg              | 9.50   | 671.4    | 9.50     | 699.6       | 9.50   | 670.4    | 9.49  | 677.2    | 19.74               | -0.3              | -0.2               | 0.1                        |
| Min              | 9.47   | 655.3    | 9.49     | 681.9       | 9.48   | 644.7    | 9.27  | 512.0    | 18.95               | -0.3              | -0.2               | 0.0                        |
| Max              | 9.52   | 707.6    | 9.51     | 706.9       | 9.56   | 694.1    | 9.51  | 708.1    | 21.70               | -0.2              | -0.2               | 0.1                        |

## Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report February 2020

| D.L.              | East S | Scrubber | Fermente     | er Scrubber | West S | Scrubber | EPT S | crubber  |                     | GRF Scrub         | ber                |                            |
|-------------------|--------|----------|--------------|-------------|--------|----------|-------|----------|---------------------|-------------------|--------------------|----------------------------|
| Date              | рН     | ORP (mV) | рН           | ORP (mV)    | рН     | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) |
| February 1, 2020  | 9.50   | 670.5    | 9.50         | 699.8       | 9.52   | 706.5    | 9.53  | 702.9    | 19.71               | -0.3              | -0.2               | 0.1                        |
| February 2, 2020  | 9.50   | 669.8    | 9.50         | 699.4       | 9.50   | 669.2    | 9.50  | 690.7    | 19.26               | -0.3              | -0.2               | 0.1                        |
| February 3, 2020  | 9.50   | 670.0    | 9.50         | 700.7       | 9.50   | 672.4    | 9.50  | 650.6    | 19.42               | -0.3              | -0.2               | 0.1                        |
| February 4, 2020  | 9.50   | 670.0    | 9.50         | 699.9       | 9.50   | 661.3    | 9.50  | 699.7    | 19.18               | -0.3              | -0.2               | 0.1                        |
| February 5, 2020  | 9.49   | 670.0    | 9.50         | 700.3       | 9.49   | 667.6    | 9.49  | 535.3    | 19.44               | -0.3              | -0.2               | 0.1                        |
| February 6, 2020  | 9.50   | 670.1    | 9.51         | 700.5       | 9.50   | 702.9    | 9.51  | 674.7    | 19.38               | -0.3              | -0.2               | 0.1                        |
| February 7, 2020  | 9.50   | 670.0    | 9.50         | 699.7       | 9.50   | 667.1    | 9.50  | 699.6    | 19.19               | -0.3              | -0.2               | 0.1                        |
| February 8, 2020  | 9.50   | 670.0    | 9.50         | 699.7       | 9.50   | 667.0    | 9.50  | 644.2    | 19.07               | -0.3              | -0.2               | 0.1                        |
| February 9, 2020  | 9.50   | 670.0    | 9.50         | 700.0       | 9.49   | 690.6    | 9.50  | 635.5    | 19.32               | -0.3              | -0.2               | 0.1                        |
| February 10, 2020 | 9.50   | 669.9    | 9.50         | 684.1       | 9.49   | 670.9    | 9.50  | 701.5    | 19.18               | -0.3              | -0.2               | 0.1                        |
| February 11, 2020 | 9.51   | 671.1    | 9.51         | 700.5       | 9.51   | 650.7    | 9.50  | 698.2    | 19.17               | -0.3              | -0.2               | 0.1                        |
| February 12, 2020 | 9.50   | 669.9    | 9.50         | 700.1       | 9.51   | 682.6    | 9.51  | 701.6    | 18.91               | -0.2              | -0.2               | 0.1                        |
| February 13, 2020 | 9.50   | 669.9    | 9.50         | 700.1       | 9.49   | 668.3    | 9.60  | 688.8    | 19.39               | -0.3              | -0.2               | 0.1                        |
| February 14, 2020 | 9.50   | 670.2    | 9.50         | 700.3       | 9.50   | 663.9    | 9.50  | 698.7    | 19.00               | -0.3              | -0.2               | 0.1                        |
| February 15, 2020 | 9.50   | 670.0    | 9.50         | 700.2       | 9.50   | 671.2    | 9.51  | 701.0    | 19.44               | -0.3              | -0.2               | 0.1                        |
| February 16, 2020 | 9.50   | 669.9    | 9.50         | 700.1       | 9.50   | 662.2    | 9.50  | 699.5    | 19.55               | -0.3              | -0.2               | 0.1                        |
| February 17, 2020 | 9.50   | 670.0    | 9.50         | 700.2       | 9.50   | 675.2    | 9.50  | 701.4    | 19.09               | -0.2              | -0.2               | 0.1                        |
| February 18, 2020 | 9.50   | 670.1    | 9.50         | 697.2       | 9.51   | 678.6    | 9.50  | 701.4    | 19.04               | -0.3              | -0.2               | 0.1                        |
| February 19, 2020 | 9.20   | 709.0    | 9.50         | 700.2       | 9.49   | 669.9    | 9.49  | 700.6    | 19.19               | -0.3              | -0.2               | 0.0                        |
| February 20, 2020 | 9.50   | 670.0    | 9.50         | 698.1       | 9.50   | 668.2    | 9.50  | 700.1    | 19.13               | -0.3              | -0.2               | 0.1                        |
| February 21, 2020 | 9.50   | 670.1    | 9.50         | 700.0       | 9.49   | 663.0    | 9.50  | 699.6    | 19.03               | -0.3              | -0.2               | 0.1                        |
| February 22, 2020 | 9.50   | 669.9    | 9.50         | 700.0       | 9.50   | 665.8    | 9.50  | 699.7    | 18.93               | -0.3              | -0.2               | 0.1                        |
| February 23, 2020 | 9.50   | 669.9    | 9.50         | 700.1       | 9.50   | 672.5    | 9.50  | 701.0    | 18.62               | -0.3              | -0.2               | 0.1                        |
| February 24, 2020 | 9.50   | 671.2    | 9.50         | 700.1       | 9.50   | 676.3    | 9.50  | 702.8    | 19.37               | -0.3              | -0.2               | 0.1                        |
| February 25, 2020 | 9.50   | 670.0    | 9.50         | 700.2       | 9.50   | 672.6    | 9.50  | 700.3    | 19.50               | -0.3              | -0.2               | 0.1                        |
| February 26, 2020 | 9.50   | 670.0    | 9.50         | 699.9       | 9.50   | 671.4    | 9.50  | 700.7    | 19.59               | -0.3              | -0.2               | 0.1                        |
| February 27, 2020 | 9.50   | 670.1    | 9.50         | 700.3       | 9.50   | 675.0    | 9.49  | 699.8    | 19.25               | -0.3              | -0.2               | 0.1                        |
| February 28, 2020 | 9.50   | 669.9    | 9.50         | 700.3       | 9.51   | 674.1    | 9.50  | 701.5    | 19.11               | -0.3              | -0.2               | 0.1                        |
| February 29, 2020 | 9.56   | 670.9    | 9.50         | 699.5       | 9.50   | 665.9    | 9.51  | 701.5    | 19.16               | -0.3              | -0.2               | 0.1                        |
| Δνα               | 0.40   | / T1 ا   | ا د د        | 400.4       | ا د د  | (70 F    | 0.50  | 687.3    | 10.00               | 0.21              | 0.0                | 0.1                        |
| Avg               | 9.49   | 671.5    | 9.50<br>9.50 | 699.4       | 9.50   | 672.5    | 9.50  | 535.3    | 19.23               | -0.3              | -0.2               |                            |
| Min               | 9.20   | 669.8    |              | 684.1       | 9.49   | 650.7    | 9.49  |          | 18.62               | -0.3              | -0.2               | 0.0                        |
| Max               | 9.56   | 709.0    | 9.51         | 700.7       | 9.52   | 706.5    | 9.60  | 702.9    | 19.71               | -0.2              | -0.2               | 0.1                        |

## Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report March 2020

| D.L.           | East S | Scrubber | Fermente | er Scrubber | West S | Scrubber | EPT S | crubber  |                     | GRF Scrub         | ber                |                            |
|----------------|--------|----------|----------|-------------|--------|----------|-------|----------|---------------------|-------------------|--------------------|----------------------------|
| Date           | рН     | ORP (mV) | рН       | ORP (mV)    | рН     | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) |
| March 1, 2020  | 9.50   | 670.7    | 9.50     | 699.7       | 9.49   | 666.9    | 9.50  | 700.7    | 19.19               | -0.3              | -0.2               | 0.1                        |
| March 2, 2020  | 9.50   | 670.1    | 9.51     | 700.9       | 9.50   | 680.2    | 9.50  | 701.4    | 18.50               | -0.2              | -0.2               | 0.1                        |
| March 3, 2020  | 9.50   | 670.0    | 9.50     | 699.8       | 9.50   | 671.6    | 9.50  | 701.1    | 18.54               | -0.1              | -0.2               | 0.1                        |
| March 4, 2020  | 9.50   | 669.9    | 9.50     | 700.2       | 9.49   | 665.9    | 9.50  | 701.0    | 18.78               | -0.1              | -0.2               | 0.1                        |
| March 5, 2020  | 9.50   | 669.9    | 9.50     | 699.7       | 9.50   | 667.1    | 9.50  | 700.5    | 19.22               | -0.1              | -0.2               | 0.1                        |
| March 6, 2020  | 9.52   | 673.8    | 9.50     | 699.9       | 9.50   | 668.3    | 9.50  | 700.6    | 18.96               | -0.1              | -0.2               | 0.1                        |
| March 7, 2020  | 9.50   | 670.1    | 9.50     | 700.1       | 9.50   | 668.3    | 9.50  | 700.9    | 18.63               | -0.1              | -0.2               | 0.1                        |
| March 8, 2020  | 9.50   | 670.0    | 9.50     | 699.6       | 9.49   | 658.5    | 9.49  | 699.3    | 19.02               | -0.1              | -0.2               | 0.1                        |
| March 9, 2020  | 9.50   | 671.3    | 9.50     | 701.2       | 9.50   | 677.4    | 9.50  | 700.6    | 19.17               | -0.1              | -0.2               | 0.2                        |
| March 10, 2020 | 9.50   | 670.0    | 9.50     | 700.1       | 9.50   | 677.0    | 9.49  | 702.5    | 18.91               | 1.5               | 0.2                | 0.1                        |
| March 11, 2020 | 9.50   | 670.0    | 9.50     | 690.0       | 9.51   | 649.1    | 9.51  | 700.7    | 19.20               | -0.1              | -0.2               | 0.1                        |
| March 12, 2020 | 9.50   | 670.0    | 9.50     | 700.1       | 9.50   | 665.6    | 9.50  | 700.0    | 18.50               | -0.1              | -0.2               | 0.1                        |
| March 13, 2020 | 9.50   | 670.0    | 9.34     | 699.8       | 9.50   | 671.5    | 9.50  | 700.2    | 18.52               | -0.1              | -0.2               | 0.1                        |
| March 14, 2020 | 9.50   | 669.9    | 9.49     | 699.7       | 9.50   | 669.3    | 9.50  | 701.1    | 18.55               | -0.1              | -0.2               | 0.1                        |
| March 15, 2020 | 9.50   | 670.0    | 9.51     | 700.2       | 9.49   | 667.7    | 9.50  | 699.9    | 18.43               | -0.1              | -0.2               | 0.1                        |
| March 16, 2020 | 9.50   | 670.1    | 9.48     | 699.7       | 9.44   | 676.7    | 9.50  | 700.4    | 19.00               | -0.1              | -0.2               | 0.1                        |
| March 17, 2020 | 9.50   | 670.0    | 9.51     | 700.1       | 9.04   | 659.1    | 9.50  | 699.3    | 19.01               | -0.1              | -0.2               | 0.1                        |
| March 18, 2020 | 9.50   | 670.0    | 9.50     | 699.9       | 9.56   | 667.5    | 9.50  | 700.3    | 19.28               | -0.1              | -0.2               | 0.1                        |
| March 19, 2020 | 9.50   | 670.2    | 9.50     | 700.1       | 9.46   | 680.2    | 9.50  | 700.6    | 18.87               | -0.1              | -0.2               | 0.1                        |
| March 20, 2020 | 9.50   | 670.3    | 9.49     | 699.8       | 9.49   | 664.3    | 9.49  | 699.5    | 18.70               | -0.1              | -0.2               | 0.0                        |
| March 21, 2020 | 9.50   | 670.2    | 9.50     | 700.3       | 9.50   | 677.9    | 9.50  | 701.3    | 18.50               | -0.1              | -0.2               | 0.1                        |
| March 22, 2020 | 9.50   | 670.1    | 9.51     | 700.3       | 9.50   | 670.5    | 9.49  | 642.1    | 18.74               | -0.1              | -0.2               | 0.1                        |
| March 23, 2020 | 9.50   | 670.0    | 9.50     | 699.8       | 9.50   | 668.2    | 9.51  | 670.5    | 19.37               | -0.1              | -0.2               | 0.1                        |
| March 24, 2020 | 9.48   | 672.6    | 9.25     | 701.8       | 9.51   | 672.2    | 9.50  | 700.4    | 18.79               | -0.1              | -0.2               | 0.1                        |
| March 25, 2020 | 9.52   | 688.2    | 9.52     | 700.1       | 9.47   | 658.4    | 9.50  | 699.9    | 18.65               | -0.1              | -0.2               | 0.1                        |
| March 26, 2020 | 9.50   | 670.0    | 9.50     | 700.3       | 9.49   | 666.8    | 9.50  | 684.7    | 18.68               | -0.1              | -0.2               | 0.1                        |
| March 27, 2020 | 9.51   | 670.1    | 9.50     | 699.7       | 9.51   | 689.5    | 9.50  | 700.8    | 18.59               | -0.1              | -0.2               | 0.1                        |
| March 28, 2020 | 9.50   | 671.0    | 9.53     | 700.4       | 9.50   | 665.0    | 9.52  | 663.6    | 18.51               | -0.1              | -0.2               | 0.1                        |
| March 29, 2020 | 9.50   | 670.2    | 9.49     | 699.8       | 9.49   | 664.3    | 9.50  | 699.9    | 18.98               | -0.1              | -0.2               | 0.1                        |
| March 30, 2020 | 9.50   | 670.7    | 9.50     | 699.8       | 9.50   | 669.7    | 9.50  | 644.1    | 18.81               | -0.1              | -0.2               | 0.1                        |
| March 31, 2020 | 9.50   | 670.6    | 9.49     | 699.9       | 9.49   | 667.2    | 9.50  | 680.1    | 18.66               | -0.1              | -0.2               | 0.1                        |
|                | 0.5-1  |          | 1        |             | ا ـ    |          | 0.5-  | 1        |                     |                   |                    |                            |
| Avg            | 9.50   | 671.0    | 9.49     | 699.8       | 9.48   | 669.1    | 9.50  | 693.5    | 18.81               | -0.1              | -0.2               | 0.1                        |
| Min            | 9.48   | 669.9    | 9.25     | 690.0       | 9.04   | 649.1    | 9.49  | 642.1    | 18.43               | -0.3              | -0.2               | 0.0                        |
| Max            | 9.52   | 688.2    | 9.53     | 701.8       | 9.56   | 689.5    | 9.52  | 702.5    | 19.37               | 1.5               | 0.2                | 0.2                        |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report April 2020

|                | East 5 | crubber  | Fermente | er Scrubber | West : | Scrubber | EPT S | crubber  |                     | GRF Scrub         |                    | Dewatering Facility Scrubber |                            |
|----------------|--------|----------|----------|-------------|--------|----------|-------|----------|---------------------|-------------------|--------------------|------------------------------|----------------------------|
| Date           | рН     | ORP (mV) | рН       | ORP (mV)    | рН     | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm)   | H <sub>2</sub> S Out (ppb) |
| April 1, 2020  | 9.50   | 670.9    | 9.50     | 699.9       | 9.50   | 672.0    | 9.50  | 700.5    | 18.6                | -0.09             | -0.19              | 0.1                          |                            |
| April 2, 2020  | 9.50   | 671.0    | 9.49     | 699.9       | 9.50   | 671.0    | 9.50  | 603.0    | 18.8                | -0.09             | -0.19              | 0.1                          |                            |
| April 3, 2020  | 9.50   | 671.4    | 9.50     | 700.1       | 9.50   | 666.7    | 9.50  | 700.0    | 18.7                | -0.09             | -0.19              | 0.1                          |                            |
| April 4, 2020  | 9.50   | 670.6    | 9.50     | 699.7       | 9.50   | 672.5    | 9.50  | 700.2    | 18.5                | -0.09             | -0.19              | 0.1                          |                            |
| April 5, 2020  | 9.49   | 670.4    | 9.52     | 700.2       | 9.43   | 665.5    | 9.68  | 225.4*   | 19.1                | -0.09             | -0.20              | 0.1                          |                            |
| April 6, 2020  | 9.50   | 670.0    | 9.45     | 698.2       | 9.50   | 675.0    | 9.71  | 653.2    | 18.8                | -0.10             | -0.20              | 0.1                          |                            |
| April 7, 2020  | 9.48   | 669.6    | 9.50     | 702.8       | 9.50   | 678.6    | 9.50  | 700.1    | 18.4                | -0.11             | -0.20              | 0.1                          |                            |
| April 8, 2020  | 9.48   | 633.2    | 9.50     | 700.0       | 9.50   | 669.7    | 9.50  | 664.0    | 18.6                | -0.11             | -0.20              | 0.1                          |                            |
| April 9, 2020  | 9.52   | 690.4    | 9.50     | 700.2       | 9.50   | 674.8    | 9.50  | 700.5    | 18.8                | -0.11             | -0.20              | 0.1                          |                            |
| April 10, 2020 | 9.50   | 670.0    | 9.50     | 700.5       | 9.49   | 663.9    | 9.49  | 686.2    | 18.5                | -0.12             | -0.21              | 0.1                          |                            |
| April 11, 2020 | 9.50   | 671.2    | 9.50     | 700.1       | 9.51   | 685.8    | 9.52  | 701.7    | 18.6                | -0.11             | -0.20              | 0.1                          |                            |
| April 12, 2020 | 9.50   | 671.0    | 9.50     | 699.7       | 9.50   | 664.8    | 9.50  | 670.1    | 18.4                | -0.10             | -0.20              | 0.1                          |                            |
| April 13, 2020 | 9.50   | 670.9    | 9.50     | 700.0       | 9.49   | 668.3    | 9.49  | 698.9    | 18.6                | -0.09             | -0.20              | 0.1                          |                            |
| April 14, 2020 | 9.50   | 670.0    | 9.50     | 700.2       | 9.51   | 680.4    | 9.50  | 700.6    | 18.9                | -0.11             | -0.20              | 0.1                          |                            |
| April 15, 2020 | 9.50   | 670.7    | 9.50     | 700.0       | 9.50   | 671.5    | 9.51  | 653.0    | 19.1                | -0.11             | -0.20              | 0.1                          |                            |
| April 16, 2020 | 9.50   | 670.2    | 9.50     | 699.8       | 9.50   | 668.5    | 9.49  | 683.1    | 18.7                | -0.12             | -0.20              | 0.1                          |                            |
| April 17, 2020 | 9.50   | 670.0    | 9.50     | 700.1       | 9.50   | 671.4    | 9.51  | 700.7    | 18.6                | -0.13             | -0.21              | 0.1                          |                            |
| April 18, 2020 | 9.50   | 670.1    | 9.50     | 700.0       | 9.50   | 665.0    | 9.50  | 625.1    | 18.7                | -0.12             | -0.20              | 0.1                          |                            |
| April 19, 2020 | 9.50   | 669.9    | 9.50     | 699.9       | 9.50   | 669.0    | 9.50  | 669.4    | 19.2                | -0.12             | -0.20              | 0.1                          |                            |
| April 20, 2020 | 9.50   | 670.0    | 9.50     | 699.7       | 9.50   | 668.5    | 9.50  | 655.9    | 20.4                | -0.12             | -0.21              | 0.1                          |                            |
| April 21, 2020 | 9.50   | 670.0    | 9.50     | 699.6       | 9.49   | 662.8    | 9.50  | 699.6    | 20.7                | -0.13             | -0.21              | 0.1                          |                            |
| April 22, 2020 | 9.50   | 669.8    | 9.50     | 699.6       | 9.50   | 672.2    | 9.50  | 662.0    | 19.3                | -0.13             | -0.21              | 0.1                          |                            |
| April 23, 2020 | 9.50   | 670.0    | 9.50     | 700.0       | 9.50   | 670.4    | 9.50  | 667.3    | 19.2                | -0.12             | -0.21              | 0.1                          |                            |
| April 24, 2020 | 9.50   | 669.9    | 9.50     | 699.6       | 9.50   | 667.3    | 9.50  | 672.4    | 19.8                | -0.13             | -0.21              | 0.1                          |                            |
| April 25, 2020 | 9.50   | 670.0    | 9.50     | 699.5       | 9.50   | 665.6    | 9.50  | 642.0    | 20.3                | -0.12             | -0.21              | 0.0                          |                            |
| April 26, 2020 | 9.50   | 670.1    | 9.51     | 700.8       | 9.50   | 669.7    | 9.51  | 628.3    | 19.6                | -0.12             | -0.21              | 0.1                          |                            |
| April 27, 2020 | 9.50   | 670.0    | 9.50     | 698.8       | 9.49   | 668.8    | 9.48  | 146.6†   | 19.5                | -0.12             | -0.21              | 0.1                          |                            |
| April 28, 2020 | 9.50   | 669.9    | 9.51     | 700.4       | 9.50   | 675.5    | 9.51  | 700.3    | 20.5                | -0.13             | -0.21              | 0.1                          |                            |
| April 29, 2020 | 9.50   | 669.9    | 9.50     | 699.9       | 9.49   | 669.0    | 9.50  | 699.8    | 21.6                | -0.12             | -0.10              | 0.1                          |                            |
| April 30, 2020 | 9.50   | 670.1    | 9.50     | 699.9       | 9.50   | 666.7    | 9.50  | 699.4    | 21.0                | 0.01              | 0.86               | 0.1                          |                            |
| Avg            | 9.50   | 669.7    | 9.50     | 700.0       | 9.50   | 670.4    | 9.51  | 643.6    | 19.3                | -0.11             | -0.16              | 0.1                          | N/A                        |
| Min            | 9.48   | 633.2    | 9.45     | 698.2       | 9.43   | 662.8    | 9.48  | 603.0    | 18.4                | -0.13             | -0.21              | 0.0                          | N/A                        |
| Max            | 9.52   | 690.4    | 9.52     | 702.8       | 9.51   | 685.8    | 9.71  | 701.7    | 21.6                | 0.01              | 0.86               | 0.0                          | N/A                        |

<sup>\*</sup>Active scrubber troubleshooting resulting in shutdown of scrubber. See Summary of Scrubber Operational Issues in Table X. †Reported to AEP (Reference # 365988).

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report May 2020

| 5.1          | East S | Scrubber | Fermente | er Scrubber | West | Scrubber | EPT S | crubber  |                     | GRF Scrub         | ber                |                            | Dewatering Facility Scrubber |
|--------------|--------|----------|----------|-------------|------|----------|-------|----------|---------------------|-------------------|--------------------|----------------------------|------------------------------|
| Date         | рН     | ORP (mV) | рН       | ORP (mV)    | рН   | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H₂S Out (ppb)                |
| May 1, 2020  | 9.50   | 669.9    | 9.50     | 699.7       | 9.50 | 676.8    | 9.50  | 700.5    | 19.9                | -0.11             | 0.09               | 0.1                        |                              |
| May 2, 2020  | 9.50   | 669.7    | 9.51     | 700.9       | 9.50 | 667.3    | 9.50  | 699.3    | 20.5                | -0.10             | 0.10               | 0.1                        |                              |
| May 3, 2020  | 9.50   | 670.1    | 9.49     | 699.0       | 9.48 | 670.3    | 9.47  | 693.1    | 20.8                | -0.09             | 0.09               | 0.1                        |                              |
| May 4, 2020  | 9.50   | 672.6    | 9.51     | 702.0       | 9.49 | 707.1    | 9.31  | 692.3    | 18.5                | -0.10             | 0.11               | 0.1                        |                              |
| May 5, 2020  | 9.50   | 669.9    | 9.50     | 700.2       | 9.41 | 669.0    | 9.16  | 731.7    | 20.1                | -0.11             | 0.12               | 0.1                        |                              |
| May 6, 2020  | 9.50   | 669.9    | 9.50     | 699.9       | 9.26 | 707.8    | 9.51  | 713.5    | 21.6                | -0.12             | 0.11               | 0.1                        |                              |
| May 7, 2020  | 9.50   | 669.9    | 9.50     | 699.7       | 9.49 | 666.2    | 9.50  | 699.6    | 20.1                | -0.12             | 0.12               | 0.1                        |                              |
| May 8, 2020  | 9.50   | 670.2    | 9.50     | 700.2       | 9.50 |          | 9.50  | 700.5    | 19.0                | -0.13             | 0.13               | 0.1                        |                              |
| May 9, 2020  | 9.50   | 669.9    | 9.50     | 699.8       | 9.50 |          | 9.50  | 699.7    | 19.3                | -0.12             | 0.13               | 0.1                        |                              |
| May 10, 2020 | 9.50   | 670.0    | 9.50     | 699.7       | 9.50 |          | 9.50  | 699.8    | 19.4                | -0.11             | 0.13               | 0.1                        |                              |
| May 11, 2020 | 9.50   | 670.0    | 9.50     | 700.1       | 9.50 |          | 9.50  | 700.1    | 19.3                | -0.11             | 0.13               | 0.1                        |                              |
| May 12, 2020 | 9.50   | 670.0    | 9.50     | 699.8       | 9.50 |          | 9.50  | 699.6    | 19.3                | -0.11             | 0.13               | 0.1                        |                              |
| May 13, 2020 | 9.50   | 669.8    | 9.50     | 699.7       | 9.50 | 667.6    | 9.50  | 699.7    | 19.3                | -0.11             | 0.12               | 0.1                        |                              |
| May 14, 2020 | 9.50   | 670.1    | 9.50     | 700.2       | 9.49 | 660.0    | 9.50  | 698.8    | 19.5                | -0.12             | 0.12               | 0.1                        |                              |
| May 15, 2020 | 9.49   | 669.8    | 9.49     | 699.7       | 9.49 | 670.5    | 9.50  | 700.6    | 19.1                | -0.12             | 0.13               | 0.1                        |                              |
| May 16, 2020 | 9.50   | 670.0    | 9.47     | 700.0       | 9.51 | 674.9    | 9.50  | 700.2    | 19.8                | -0.14             | 0.22               | 0.1                        |                              |
| May 17, 2020 | 9.50   | 675.6    | 9.38     | 702.3       | 9.50 | 669.1    | 9.50  | 700.3    | 19.4                | -0.20             | 0.30               | 0.1                        |                              |
| May 18, 2020 | 9.50   | 670.0    | 9.25     | 699.5       | 9.50 | 671.4    | 9.50  | 699.8    | 19.0                | -0.21             | 0.30               | 0.1                        |                              |
| May 19, 2020 | 9.50   | 669.8    | 9.52     | 700.0       | 9.48 | 666.6    | 9.50  | 699.8    | 19.3                | -0.20             | 0.31               | 0.1                        |                              |
| May 20, 2020 | 9.50   | 670.1    | 9.51     | 700.2       | 9.50 | 669.3    | 9.50  | 699.9    | 19.1                | -0.20             | 0.30               | 0.1                        |                              |
| May 21, 2020 | 9.51   | 671.0    | 9.52     | 700.6       | 9.55 | 709.5    | 9.49  | 691.4    | 19.6                | -0.19             | 0.30               | 0.0                        |                              |
| May 22, 2020 | 9.50   | 636.5    | 9.51     | 696.0       | 9.50 | 675.6    | 9.50  | 699.0    | 19.2                | -0.18             | 0.30               | 0.1                        |                              |
| May 23, 2020 | 9.49   | 669.7    | 9.50     | 700.3       | 9.49 | 669.7    | 9.50  | 701.1    | 19.3                | -0.19             | 0.31               | 0.1                        |                              |
| May 24, 2020 | 9.50   | 669.9    | 9.49     | 699.5       | 9.51 | 669.5    | 9.51  | 701.2    | 19.8                | -0.20             | 0.30               | 0.1                        |                              |
| May 25, 2020 | 9.51   | 669.7    | 9.49     | 699.2       | 9.50 | 666.2    | 9.50  | 699.7    | 19.4                | -0.20             | 0.30               | 0.1                        |                              |
| May 26, 2020 | 9.50   | 670.1    | 9.49     | 700.0       | 9.50 | 662.5    | 9.48  | 696.8    | 18.9                | -0.20             | 0.31               | 0.1                        |                              |
| May 27, 2020 | 9.50   | 669.8    | 9.50     | 699.9       | 9.49 | 672.3    | 9.67  | 683.9    | 19.2                | -0.19             | 0.31               | 0.1                        | 0                            |
| May 28, 2020 | 9.50   | 670.0    | 9.48     | 700.0       | 9.50 | 668.5    | 9.50  | 699.6    | 19.2                | -0.20             | 0.30               | 0.1                        | 0                            |
| May 29, 2020 | 9.50   | 669.9    | 9.50     | 699.8       | 9.50 | 667.6    | 9.50  | 699.9    | 19.0                | -0.21             | 0.30               | 0.1                        |                              |
| May 30, 2020 | 9.50   | 669.9    | 9.49     | 700.0       | 9.50 | 668.6    | 9.50  | 699.9    | 20.3                | -0.21             | 0.29               | 0.1                        |                              |
| May 31, 2020 | 9.50   | 670.7    | 9.49     | 699.5       | 9.50 | 667.4    | 9.49  | 601.3    | 20.2                | -0.21             | 0.29               | 0.1                        |                              |
| I a          | 0.50   | //0.0    | 0.0      | (00.01      | 0.10 | (70.0    | 0.75  | (0) 0    | 10.1                |                   | 0.01               |                            | Ι .                          |
| Avg          | 9.50   | 669.2    | 9.49     | 699.9       | 9.49 |          | 9.49  | 696.9    | 19.6                | -0.16             | 0.21               | 0.1                        | 0                            |
| Min          | 9.49   | 636.5    | 9.25     | 696.0       | 9.26 |          | 9.16  | 601.3    | 18.5                | -0.21             | 0.09               | 0.0                        | 0                            |
| Max          | 9.51   | 675.6    | 9.52     | 702.3       | 9.55 | 709.5    | 9.67  | 731.7    | 21.6                | -0.09             | 0.31               | 0.1                        | 0                            |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report June 2020

| 5.1           | East S | Scrubber | Fermente | er Scrubber | West | Scrubber | EPT S | crubber  |                     | GRF Scrub         | ber                |                            | Dewatering Facility Scrubber |
|---------------|--------|----------|----------|-------------|------|----------|-------|----------|---------------------|-------------------|--------------------|----------------------------|------------------------------|
| Date          | рН     | ORP (mV) | рН       | ORP (mV)    | рН   | ORP (mV) | рН    | ORP (mV) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb)   |
| June 1, 2020  | 9.51   | 669.8    | 9.53     | 701.5       | 9.50 | 693.5    | 9.54  | 684.3    | 18.9                | -0.21             | 0.29               | 0.1                        | 0                            |
| June 2, 2020  | 9.50   | 669.5    | 9.49     | 700.4       | 9.50 | 660.7    | 9.50  | 678.2    | 19.7                | -0.21             | 0.29               | 0.1                        |                              |
| June 3, 2020  | 9.50   | 669.9    | 9.48     | 699.4       | 9.50 | 667.0    | 9.50  | 629.5    | 18.9                | -0.20             | 0.30               | 0.1                        |                              |
| June 4, 2020  | 9.50   | 670.6    | 9.49     | 697.5       | 9.50 | 660.1    | 9.49  | 675.4    | 19.2                | -0.19             | 0.31               | 0.1                        |                              |
| June 5, 2020  | 9.50   | 670.0    | 9.49     | 700.1       | 9.50 | 666.1    | 9.60  | 587.6    | 19.3                | -0.21             | 0.30               | 0.1                        |                              |
| June 6, 2020  | 9.49   | 671.9    | 9.50     | 701.5       | 9.50 | 687.8    | 9.49  | 632.9    | 19.0                | -0.20             | 0.30               | 0.1                        |                              |
| June 7, 2020  | 9.51   | 670.2    | 9.45     | 519.2       | 9.50 | 680.9    | 9.49  | 628.8    | 19.3                | 0.01              | 1.40               | 0.1                        |                              |
| June 8, 2020  | 9.50   | 669.8    | 9.52     | 700.2       | 9.50 | 668.6    | 9.50  | 683.6    | 19.4                | 0.16              | 2.18               | 0.1                        | 0                            |
| June 9, 2020  | 9.50   | 669.8    | 9.50     | 699.8       | 9.50 | 666.7    | 9.52  | 676.4    | 19.2                | 0.04              | 1.49               | 0.1                        |                              |
| June 10, 2020 | 9.49   | 669.8    | 9.49     | 701.2       | 9.50 | 668.2    | 9.49  | 535.2    | 19.8                | -0.21             | 0.29               | 0.1                        |                              |
| June 11, 2020 | 9.51   | 669.7    | 9.49     | 698.0       | 9.50 | 668.3    | 9.50  | 700.0    | 20.3                | -0.21             | 0.30               | 0.1                        |                              |
| June 12, 2020 | 9.49   | 669.7    | 9.51     | 703.3       | 9.49 | 656.5    | 9.49  | 699.0    | 20.9                | -0.21             | 0.29               | 0.1                        |                              |
| June 13, 2020 | 9.50   | 670.2    | 9.49     | 697.7       | 9.50 | 678.5    | 9.50  | 700.6    | 20.0                | -0.21             | 0.30               | 0.1                        |                              |
| June 14, 2020 | 9.50   | 670.6    | 9.51     | 705.5       | 9.50 | 675.2    | 9.46  | 700.2    | 19.0                | -0.21             | 0.29               | 0.1                        |                              |
| June 15, 2020 | 9.50   | 670.1    | 9.28     | 709.2       | 9.50 | 680.4    | 9.53  | 705.3    | 18.7                | -0.21             | 0.29               | 0.1                        | 0                            |
| June 16, 2020 | 9.50   | 669.5    | 9.18     | 699.1       | 9.50 | 663.2    | 9.50  | 700.2    | 19.4                | -0.20             | 0.28               | 0.1                        |                              |
| June 17, 2020 | 9.50   | 670.0    | 9.49     | 701.0       | 9.50 | 663.7    | 9.49  | 698.6    | 18.9                | -0.20             | 0.30               | 0.1                        |                              |
| June 18, 2020 | 9.49   | 669.1    | 9.48     | 699.7       | 9.50 | 672.7    | 9.52  | 702.8    | 19.2                | -0.21             | 0.30               | 0.1                        |                              |
| June 19, 2020 | 9.49   | 658.6    | 9.51     | 697.6       | 9.50 | 649.5    | 9.49  | 697.5    | 19.5                | -0.21             | 0.28               | 0.1                        |                              |
| June 20, 2020 | 9.50   | 670.0    | 9.53     | 703.3       | 9.54 | 670.1    | 9.50  | 699.9    | 20.3                | -0.22             | 0.28               | 0.1                        |                              |
| June 21, 2020 | 9.49   | 670.1    | 9.48     | 699.8       | 9.50 | 665.4    | 9.50  | 699.9    | 19.0                | -0.21             | 0.29               | 0.1                        |                              |
| June 22, 2020 | 9.50   | 669.7    | 9.50     | 700.1       | 9.50 | 668.8    | 9.50  | 699.7    | 20.9                | -0.22             | 0.28               | 0.1                        |                              |
| June 23, 2020 | 9.50   | 669.8    | 9.48     | 699.9       | 9.97 | 545.7    | 9.46  | 618.1    | 21.1                | -0.22             | 0.29               | 0.1                        |                              |
| June 24, 2020 | 9.49   | 670.8    | 9.49     | 701.4       | 9.50 | 682.6    | 9.53  | 709.1    | 19.1                | -0.19             | 0.30               | 0.1                        |                              |
| June 25, 2020 | 9.50   | 669.3    | 9.51     | 700.3       | 9.50 | 660.2    | 9.51  | 702.5    | 20.5                | -0.20             | 0.28               | 0.1                        |                              |
| June 26, 2020 | 9.50   | 669.1    | 9.48     | 702.3       | 9.50 | 666.6    | 9.50  | 700.2    | 19.3                | -0.20             | 0.29               | 0.1                        | 0                            |
| June 27, 2020 | 9.51   | 671.0    | 9.52     | 697.5       | 9.50 | 671.1    | 9.51  | 700.7    | 19.0                | -0.19             | 0.29               | 0.0                        |                              |
| June 28, 2020 | 9.49   | 670.2    | 9.51     | 702.0       | 9.50 | 658.5    | 9.53  | 713.3    | 19.0                | -0.19             | 0.29               | 0.1                        |                              |
| June 29, 2020 | 9.46   | 671.4    | 9.56     | 698.7       | 9.50 | 668.6    | 9.50  | 701.0    | 19.0                | -0.20             | 0.28               | 0.1                        |                              |
| June 30, 2020 | 9.50   | 676.8    | 9.50     | 700.6       | 9.51 | 705.4    | 9.46  | 689.4    | 18.9                | -0.19             | 0.29               | 0.1                        |                              |
| Avq           | 9.50   | 669.9    | 9.48     | 694.6       | 9.52 | 666.4    | 9.50  | 678.3    | 19.5                | -0.18             | 0.43               | 0.1                        | n                            |
| Min           | 9.46   | 658.6    | 9.18     | 519.2       | 9.49 | 545.7    | 9.46  | 535.2    | 18.7                | -0.18             | 0.43               | 0.1                        | 0                            |
| Max           | 9.46   | 676.8    | 9.18     | 709.2       | 9.49 | 705.4    | 9.46  | 713.3    | 21.1                | -0.22<br>0.16     | 2.18               | 0.0                        | 0                            |
| IVIdX         | 9.51   | 0/0.8    | 9.00     | 109.2       | 9.97 | 705.4    | 9.00  | /13.3    | 21.1                | 0.16              | 2.18               | 0.1                        | l (                          |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report July 2020

|               |      |          | East Scrubber             |                            |      | Fern     | nenter Scrubber           |                            |      | W        | est Scrubber              |                            |      | EF       | T Scrubber   |               |                     | GRF Scrub         | ber                |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|---------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|------|----------|--------------|---------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date          | pH ( | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H2S In (ppm) | H2S Out (ppb) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H <sub>2</sub> S Out (ppb)   | H <sub>2</sub> S Out (ppb)   |
| July 1, 2020  | 9.51 | 670.2    | 0.00                      | 0.0                        | 9.53 | 700.8    | 1.77                      | 51.4                       | 9.50 | 677.5    | 0.00                      | 0.0                        | 9.53 | 702.9    | 0.6          | 35.0          | 18.9                | -0.19             | 0.29               | 0.1                        | 0.0                        | 0.1                          |                              |
| July 2, 2020  | 9.51 | 669.8    | 0.00                      | 0.2                        | 9.49 | 700.1    | 1.10                      | 28.9                       | 9.50 | 667.9    | 0.00                      | 0.3                        | 9.51 | 699.9    | 0.3          | 22.9          | 19.0                | -0.19             | 0.29               | 0.1                        | 0.0                        | 0.0                          | 0                            |
| July 3, 2020  | 9.50 | 669.6    | 0.00                      | 4.5                        | 9.49 | 699.8    | 1.25                      | 28.6                       | 9.50 | 662.2    | 0.44                      | 0.3                        | 9.50 | 699.4    | 0.8          | 55.2          | 19.9                | -0.20             | 0.28               | 0.1                        | 0.0                        | 0.7                          |                              |
| July 4, 2020  | 9.50 | 670.1    | 0.00                      | 9.4                        | 9.49 | 699.8    | 1.54                      | 23.2                       | 9.50 | 675.1    | 0.72                      | 0.4                        | 9.48 | 697.4    | 1.4          | 164.7         | 17.1                | -0.20             | 0.29               | 0.1                        | 0.0                        | 2.0                          |                              |
| July 5, 2020  | 9.50 | 670.2    | 0.00                      | 5.1                        | 9.50 | 700.1    | 1.38                      | 16.9                       | 9.50 | 665.1    | 0.36                      | 0.5                        | 9.52 | 703.4    | 1.3          | 102.8         | 16.3                | -0.20             | 0.29               | 0.1                        | 0.0                        | 2.5                          |                              |
| July 6, 2020  | 9.45 | 669.4    | 0.00                      | 11.8                       | 9.40 | 700.1    | 1.78                      | 95.9                       | 9.50 | 668.7    | 1.00                      | 0.9                        | 9.52 | 703.5    | 0.6          | 36.3          | 17.5                | -0.13             | 0.14               | 0.1                        | 0.3                        | 3.4                          |                              |
| July 7, 2020  | 9.49 | 670.7    | 0.03                      | 29.7                       | 9.50 | 700.2    | 1.97                      | 23.9                       | 9.50 | 669.8    | 1.30                      | 1.0                        | 9.45 | 692.2    | 1.6          | 184.0         | 17.0                | 0.14              | -0.31              | 0.1                        | 0.0                        | 6.1                          |                              |
| July 8, 2020  | 9.52 | 670.8    | 0.00                      | 1.4                        | 9.51 | 701.2    | 0.79                      | 14.3                       | 9.50 | 687.1    | 0.02                      | 0.2                        | 9.54 | 704.4    | 1.0          | 52.9          | 16.1                | -0.06             | 0.04               | 0.1                        | 0.0                        | 6.8                          |                              |
| July 9, 2020  | 9.50 | 669.7    | 0.00                      | 3.3                        | 9.33 | 700.5    | 1.12                      |                            | 9.50 | 666.2    | 0.31                      | 1.8                        | 9.50 | 699.7    | 0.7          | 46.1          | 17.4                | -0.20             | 0.29               | 0.1                        | 0.0                        | 9.0                          |                              |
| July 10, 2020 | 9.49 | 670.3    | 0.00                      | 1.1                        | 9.51 | 700.6    | 0.68                      |                            | 9.50 | 674.4    | 0.03                      | 1.1                        | 9.50 | 701.7    | 0.8          | 57.1          | 17.4                | -0.21             | 0.29               | 0.1                        | 0.0                        | 12.6                         | 0                            |
| July 11, 2020 | 9.50 | 669.5    | 0.00                      | 6.7                        | 9.50 | 699.9    | 0.86                      |                            | 9.50 | 666.4    | 0.24                      | 0.7                        | 9.49 | 699.4    | 0.9          | 58.9          | 19.0                | -0.22             | 0.30               | 0.1                        | 0.0                        | 12.9                         |                              |
| July 12, 2020 | 9.50 | 669.7    | 0.00                      | 17.8                       | 9.49 | 699.6    | 1.10                      |                            | 9.50 | 666.8    | 0.58                      | 1.5                        | 9.49 | 698.6    | 1.7          | 140.8         | 18.2                | -0.22             | 0.33               | 0.1                        | 0.0                        | 14.4                         |                              |
| July 13, 2020 | 9.50 | 669.5    | 0.03                      | 31.5                       | 9.48 | 699.5    | 1.38                      |                            | 9.50 | 664.7    | 1.10                      | 2.4                        | 9.49 | 698.2    | 2.9          | 419.6         | 16.2                | -0.22             | 0.34               | 0.1                        | 0.0                        | 13.5                         |                              |
| July 14, 2020 | 9.51 | 669.8    | 0.00                      | 30.5                       | 9.51 | 700.1    | 1.65                      |                            | 9.50 | 668.8    | 1.30                      | 1.3                        | 9.55 | 714.8    | 1.0          | 49.8          | 18.4                | -0.22             | 0.33               | 0.1                        | 0.0                        | 19.1                         |                              |
| July 15, 2020 | 9.50 | 669.8    | 0.00                      | 50.7                       | 9.47 | 699.8    | 2.07                      |                            | 9.50 | 665.0    | 2.14                      | 3.8                        | 9.50 | 699.4    | 1.4          | 69.4          | 18.1                | -0.22             | 0.33               | 0.1                        | 0.0                        | 35.2                         |                              |
| July 16, 2020 | 9.50 | 652.2    | 0.03                      | 60.3                       | 9.52 | 680.6    | 1.93                      |                            | 9.50 | 676.4    | 1.71                      | 4.6                        | 9.45 | 690.9    | 2.0          | 166.5         | 18.2                | -0.22             | 0.34               | 0.1                        | 0.0                        | 22.2                         |                              |
| July 17, 2020 | 9.50 | 669.9    | 0.00                      | 1.2                        | 9.52 | 709.9    | 0.69                      |                            | 9.50 | 676.5    | 0.01                      | 1.9                        | 9.54 | 702.5    | 0.5          | 24.0          | 17.9                | -0.22             | 0.34               | 0.1                        | 0.0                        | 9.9                          | 0                            |
| July 18, 2020 | 9.50 | 669.6    | 0.00                      | 4.3                        | 9.48 | 699.7    | 0.81                      |                            | 9.50 | 668.1    | 0.13                      | 1.6                        | 9.50 | 700.9    | 0.6          | 28.9          | 18.1                | -0.22             | 0.33               | 0.1                        | 0.0                        | 10.1                         |                              |
| July 19, 2020 | 9.48 | 669.5    | 0.02                      | 18.4                       | 9.48 | 699.7    | 1.34                      |                            | 9.50 | 666.1    | 0.60                      | 1.3                        | 9.47 | 695.3    | 1.4          | 121.9         | 18.1                | -0.22             | 0.34               | 0.1                        |                            | 10.5                         |                              |
| July 20, 2020 | 9.50 | 670.2    | 0.00                      | 10.5                       | 9.50 | 700.2    | 1.66                      |                            | 9.50 | 662.3    | 0.95                      | 3.3                        | 9.52 | 718.1    | 1.6          | 116.8         | 18.8                | -0.22             | 0.34               | 0.1                        | 0.0                        | 10.8                         |                              |
| July 21, 2020 | 9.49 | 669.5    | 0.00                      | 24.6                       | 9.48 | 699.1    | 2.41                      |                            |      | 670.5    | 1.27                      | 4.1                        | 9.51 | 701.6    | 1.1          | 53.9          | 19.3                | -0.23             | 0.34               | 0.1                        |                            | 15.0                         |                              |
| July 22, 2020 | 9.50 | 670.6    | 0.03                      | 30.4                       | 9.49 | 700.7    | 3.01                      |                            | 9.50 | 669.4    | 1.27                      | 3.7                        | 9.58 | 699.6    | 2.4          | 170.7         | 19.4                | -0.23             | 0.33               | 0.1                        | 2.2                        | 15.0                         |                              |
| July 23, 2020 | 9.51 | 669.6    | 0.06                      | 44.3                       | 9.48 | 698.7    | 3.28                      |                            | 9.50 | 670.8    | 1.77                      | 1.3                        | 9.47 | 694.2    | 2.4          | 247.4         | 18.9                | -0.22             | 0.34               | 0.0                        | 0.1                        | 14.8                         |                              |
| July 24, 2020 | 9.52 | 670.3    | 0.17                      | 35.3                       | 9.51 | 700.4    | 2.21                      |                            | 9.50 | 672.2    | 0.65                      | 11.7                       | 9.55 | 721.7    | 0.9          | 49.8          | 17.0                | -0.22             | 0.34               | 0.1                        |                            | 17.4                         | 0                            |
| July 25, 2020 | 9.48 | 669.9    | 0.02                      | 84.9                       | 9.48 | 699.8    | 1.84                      |                            | 9.50 | 661.6    | 1.09                      | 1.8                        | 9.46 | 693.8    | 2.0          | 249.8         | 17.0                | -0.22             | 0.33               | 0.1                        |                            | 19.7                         |                              |
| July 26, 2020 | 9.51 | 669.6    | 0.00                      | 63.0                       | 9.46 | 704.4    | 2.19                      |                            | 9.50 | 670.5    | 1.25                      | 0.8                        | 9.53 | 708.0    | 1.0          | 63.1          | 18.2                | -0.23             | 0.34               | 0.1                        |                            | 32.1                         |                              |
| July 27, 2020 | 9.50 | 669.2    | 0.00                      | 92.2                       | 9.50 | 697.5    | 3.63                      |                            | 9.50 | 667.5    | 1.49                      | 1.0                        | 9.49 | 700.6    | 1.2          | 100.5         | 20.9                | -0.23             | 0.33               | 0.1                        |                            | 46.0                         |                              |
| July 28, 2020 | 9.48 | 668.1    | 0.00                      | 111.8                      | 9.49 | 699.5    | 5.37                      |                            | 9.50 | 665.7    | 1.66                      | 1.1                        | 9.50 | 699.5    | 1.3          | 90.5          | 23.1                | -0.24             | 0.32               | 0.1                        |                            | 44.4                         |                              |
| July 29, 2020 | 9.49 | 671.5    | 0.00                      | 166.7                      | 9.49 | 698.7    | 6.09                      |                            | 9.50 | 661.8    | 2.10                      | 0.7                        | 9.50 | 699.6    | 1.7          | 121.3         | 23.1                | -0.23             | 0.32               | 0.1                        | 1.7                        | 70.6                         |                              |
| July 30, 2020 | 9.51 | 672.4    | 0.00                      | 63.7                       | 9.49 | 701.1    | 6.75                      |                            | 9.50 | 663.3    | 2.26                      | 0.4                        | 9.49 | 699.9    | 1.5          | 94.0          | 22.6                | -0.23             | 0.32               | 0.1                        |                            | 81.3                         |                              |
| July 31, 2020 | 9.52 | 669.8    | 0.00                      | 43.5                       | 9.52 | 699.8    | 5.90                      | 797.2                      | 9.50 | 622.2    | 2.61                      | 65.2                       | 9.49 | 640.7    | 1.9          | 231.3         | 22.2                | -0.23             | 0.33               | 0.1                        | 1.8                        | 134.5                        |                              |
| Aug           | 9.50 | 669.4    | 0.01                      | 34.2                       | 9.49 | 699.7    | 2.24                      | 157.9                      | 9.50 | 667.4    | 0.98                      | 2.0                        | 9.50 | 699.4    | 1.0          | 110.5         | 18.7                | -0.20             | 0.29               | I 0.1                      | 1.0                        | 22.3                         |                              |
| AVG           | 9.50 | 652.2    | 0.01                      | 0.0                        | 9.49 | 680.6    | 0.68                      |                            | 9.50 | 622.2    | 0.98                      | 3.9                        | 9.50 | 640.7    | 0.3          | 22.9          | 16.1                | -0.20<br>-0.24    | -0.29              | 0.1                        | 1.0                        | 22.3                         | 0                            |
| May           | 9.45 | 672.4    | 0.00                      | 166.7                      | 9.33 | 709.9    | 0.68                      |                            | 9.50 | 622.2    | 2.61                      | 65.2                       | 9.45 | 721.7    | 0.3          | 419.6         | 23.1                | -0.24<br>0.14     | -0.31<br>0.34      | 0.0                        | 0.0                        | 134.5                        | 0                            |
| NIN           | 9.52 | 0/2.4    | 0.17                      | 100.7                      | 9.53 | 709.9    | 6.75                      | 1002.2                     | 9.50 | 087.1    | 2.61                      | 05.2                       | 9.58 | 121.1    | 2.9          | 419.6         | 23.1                | 0.14              | 0.34               | 0.1                        | 5.6                        | 134.5                        | 0)                           |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report August 2020

|                 |      | E        | ast Scrubber              |                            |      | Fer      | menter Scrubber           |                            |      | V        | Vest Scrubber             |                            |      | E        | PT Scrubber  |               |                     | GRF Scru          | bber               |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|-----------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|------|----------|--------------|---------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date            | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H2S In (ppm) | H2S Out (ppb) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H <sub>2</sub> S Out (ppb)   | H <sub>2</sub> S Out (ppb)   |
| August 1, 2020  | 9.50 | 670.1    | 0.00                      | 0.0                        | 9.50 | 0 700.3  | 6.82                      | 1066.7                     | 9.50 | 647.5    | 2.45                      | 0.5                        | 9.51 | 700.4    | 2.1          | 145.5         | 23.1                | -0.27             | 0.31               | 0.1                        | 0.2                        | 93.6                         |                              |
| August 2, 2020  | 9.50 | 670.1    | 0.00                      | 0.0                        | 9.50 | 0 700.7  | 7.44                      | 1081.7                     | 9.50 | 655.0    | 2.20                      | 0.0                        | 9.50 | 700.2    | 1.9          | 127.3         | 23.8                | -0.23             | 0.32               | 0.1                        | 0.9                        | 63.8                         |                              |
| August 3, 2020  | 9.48 | 671.2    | 0.02                      | 0.0                        | 9.4  | 9 697.6  | 7.60                      | 1295.8                     | 9.50 | 645.9    | 2.15                      | 5.3                        | 9.43 | 623.1    | 4.2          | 431.7         | 21.1                | -0.23             | 0.33               | 0.1                        | 1.3                        | 67.4                         |                              |
| August 4, 2020  | 9.52 | 669.2    | 0.00                      | 0.0                        | 9.5  | 1 704.9  | 4.06                      | 463.0                      | 9.50 | 667.3    | 0.36                      | 0.0                        | 9.57 | 722.0    | 0.8          | 40.3          | 19.3                | -0.22             | 0.33               | 0.1                        | 2.6                        | 15.8                         |                              |
| August 5, 2020  | 9.50 | 668.7    | 0.00                      | 0.1                        | 9.50 | 701.1    | 4.57                      | 842.5                      | 9.50 | 645.7    | 2.28                      | 0.0                        | 9.49 | 698.9    | 1.2          | 63.2          | 21.0                | -0.22             | 0.32               | 0.1                        | 3.0                        | 29.4                         |                              |
| August 6, 2020  | 9.49 | 670.6    | 0.00                      | 0.0                        | 9.4  | 8 696.5  | 5.97                      | 902.9                      | 9.50 | 644.8    | 2.47                      | 0.0                        | 9.50 | 700.3    | 1.7          | 74.2          | 22.3                | -0.23             | 0.32               | 0.1                        | 0.4                        | 44.1                         |                              |
| August 7, 2020  | 9.51 | 670.5    | 0.00                      | 0.0                        | 9.50 | 0 707.1  | 5.27                      | 549.7                      | 9.49 | 660.5    | 2.06                      | 2.8                        | 9.48 | 695.4    | 4.1          | 580.5         | 17.5                | -0.22             | 0.33               | 0.1                        | 0.1                        | 35.7                         | 0                            |
| August 8, 2020  | 9.51 | 669.3    | 0.00                      | 0.4                        | 9.50 | 0 697.3  | 4.43                      | 1559.1                     | 9.50 | 640.5    | 2.32                      | 0.0                        | 9.53 | 704.9    | 1.6          | 103.2         | 15.6                | -0.21             | 0.34               | 0.1                        | 0.0                        | 59.2                         |                              |
| August 9, 2020  | 9.49 | 667.6    | 0.00                      | 0.0                        | 7.5  | 700.1    | 5.52                      | 1769.9                     | 9.51 | 640.0    | 2.04                      | 0.5                        | 9.49 | 570.3    | 1.7          | 320.9         | 17.0                | -0.22             | 0.33               |                            | 0.0                        | 62.3                         |                              |
| August 10, 2020 | 9.50 | 669.6    | 0.00                      | 0.0                        | 9.4  | 9 699.0  | 7.90                      | 1999.6                     | 9.51 | 623.0    | 2.28                      | 2.1                        | 9.50 | 667.3    | 1.7          | 103.4         | 18.1                | -0.22             | 0.33               | 0.1                        | 0.2                        | 118.7                        |                              |
| August 11, 2020 | 9.46 | 668.7    | 0.03                      | 0.6                        | 7.0  | 0 699.4  | 8.82                      | 2005.4                     | 9.50 | 552.6    | 3.11                      | 176.9                      | 9.43 | 590.2    | 5.1          | 506.5         | 15.5                | -0.21             | 0.34               | 0.1                        | 0.1                        | 211.7                        |                              |
| August 12, 2020 | 9.54 | 672.5    | 0.00                      | 0.3                        | 7.0  |          | 3.93                      | 1136.4                     | 9.51 | 571.1    | 0.66                      | 11.4                       | 9.56 | 705.4    | 2.5          | 327.8         | 15.3                | -0.21             | 0.35               |                            | 0.0                        | 20.8                         |                              |
| August 13, 2020 | 9.50 | 669.6    | 0.00                      | 0.4                        |      |          | 4.00                      | 974.9                      | 9.50 | 666.8    | 2.57                      | 1.1                        | 9.49 | 698.8    | 1.8          | 155.6         | 16.3                | -0.21             | 0.34               |                            | 0.7                        | 114.1                        |                              |
| August 14, 2020 | 9.50 | 669.8    | 0.00                      | 0.4                        |      |          | 4.70                      | 1036.5                     | 9.51 | 603.6    | 2.54                      | 64.0                       | 9.50 | 701.0    | 2.0          | 170.8         | 16.6                | -0.22             | 0.34               |                            | 1.0                        | 178.7                        | 0                            |
| August 15, 2020 | 9.49 | 669.7    | 0.00                      | 0.4                        |      |          | 6.43                      | 1348.4                     | 9.50 | 554.5    | 2.36                      | 111.3                      | 9.50 | 700.9    | 1.7          | 118.9         | 17.7                | -0.22             | 0.34               |                            | 2.5                        | 173.9                        |                              |
| August 16, 2020 | 9.49 | 670.1    | 0.00                      | 0.5                        | _    |          | 7.13                      | 1304.2                     | 9.50 | 654.6    | 2.49                      | 1.3                        | 9.50 | 699.7    | 1.9          | 137.4         | 19.7                | -0.23             | 0.34               |                            | 0.0                        | 197.2                        |                              |
| August 17, 2020 | 9.50 | 669.6    | 0.00                      | 0.6                        |      |          | 7.79                      | 1685.0                     | 9.50 | 643.9    | 2.50                      | 3.6                        | 9.50 | 699.6    | 1.8          | 127.3         | 20.5                | -0.23             | 0.33               |                            |                            | 195.0                        |                              |
| August 18, 2020 | 9.51 | 669.9    | 0.00                      | 0.9                        |      |          | 8.04                      | 1306.0                     | 9.50 | 638.0    | 3.24                      | 4.4                        | 9.50 | 699.5    | 2.2          | 165.1         | 21.4                | -0.22             | 0.33               |                            | 0.0                        | 388.5                        |                              |
| August 19, 2020 | 9.49 | 669.7    | 0.00                      | 0.9                        |      |          | 9.41                      | 1711.8                     | 9.65 | 387.3    | 3.20                      | 494.0                      | 9.50 | 622.1    | 2.2          | 265.4         | 20.3                | -0.23             | 0.33               |                            | 0.0                        | 314.3                        |                              |
| August 20, 2020 | 9.49 | 670.1    | 0.01                      | 1.2                        | _    |          | 9.45                      | 1813.7                     | 9.94 | 475.8    | 3.37                      | 607.4                      | 9.42 | 582.3    | 4.1          | 556.5         | 19.3                | -0.22             | 0.33               |                            | 2.3                        | 263.9                        | 0                            |
| August 21, 2020 | 9.53 | 670.6    | 0.00                      | 1.4                        | _    |          | 6.44                      | 1069.1                     | 9.55 | 580.5    | 2.15                      | 262.1                      | 9.50 | 729.6    | 2.6          | 140.5         | 18.7                | -0.22             | 0.34               |                            | 5.5                        | 100.3                        |                              |
| August 22, 2020 | 9.46 | 665.5    | 0.06                      | 1.4                        |      |          | 6.11                      | 1815.2                     | 9.51 | 697.0    | 2.20                      | 1.2                        | 9.51 | 701.8    | 3.0          | 255.9         | 17.4                | -0.22             | 0.34               |                            | 5.5                        | 237.3                        |                              |
| August 23, 2020 | 9.49 | 669.2    | 0.11                      | 1.4                        |      |          | 7.03                      | 1736.7                     | 9.50 | 703.5    | 2.23                      | 0.9                        | 9.50 | 700.1    | 2.7          | 286.9         | 16.4                | -0.22             | 0.35               |                            | 0.9                        | 223.9                        |                              |
| August 24, 2020 | 9.49 | 669.1    | 0.22                      | 1.5                        | 7.0  |          | 7.47                      | 1375.7                     | 9.67 | 571.7    | 2.43                      | 241.5                      | 9.47 | 610.6    | 4.4          | 433.8         | 16.9                | -0.22             | 0.34               |                            | 2.2                        | 140.7                        |                              |
| August 25, 2020 | 9.50 | 667.2    | 0.14                      | 1.9                        |      |          | 6.59                      | 1124.3                     | 9.52 | 619.6    | 1.97                      | 106.5                      | 9.53 | 668.3    | 2.5          | 273.9         | 15.8                | -0.21             | 0.35               |                            | 1.0                        | 288.5                        |                              |
| August 26, 2020 | 9.53 | 675.7    | 0.09                      | 0.5                        | 7.1  |          | 7.24                      | 1069.7                     | 9.50 | 571.0    | 1.84                      | 118.9                      | 9.48 | 582.3    | 3.6          | 591.0         | 16.0                | -0.21             | 0.34               |                            | 1.0                        | 168.0                        |                              |
| August 27, 2020 | 9.50 | 675.3    | 0.39                      | 10.1                       |      |          | 3.58                      | 300.9                      | 9.50 | 691.2    | 2.46                      | 22.7                       | 9.51 | 704.6    | 2.0          | 732.3         | 15.7                | -0.21             | 0.35               |                            | 111                        | 304.9                        | 0                            |
| August 28, 2020 | 9.48 | 664.9    | 0.38                      | 11.7                       |      |          | 5.11                      | 241.7                      | 9.50 | 673.3    | 2.89                      | 6.8                        | 9.50 | 699.4    | 2.3          | 2384.5        | 15.7                | -0.22             | 0.35               |                            | 2.0                        | 395.4                        |                              |
| August 29, 2020 | 9.53 | 674.6    | 0.36                      | 10.2                       |      | 700.0    | 3.99                      | 60.2                       | 9.50 | 664.8    | 2.83                      | 3.7                        | 9.51 | 700.0    | 2.7          | 2384.3        | 15.2                | -0.22             | 0.33               |                            | 7.7                        | 020.0                        |                              |
| August 30, 2020 | 9.49 | 666.5    | 0.32                      | 10.4                       |      |          | 3.26                      | 63.8                       | 9.50 | 674.9    | 2.57                      | 7.6                        | 9.50 | 699.4    | 2.5          | 2364.9        | 13.1                | -0.22             |                    |                            | 0.0                        | 369.1                        |                              |
| August 31, 2020 | 9.49 | 669.6    | 0.62                      | 12.5                       | 9.50 | 703.2    | 3.83                      | 123.7                      | 9.50 | 647.3    | 3.08                      | 15.0                       | 9.50 | 699.5    | 2.7          | 2384.7        | 12.7                | -0.21             | 0.34               | 0.1                        | 0.3                        | 904.5                        |                              |
|                 |      |          |                           |                            |      |          |                           |                            |      |          |                           |                            |      |          |              |               |                     |                   |                    |                            |                            |                              | ,                            |
| Avg             | 9.50 | 669.8    | 0.09                      | 2.3                        | 9.4  |          | 6.13                      | 1123.7                     | 9.53 | 623.0    | 2.37                      | 73.3                       | 9.50 | 676.7    | 2.5          | 540.5         | 17.9                | -0.22             | 0.34               | 0.1                        | 1.7                        | 203.7                        | 0                            |
| Min             | 9.46 | 664.9    | 0.00                      | 0.0                        | 7.1  | , 0,0.0  | 3.26                      | 60.2                       | 9.49 | 387.3    | 0.36                      | 0.0                        | 9.42 | 570.3    | 0.8          | 40.3          | 12.7                | -0.27             | 0.31               | +                          | 0.0                        | 15.8                         | 0                            |
| Max             | 9.54 | 675.7    | 0.62                      | 12.5                       | 9.5  | 3 707.5  | 9.45                      | 2005.4                     | 9.94 | 703.5    | 3.37                      | 607.4                      | 9.57 | 729.6    | 5.1          | 2384.7        | 23.8                | -0.21             | 0.35               | 0.1                        | 5.5                        | 904.5                        | 0                            |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report September 2020

| B.1                |      | E        | ast Scrubber              |                            |      | Fern     | nenter Scrubber           |                            |       | W        | lest Scrubber             |                            |      | Е        | PT Scrubber  |               |                     | GRF Scrub         | ober               |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|--------------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|-------|----------|---------------------------|----------------------------|------|----------|--------------|---------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date               | pН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН    | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H2S In (ppm) | H2S Out (ppb) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H <sub>2</sub> S Out (ppb)   | H <sub>2</sub> S Out (ppb)   |
| September 1, 2020  | 9.50 | 670.3    | 0.76                      | 13.8                       | 9.50 | 697.5    | 4.25                      | 362.0                      | 9.50  | 643.9    | 3.47                      | 19.3                       | 9.50 | 657.7    | 3.1          | 1969.4        | 16.7                | -0.23             | 0.33               | 0.1                        | 1.7                        | 886.9                        |                              |
| September 2, 2020  | 9.50 | 671.1    | 0.64                      | 11.9                       | 9.51 | 698.5    | 3.94                      | 167.1                      | 9.50  | 693.7    | 3.46                      | 26.5                       | 9.51 | 618.5    | 3.1          | 985.5         | 14.8                | -0.22             | 0.34               | 0.1                        | 1.1                        | 768.9                        |                              |
| September 3, 2020  | 9.53 | 677.4    | 0.52                      | 11.2                       | 9.49 | 699.3    | 3.99                      | 95.4                       | 9.50  | 625.1    | 3.93                      | 14.4                       | 9.50 | 697.8    | 2.8          | 1411.7        | 13.8                | -0.22             | 0.35               | 0.1                        | 0.7                        | 1226.0                       |                              |
| September 4, 2020  | 9.50 | 670.0    | 0.37                      | 13.0                       | 9.49 | 703.2    | 4.38                      | 147.1                      | 9.50  | 667.6    | 4.32                      | 25.5                       | 9.50 | 700.1    | 2.7          | 1235.7        | 15.3                | -0.23             | 0.35               | 0.1                        | 1.3                        | 1140.5                       | 0                            |
| September 5, 2020  | 9.51 | 668.2    | 0.34                      | 12.4                       | 9.51 | 699.3    | 3.63                      | 255.1                      | 9.50  | 657.3    | 4.06                      | 17.5                       | 9.51 | 700.3    | 3.0          | 1316.4        | 15.6                | -0.22             | 0.34               | 0.1                        | 0.7                        | 775.7                        |                              |
| September 6, 2020  | 9.51 | 672.2    | 0.40                      | 10.5                       | 9.49 | 699.3    | 2.97                      | 133.0                      | 9.50  | 663.4    | 3.58                      | 27.1                       | 9.50 | 699.8    | 2.8          | 1367.7        | 14.0                | -0.22             | 0.35               | 0.1                        | 0.3                        | 780.9                        |                              |
| September 7, 2020  | 9.48 | 667.1    | 0.34                      | 8.4                        | 9.48 | 699.9    | 2.36                      | 55.0                       | 9.49  | 681.6    | 3.51                      | 25.6                       | 9.48 | 694.3    | 3.5          | 1628.7        | 10.8                | -0.22             | 0.36               | 0.1                        | 0.0                        | 403.5                        |                              |
| September 8, 2020  | 9.52 | 672.4    | 0.21                      | 11.3                       | 9.47 | 695.2    | 3.73                      | 457.1                      | 9.50  | 648.5    | 3.94                      | 41.1                       | 9.51 | 701.7    | 2.5          | 1165.6        | 12.7                | -0.22             | 0.36               | 0.1                        | 0.6                        | 989.7                        |                              |
| September 9, 2020  | 9.49 | 669.9    | 0.32                      | 15.2                       | 9.30 | 705.1    | 4.48                      | 596.5                      | 9.50  | 625.4    | 4.83                      | 105.1                      | 9.49 | 699.9    | 2.8          | 1716.5        | 14.2                | -0.22             | 0.35               | 0.1                        | 2.0                        | 1246.4                       |                              |
| September 10, 2020 | 9.50 | 678.4    | 0.06                      | 14.3                       | 9.06 | 706.5    | 5.77                      | 1474.6                     | 9.53  | 649.0    | 4.33                      | 61.9                       | 9.51 | 704.9    | 2.9          | 1570.2        | 17.0                | -0.22             | 0.34               | 0.1                        | 3.4                        | 1120.3                       |                              |
| September 11, 2020 | 9.50 | 670.3    | 0.00                      | 8.6                        | 8.92 | 696.0    | 8.53                      | 1694.3                     | 9.43  | 648.8    | 4.97                      | 183.1                      | 9.51 | 699.8    | 3.1          | 1630.2        | 15.9                | -0.22             | 0.34               | 0.1                        | 3.7                        | 742.7                        | 0                            |
| September 12, 2020 | 9.51 | 669.6    | 0.00                      | 6.8                        | 9.51 | 703.7    | 9.25                      | 1918.7                     | 9.50  | 654.3    | 4.13                      | 137.2                      | 9.50 | 698.8    | 3.5          | 1992.7        | 12.3                | -0.21             | 0.35               | 0.1                        | 2.0                        | 750.5                        |                              |
| September 13, 2020 | 9.50 | 672.7    | 0.00                      | 17.6                       | 9.51 | 699.6    | 8.71                      | 1831.9                     | 9.50  | 645.5    | 4.06                      | 160.8                      | 9.50 | 698.6    | 3.1          | 2129.9        | 11.5                | -0.22             | 0.35               | 0.1                        | 1.6                        | 588.3                        |                              |
| September 14, 2020 | 9.50 | 669.9    | 0.01                      | 6.3                        | 9.49 | 698.9    | 10.15                     | 1047.7                     | 9.51  | 645.7    | 5.29                      | 359.1                      | 9.52 | 715.3    | 12.6         | 820.4         | 10.7                | -0.21             | 0.35               | 0.1                        | 1.3                        | 904.3                        |                              |
| September 15, 2020 | 9.51 | 671.0    | 0.00                      | 3.0                        | 9.51 | 700.3    | 9.46                      | 0.0                        | 10.29 | 638.5    | 5.06                      | 1552.4                     | 9.16 | 666.0    | 11.2         | 999.7         | 10.5                | -0.22             | 0.36               | 0.1                        | 2.9                        | 1031.0                       |                              |
| September 16, 2020 | 9.49 | 670.1    | 0.00                      | 7.4                        | 9.50 | 699.7    | 9.17                      | 0.0                        | 10.00 | 639.7    | 4.85                      | 1236.9                     | 9.50 | 699.9    | 2.4          | 1908.2        | 15.0                | -0.21             | 0.34               | 0.1                        | 1.7                        | 1187.6                       |                              |
| September 17, 2020 | 9.44 | 658.4    | 0.54                      | 17.2                       | 9.50 | 699.8    | 10.08                     | 0.0                        | 9.50  | 653.4    | 3.34                      | 4.6                        | 9.50 | 698.9    | 3.1          | 1957.0        | 12.9                | -0.22             | 0.35               | 0.1                        | 2.9                        | 905.9                        |                              |
| September 18, 2020 | 9.54 | 680.6    | 0.22                      | 5.2                        | 9.49 | 700.3    | 9.37                      | 294.4                      | 9.50  | 631.9    | 4.59                      | 12.9                       | 9.50 | 696.9    | 3.0          | 1898.3        | 14.2                | -0.23             | 0.34               | 0.1                        | 5.1                        | 1230.2                       | 0                            |
| September 19, 2020 | 9.51 | 669.4    | 0.31                      | 3.2                        | 9.50 | 699.7    | 6.31                      | 304.6                      | 9.50  | 660.6    | 4.75                      | 19.4                       | 9.51 | 698.9    | 3.4          | 1688.2        | 13.6                | -0.22             | 0.35               | 0.1                        | 4.4                        | 1469.8                       |                              |
| September 20, 2020 | 9.50 | 670.0    | 0.41                      | 4.0                        | 9.52 | 686.2    | 5.93                      | 374.5                      | 9.50  | 654.9    | 4.00                      | 6.5                        | 9.50 | 700.6    | 3.3          | 1667.7        | 15.6                | -0.23             | 0.34               | 0.1                        | 4.3                        | 1014.5                       |                              |
| September 21, 2020 | 9.49 | 678.5    | 0.46                      | 4.5                        |      | 699.7    | 4.25                      |                            | 10.19 | 603.3    | 4.25                      | 564.2                      | 9.50 | 516.4    | 3.0          | 1989.9        | 13.2                | -0.21             | 0.35               | 0.1                        | 4.1                        | 367.1                        |                              |
| September 22, 2020 | 9.49 | 668.5    | 0.76                      | 5.4                        | 9.46 | 702.6    | 4.83                      | 859.2                      | 9.50  | 650.3    | 4.24                      | 0.0                        | 9.50 | 660.6    | 2.9          | 1650.7        | 14.1                | -0.22             | 0.35               | 0.1                        | 2.4                        | 788.8                        |                              |
| September 23, 2020 | 9.51 | 671.9    | 0.58                      | 6.1                        | 9.52 | 702.7    | 4.02                      | 405.1                      | 9.50  | 656.1    | 4.13                      | 0.0                        | 9.50 | 700.0    | 3.0          | 1483.3        | 15.3                | -0.22             | 0.33               | 0.0                        | 2.0                        | 598.3                        |                              |
| September 24, 2020 | 9.50 | 670.0    | 0.52                      | 4.8                        | 9.49 | 699.1    | 5.24                      |                            | 9.50  | 646.7    | 4.59                      | 23.9                       | 9.50 | 698.7    | 3.0          | 1486.9        | 16.0                | -0.22             | 0.32               | 0.1                        | 1.8                        | 937.6                        | 0                            |
| September 25, 2020 | 9.50 | 670.2    | 0.54                      | 5.1                        | 9.49 | 699.9    | 4.57                      | 1358.9                     | 9.50  | 645.8    | 5.19                      | 30.6                       | 9.50 | 698.8    | 3.5          | 1620.2        | 13.9                | -0.22             | 0.33               | 0.1                        | 1.8                        | 1426.8                       |                              |
| September 26, 2020 | 9.50 | 669.7    | 0.55                      | 4.8                        | 9.50 | 700.1    | 4.01                      | 1035.1                     | 9.50  | 646.9    | 4.52                      | 24.4                       | 9.50 | 697.0    | 3.8          | 1498.9        | 13.8                | -0.22             | 0.33               | 0.1                        | 1.1                        | 1399.4                       |                              |
| September 27, 2020 | 9.50 | 670.7    | 0.52                      | 4.7                        | 9.49 | 683.5    | 4.30                      | 1079.0                     | 9.50  | 651.4    | 3.97                      | 10.0                       | 9.50 | 699.4    | 3.0          | 1442.4        | 17.4                | -0.21             | 0.34               | 0.1                        | 4.9                        | 1162.6                       |                              |
| September 28, 2020 | 9.49 | 670.0    | 0.49                      | 7.6                        | 9.46 | 721.3    | 5.84                      |                            | 9.50  | 653.2    | 3.82                      | 0.1                        | 9.50 | 698.4    | 2.9          | 1095.1        | 20.1                | -0.22             | 0.34               | 0.1                        | 6.7                        | 870.0                        |                              |
| September 29, 2020 | 9.51 | 669.7    | 0.28                      | 6.5                        | 9.53 | 697.5    | 8.19                      | 1920.5                     | 9.50  | 671.8    | 3.96                      | 7.1                        | 9.50 | 700.1    | 2.7          | 1217.5        | 20.0                | -0.22             | 0.33               | 0.1                        | 10.2                       | 873.4                        | <u> </u>                     |
| September 30, 2020 | 9.51 | 670.9    | 0.01                      | 4.4                        | 9.50 | 699.8    | 9.67                      | 1721.7                     | 9.49  | 657.3    | 3.46                      | 23.5                       | 9.51 | 558.2    | 2.3          | 1299.8        | 20.1                | -0.22             | 0.34               | 0.1                        | 7.5                        | 870.1                        |                              |
|                    |      |          |                           |                            |      |          |                           |                            | 1     |          |                           |                            |      |          |              |               |                     |                   |                    |                            |                            |                              |                              |
| AVG                | 9.50 | 671.0    | 0.34                      | 8.5                        | 7.10 | 699.8    | 6.05                      | 745.0                      | 9.56  | 650.4    | 4.22                      | 157.4                      | 9.49 | 002.0    | 3.6          | 1528.1        | 14.7                | -0.22             | 0.34               | 0.1                        | 2.8                        | 948.6                        | 0                            |
| Min                | 9.44 | 658.4    | 0.00                      | 3.0                        | 0.72 | 683.5    | 2.36                      | 0.0                        | 9.43  | 603.3    | 3.34                      | 0.0                        | 9.16 | 516.4    | 2.3          | 820.4         | 10.5                | -0.23             | 0.32               | 0.0                        | 0.0                        | 367.1                        | 0                            |
| Max                | 9.54 | 680.6    | 0.76                      | 17.6                       | 9.53 | 721.3    | 10.15                     | 1920.5                     | 10.29 | 693.7    | 5.29                      | 1552.4                     | 9.52 | 715.3    | 12.6         | 2129.9        | 20.1                | -0.21             | 0.36               | 0.1                        | 10.2                       | 1469.8                       | 0                            |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report October 2020

|                                      |              | E              | ast Scrubber              |                            |              | Feri           | menter Scrubber           |                            |              | V              | Vest Scrubber             |                            |      | E              | PT Scrubber  |                |                     | GRF Scrul         | bber               |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|--------------------------------------|--------------|----------------|---------------------------|----------------------------|--------------|----------------|---------------------------|----------------------------|--------------|----------------|---------------------------|----------------------------|------|----------------|--------------|----------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date                                 | рН           | ORP (mV)       | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН           | ORP (mV)       | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН           | ORP (mV)       | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV)       | H2S In (ppm) | H2S Out (ppb)  | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H <sub>2</sub> S Out (ppb)   | H <sub>2</sub> S Out (ppb)   |
| October 1, 2020                      | 9.45         | 660.2          | 0.58                      | 12.9                       | 9.49         | 699.5          | 10.39                     | 2032.0                     | 9.67         | 688.5          | 1.97                      | 46.7                       | 9.59 | 552.6          | 3.6          | 1163.7         | 19.9                | -0.21             | 0.34               | 0.1                        | 2.0                        | 715.2                        | 2 (                          |
| October 2, 2020                      | 9.49         | 669.3          | 0.95                      | 22.0                       | 9.50         | 700.0          | 12.28                     | 2049.9                     | 9.50         | 662.2          | 2.19                      | 0.3                        | 9.50 | 700.1          | 3.0          | 1231.4         | 19.9                | -0.22             | 0.33               | 0.1                        | 1.4                        | 900.8                        | 3                            |
| October 3, 2020                      | 9.49         | 667.0          | 1.19                      | 23.4                       | 9.50         | 699.6          | 12.36                     | 1862.1                     | 9.49         | 664.1          | 2.48                      | 0.2                        | 9.50 | 699.2          | 3.6          | 1227.5         | 19.8                | -0.21             | 0.34               | 0.1                        | 1.2                        | 1144.9                       | 9                            |
| October 4, 2020                      | 9.50         | 669.2          | 1.27                      | 21.5                       | 9.50         | 699.6          | 14.19                     | 1972.8                     | 9.51         | 672.7          | 2.28                      | 0.0                        | 9.50 | 667.7          | 3.6          | 1124.6         | 19.5                | -0.21             | 0.34               | 0.1                        | 0.5                        | 1337.4                       | 1                            |
| October 5, 2020                      | 9.52         | 670.0          | 1.11                      | 14.2                       | 9.51         | 700.8          | 14.34                     | 1975.5                     | 9.51         | 659.3          | 2.08                      | 0.0                        | 9.51 | 703.5          | 3.1          | 892.9          | 19.5                | -0.21             | 0.33               | 0.1                        | 0.0                        | 1166.2                       | 2                            |
| October 6, 2020                      | 9.50         | 670.6          | 1.20                      | 23.1                       | 9.51         | 700.3          | 14.37                     | 1993.5                     | 9.50         | 666.3          | 1.80                      | 0.7                        | 9.50 | 698.8          | 3.3          | 1005.8         | 19.7                | -0.21             | 0.33               | 0.1                        | 0.0                        | 789.8                        | 3                            |
| October 7, 2020                      | 9.50         | 668.2          | 1.03                      | 25.3                       | 9.50         | 699.8          | 14.85                     | 2061.5                     | 9.50         | 672.6          | 1.82                      | 0.0                        | 9.50 | 700.0          | 2.8          | 969.1          | 19.9                | -0.21             | 0.34               | 0.1                        | 0.0                        | 806.9                        |                              |
| October 8, 2020                      | 9.49         | 668.9          | 1.17                      | 56.3                       | 9.49         | 698.5          | 0.83                      | 1511.6                     | 9.50         | 665.2          | 2.26                      | 3.2                        | 9.50 | 699.8          | 4.2          | 1589.2         | 19.9                | -0.21             | 0.33               | 0.1                        | 0.0                        | 1023.4                       | 1 (                          |
| October 9, 2020                      | 9.51         | 671.2          | 0.91                      | 42.8                       | 9.51         | 701.2          | 0.41                      | 184.6                      | 9.49         | 671.4          | 4.62                      |                            | 9.50 | 699.9          | 3.3          | 1194.2         | 20.0                | -0.20             | 0.33               |                            | 0.0                        | 594.8                        |                              |
| October 10, 2020                     | 9.49         | 668.5          | 1.13                      | 41.7                       | 9.50         | 699.3          | 0.55                      | 328.5                      | 9.50         | 651.2          | 5.49                      |                            | 9.50 | 693.0          | 3.8          | 1256.6         |                     | -0.20             | 0.33               | 0.1                        | 0.0                        | 258.2                        |                              |
| October 11, 2020                     | 9.52         | 677.2          | 0.49                      | 32.3                       | 9.51         | 701.3          | 0.07                      | 136.0                      | 9.51         | 687.9          | 4.14                      |                            | 9.51 | 654.4          | 4.1          | 731.2          |                     | -0.20             | 0.32               | 0.1                        | 0.0                        | 102.6                        |                              |
| October 12, 2020                     | 9.50         | 669.4          | 1.00                      | 26.6                       | 9.50         | 699.5          | 0.13                      | 167.7                      | 9.50         | 642.4          | 3.91                      |                            | 9.50 | 0.1.1.0        | 3.5          | 1218.2         |                     | -0.20             | 0.33               | 0.1                        | 0.0                        | 188.2                        |                              |
| October 13, 2020                     | 9.50         | 672.1          | 0.81                      | 16.0                       | 9.50         | 699.8          | 0.17                      | 135.4                      | 9.50         | 676.3          | 3.12                      |                            | 9.50 |                | 3.5          | 874.2          |                     |                   | 0.34               |                            | 0.0                        | 59.9                         | ·                            |
| October 14, 2020                     | 9.50         | 668.2          | 0.87                      | 19.6                       | 9.50         | 686.9          | 0.02                      | 203.8                      | 9.50         | 654.9          | 3.06                      |                            |      |                | 4.5          | 774.8          |                     | -0.20             | 0.34               |                            | 0.0                        | 62.3                         |                              |
| October 15, 2020                     | 9.51         | 669.8          | 1.03                      | 4.7                        | 9.50         | 699.7          | 0.03                      | 149.9                      | 9.58         | 682.3          | 2.97                      |                            | 9.50 | 101.7          | 3.9          | 445.2          | 20.1                | -0.20             | 0.34               |                            |                            | 52.                          |                              |
| October 16, 2020                     | 9.50         | 670.7          | 1.34                      | 20.8                       | 9.51         | 683.3          | 0.97                      | 350.3                      | 9.50         | 665.3          | 3.06                      |                            | 9.50 | 699.6          | 4.6          | 598.2          | 20.2                | -0.19             | 0.34               |                            | 0.0                        | 74.3                         |                              |
| October 17, 2020                     | 9.52         | 673.0          | 0.59                      | 39.5                       | 9.50         | 700.0          | 0.02                      | 576.1                      | 9.50         | 667.5          | 2.53                      |                            |      |                | 4.6          | 609.3          |                     |                   | 0.34               |                            |                            | 37.8                         |                              |
| October 18, 2020                     | 9.50         | 669.1          | 0.44                      | 38.5                       |              | 699.3          | 0.00                      | 810.6                      | 9.50         | 673.2          | 1.98                      |                            | 9.50 |                | 4.5          | 586.5          |                     | -0.18             | 0.34               |                            |                            | 25.9                         |                              |
| October 19, 2020                     | 9.51         | 672.4          | 0.45                      | 36.8                       | 9.50         | 699.5          | 0.06                      | 902.1                      | 9.50         | 669.2          | 1.92                      |                            |      |                | 3.3          | 372.4          |                     | -0.19             | 0.34               |                            |                            | 34.8                         |                              |
| October 20, 2020                     | 9.51         | 671.7          | 0.46                      | 25.3                       | 9.50         | 700.2          | 0.03                      | 699.7                      | 9.50         | 665.8          | 2.32                      |                            |      |                | 3.6          | 413.8          |                     |                   | 0.34               |                            | 0.0                        | 32.9                         |                              |
| October 21, 2020                     | 9.38         | 646.4          | 1.38                      | 276.0                      | 9.50         | 700.0          | 0.02                      | 499.3                      | 9.50         | 666.9          | 2.26                      |                            | _    | 703.7          | 3.4          | 397.9          |                     | -0.19             | 0.33               |                            | 0.0                        | 47.0                         |                              |
| October 22, 2020                     | 9.52         | 674.6          | 2.07                      | 110.9                      | 9.49         | 697.9          | 0.06                      | 387.5                      | 9.50         | 665.7          | 3.05                      |                            | 9.48 | 696.9          | 2.8          | 226.7          | 20.3                | -0.18             | 0.34               |                            | 0.0                        | 31.3                         |                              |
| October 23, 2020                     | 9.44         | 685.3          | 0.69                      | 26.0                       | 9.40         | 700.7          | 0.08                      | 316.9                      | 9.50         | 655.0          | 3.40                      |                            | 9.51 | 702.6          | 3.5          | 257.2          |                     | -0.19             | 0.34               |                            | 0.0                        | 64.3                         |                              |
| October 24, 2020                     | 9.52         | 674.2          | 0.60                      | 80.9                       | 9.51         | 700.2          | 0.05                      | 271.3                      | 9.50         | 689.4          | 2.75                      |                            | 9.50 | 701.1          | 3.4          | 257.1          |                     | -0.19             | 0.34               |                            | 0.0                        | 58.2                         |                              |
| October 25, 2020                     | 9.51<br>9.47 | 670.3          | 1.37                      | 3.8<br>10.0                | 7.00         | 700.1          | 0.02                      | 305.2<br>333.5             | 9.50<br>9.50 | 671.1<br>651.6 | 2.55                      |                            |      |                | 3.5          | 271.7<br>260.0 |                     |                   | 0.35               |                            | 0.0                        | 49.5                         |                              |
| October 26, 2020                     | 9.47         | 663.6          | 0.43                      | 10.0                       | 9.50<br>9.50 | 700.4          |                           |                            | 9.50         |                |                           |                            | 9.50 |                | 3.8          |                |                     | -0.19             |                    |                            | 0.0                        | 101.8                        |                              |
| October 27, 2020<br>October 28, 2020 | 9.54         | 679.0<br>665.8 | 0.17                      | 1.8                        | 9.50         | 699.6<br>700.1 | 0.00                      | 474.8<br>1381.5            | 9.50         | 659.2<br>650.0 | 3.56                      |                            | 9.51 | 702.6<br>700.3 | 3.5<br>3.8   | 201.6<br>302.9 |                     | -0.20<br>-0.20    | 0.33               | 0.1                        | 0.0                        | 90.6                         | 1                            |
|                                      | 9.48         | 670.2          | 0.11                      | 2.7                        |              | 699.8          | 0.00                      | 1825.3                     | 9.50         | 654.9          | 2.99                      |                            |      |                | 3.8          | 302.9<br>178.0 |                     | -0.20             | 0.34               |                            | 0.0                        | 90.0                         |                              |
| October 29, 2020<br>October 30, 2020 | 9.50         | 674.3          | 0.19                      | 1.8                        | 9.50         | 699.8          | 0.02                      | 1954.2                     | 9.52         | 673.5          | 3.23                      |                            | 9.50 | 696.5          | 5.4          | 499.4          |                     | -0.20             | 0.33               |                            | 0.0                        | 114.5                        | <u> </u>                     |
| October 30, 2020                     | 9.50         | 669.7          | 0.31                      | 0.0                        | 9.50         | 699.9          | 0.03                      | 2061.6                     | 9.37         | 670.9          | 3.23                      |                            | 9.40 | 710.6          | 3.6          | 218.3          |                     | -0.19             | 0.33               | 0.1                        | 0.0                        | 86.9                         |                              |
| October 31, 2020                     | 9.52         | 009.7          | 0.00                      | 0.0                        | 9.50         | 099.8          | 0.00                      | 2001.0                     | 9.50         | 670.9          | 3.32                      | 39.4                       | 9.51 | / 10.6         | 3.0          | 218.3          | 20.3                | -0.19             | 0.34               | 0.1                        | 0.0                        | 80.5                         | <sup>7</sup> I               |
| Ava                                  | 9.50         | 670.0          | 0.82                      | 34.3                       | 0.50         | 698.9          | 3.11                      | 965.0                      | 0.50         | 666.7          | 2.90                      | 36.3                       | 0.50 | 693.4          | 3.7          | 688.7          | 20.1                | -0.20             | 0.34               | 0.1                        | 0.3                        | 329.5                        | : 1                          |
| Min                                  | 9.30         | 646.4          | 0.00                      | 34.3                       | 9.30         | 683.3          | 0.00                      | 135.4                      | 9.30         | 642.4          | 1.80                      |                            | 9.30 | 552.6          | 2.8          | 178.0          |                     |                   | 0.34               | 0.1                        | 0.2                        | 25.9                         |                              |
| May                                  | 9.30         | 685.3          | 2.07                      | 276.0                      | 9.40         | 701.3          | 14.85                     | 2061.6                     | 9.37         | 689.4          | 5.49                      |                            | 9.40 | 710.6          | 5.4          | 1589.2         | 20.5                | -0.22             | 0.32               |                            | 0.0                        | 1337.4                       |                              |
| IVIdX                                | 9.54         | 080.3          | 2.07                      | 2/0.0                      | 9.51         | /01.3          | 14.85                     | 2061.6                     | 9.07         | 089.4          | 5.49                      | 204.2                      | 9.59 | /10.6          | 5.4          | 1589.2         | 20.5                | -0.18             | 0.35               | 0.1                        | 2.0                        | 1337.4                       | +                            |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report November 2020

|                   |      | E        | ast Scrubber              |                            |      | Ferr     | nenter Scrubber           |                            |      | ١        | Vest Scrubber             |               |      |          | EPT Scrubber |               |                     | GRF Scrul         | ober               |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|-------------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|----------------------------|------|----------|---------------------------|---------------|------|----------|--------------|---------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date              | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pH ( | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H₂S Out (ppb) | pН   | ORP (mV) | H2S In (ppm) | H2S Out (ppb) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H <sub>2</sub> S Out (ppb)   | H₂S Out (ppb)                |
| November 1, 2020  | 9.50 | 669.5    | 0.00                      | 0.0                        | 9.50 | 699.5    | 0.00                      | 2060.9                     | 9.48 | 681.0    | 3.75                      | 9.6           | 9.50 | 701.     | 5 4.0        | 254.8         | 20.1                | -0.20             | 0.33               | 0.1                        | 0.0                        | 119.2                        |                              |
| November 2, 2020  | 9.50 | 670.3    | 0.00                      | 0.0                        | 9.49 | 699.8    | 0.00                      | 2058.7                     | 9.51 | 669.0    | 3.94                      | 45.6          | 9.50 | 700.     | 3.3          | 180.6         | 20.1                | -0.21             | 0.33               | 0.1                        | 0.0                        | 134.5                        |                              |
| November 3, 2020  | 9.50 | 670.2    | 0.00                      | 0.0                        | 9.50 | 699.7    | 0.03                      | 2061.7                     | 9.50 | 675.5    | 3.71                      | 7.7           | 9.50 | 701.     | 3.5          | 194.9         | 20.2                | -0.20             | 0.32               | 0.1                        | 0.0                        | 105.6                        |                              |
| November 4, 2020  | 9.51 | 669.8    | 0.00                      | 0.0                        | 9.50 | 699.2    | 0.01                      | 2061.2                     | 9.50 | 677.6    | 3.66                      | 14.3          | 9.51 | 702.     | 3.8          | 239.0         | 20.2                | -0.20             | 0.33               | 0.1                        | 0.0                        | 113.7                        |                              |
| November 5, 2020  | 9.51 | 670.2    | 0.24                      | 23.7                       | 9.50 | 692.3    | 0.00                      | 1123.2                     | 9.50 | 677.2    | 3.43                      | 4.3           | 9.46 | 674.     | 7 6.5        | 511.2         | 20.2                | -0.20             | 0.33               | 0.1                        | 0.0                        | 112.9                        | 0                            |
| November 6, 2020  | 9.67 | 716.0    | 0.03                      | 0.0                        | 9.52 | 702.3    | 0.00                      | 1443.8                     | 9.54 | 707.2    | 2.58                      | 299.9         | 9.57 | 707.     | 3.0          | 80.5          | 20.5                | -0.21             | 0.11               | 0.1                        | 0.0                        | 70.1                         |                              |
| November 7, 2020  | 9.48 | 667.2    | 0.18                      | 6.1                        | 9.49 | 699.5    | 0.02                      | 2061.7                     | 9.51 | 686.0    | 2.92                      | 0.0           | 9.50 | 702.     | 5 4.4        | 283.3         | 21.6                | -0.23             | -0.13              | 0.1                        | 0.0                        | 83.8                         |                              |
| November 8, 2020  | 9.51 | 670.5    | 0.07                      | 6.1                        | 9.50 | 700.0    | 0.03                      | 1325.0                     | 9.48 | 640.2    | 2.51                      | 61.0          | 9.50 | 700.     | 3.6          | 229.8         | 21.7                | -0.23             | -0.12              | 0.1                        | 0.0                        | 36.3                         |                              |
| November 9, 2020  | 9.49 | 668.2    | 0.14                      | 9.7                        | 9.49 | 699.3    | 0.02                      | 76.9                       | 9.53 | 706.0    | 2.99                      | 0.0           | 9.50 | 700.:    | 3.9          | 274.4         | 21.9                | -0.22             | -0.11              | 0.1                        | 0.0                        | 66.1                         |                              |
| November 10, 2020 | 9.50 | 671.0    | 0.28                      | 8.7                        | 9.50 | 700.3    | 0.00                      | 45.6                       | 9.50 | 680.4    | 3.27                      | 0.0           | 9.50 | 700.     | 9 4.2        | 297.2         | 21.4                | -0.23             | -0.13              | 0.1                        | 0.0                        | 72.0                         |                              |
| November 11, 2020 | 9.51 | 668.7    | 0.22                      | 10.6                       | 9.50 | 699.6    | 0.02                      | 18.0                       | 9.50 | 693.0    | 2.68                      | 7.8           | 9.50 | 698.     | 7 3.5        | 120.6         | 21.5                | -0.22             | -0.12              | 0.1                        | 0.0                        | 54.8                         |                              |
| November 12, 2020 | 9.49 | 669.5    | 0.32                      | 11.7                       | 9.50 | 699.5    | 0.05                      | 20.6                       | 9.50 | 686.8    | 2.82                      | 0.1           | 9.50 | 699.     | 4 0.0        | 6.0           | 21.5                | -0.22             | -0.12              | 0.1                        | 0.0                        | 71.4                         |                              |
| November 13, 2020 | 9.49 | 669.2    | 0.48                      | 9.6                        | 9.50 | 699.7    | 0.04                      | 37.0                       | 9.49 | 677.8    | 3.46                      | 1.8           | 9.50 | 697.:    | 2 0.0        | 9.2           | 21.5                | -0.21             | -0.13              | 0.1                        | 0.0                        | 105.4                        | 0                            |
| November 14, 2020 | 9.51 | 671.9    | 0.41                      | 2.4                        | 9.50 | 699.9    | 0.01                      | 37.1                       | 9.50 | 683.3    | 3.35                      | 5.7           | 9.50 | 697.     | 5 0.0        | 10.5          | 21.3                | -0.22             | -0.13              | 0.1                        | 0.0                        | 89.2                         |                              |
| November 15, 2020 | 9.50 | 675.4    | 0.27                      | 1.1                        | 9.50 | 688.7    | 0.02                      | 40.2                       | 9.51 | 686.3    | 2.82                      | 37.4          | 9.51 | 699.     | 0.0          | 8.6           | 21.6                | -0.22             | -0.13              | 0.1                        | 0.0                        | 47.1                         |                              |
| November 16, 2020 | 9.50 | 670.1    | 0.41                      | 2.6                        | 9.50 | 699.3    | 4.17                      | 113.0                      | 9.50 | 692.9    | 3.11                      | 8.4           | 9.50 | 695.     | 1.6          | 58.8          | 21.6                | -0.22             | -0.12              | 0.1                        | 0.0                        | 38.4                         |                              |
| November 17, 2020 | 9.49 | 669.1    | 0.35                      | 3.4                        | 9.50 | 699.3    | 8.98                      | 265.9                      | 9.49 | 694.5    | 2.83                      | 11.8          | 9.50 | 692.     | 4 2.8        | 168.5         | 21.3                | -0.22             | -0.13              | 0.0                        | 0.0                        | 227.2                        |                              |
| November 18, 2020 | 9.50 | 671.0    | 0.41                      | 3.1                        | 9.50 | 701.1    | 8.53                      | 228.5                      | 9.50 | 685.3    | 3.44                      | 29.8          | 9.50 | 698.     | 7 3.0        | 200.2         | 21.3                | -0.22             | -0.14              | 0.1                        | 0.0                        | 322.7                        | 0                            |
| November 19, 2020 | 9.51 | 671.0    | 0.30                      | 3.7                        | 9.50 | 700.9    | 8.14                      | 301.3                      | 9.49 | 699.0    | 0.90                      | 39.4          | 9.50 | 700.     | 7 1.9        | 109.6         | 20.9                | -0.21             | -0.12              | 0.1                        | 0.0                        | 262.1                        |                              |
| November 20, 2020 | 9.49 | 668.8    | 0.24                      | 3.7                        | 9.50 | 699.7    | 7.95                      | 375.9                      | 9.47 | 695.9    | 0.35                      | 46.7          | 9.50 | 699.     | 7 1.8        | 98.3          | 21.1                | -0.21             | -0.12              | 0.1                        | 0.0                        | 288.5                        |                              |
| November 21, 2020 | 9.50 | 670.3    | 0.35                      | 0.5                        | 9.50 | 699.2    | 8.58                      | 452.6                      | 9.50 | 693.1    | 0.50                      | 0.0           | 9.50 | 694      | 2 2.1        | 127.5         | 20.9                | -0.22             | -0.13              | 0.1                        | 0.0                        | 338.4                        |                              |
| November 22, 2020 | 9.50 | 670.5    | 0.18                      | 1.7                        | 9.50 | 699.8    | 10.06                     | 405.7                      | 9.50 | 696.8    | 0.40                      | 5.1           | 9.50 | 701.     | 1 1.7        | 72.3          | 21.1                | -0.22             | -0.12              | 0.1                        | 0.0                        | 274.9                        |                              |
| November 23, 2020 | 9.49 | 668.5    | 0.25                      | 4.1                        | 9.50 | 699.4    | 10.47                     | 313.0                      | 9.49 | 690.8    | 0.49                      | 0.7           | 9.50 | 699.     | 5 1.8        | 78.8          | 21.1                | -0.22             | -0.12              | 0.1                        | 0.0                        | 296.2                        |                              |
| November 24, 2020 | 9.50 | 670.4    | 0.40                      | 6.4                        | 9.50 | 700.0    | 10.52                     | 338.4                      | 9.50 | 689.2    | 0.59                      | 21.2          | 9.50 | 701.     | 3 2.6        | 158.2         | 21.1                | -0.22             | -0.12              | 0.1                        | 0.0                        | 346.3                        |                              |
| November 25, 2020 | 9.51 | 671.3    | 0.52                      | 1.9                        | 9.50 | 699.9    | 11.73                     | 260.4                      | 9.50 | 702.2    | 1.78                      | 3.5           | 9.50 | 700.     | 3 1.4        | 42.1          | 20.9                | -0.23             | -0.13              | 0.1                        | 0.0                        | 219.2                        |                              |
| November 26, 2020 | 9.50 | 668.5    | 0.49                      | 2.0                        | 9.50 | 700.4    | 10.14                     | 621.7                      | 9.39 | 691.7    | 2.16                      | 33.1          | 9.50 | 699.     | 7 1.8        | 73.4          | 21.1                | -0.22             | -0.13              | 0.1                        | 0.0                        | 195.9                        | 0                            |
| November 27, 2020 | 9.50 | 670.3    | 0.32                      | 4.5                        | 9.51 | 700.5    | 9.98                      | 495.7                      | 9.49 | 687.6    | 2.66                      | 5.1           | 9.50 | 694      | 2 1.8        | 65.1          | 20.7                | -0.23             | -0.14              | 0.1                        | 0.0                        | 221.5                        |                              |
| November 28, 2020 | 9.50 | 669.4    | 0.50                      | 14.3                       | 9.50 | 699.7    | 8.33                      | 328.2                      | 9.50 | 684.4    | 3.30                      | 18.1          | 9.50 | 700.     | 2.6          | 155.1         | 20.8                | -0.23             | -0.13              | 0.1                        | 0.2                        | 235.2                        |                              |
| November 29, 2020 | 9.50 | 671.0    | 0.70                      | 20.3                       | 9.50 | 699.8    | 6.75                      | 132.1                      | 9.50 | 694.1    | 3.33                      | 10.7          | 9.50 | 700.     | 1 2.3        | 182.5         | 20.9                | -0.22             | -0.12              | 0.1                        | 3.5                        | 240.2                        |                              |
| November 30, 2020 | 9.50 | 670.1    | 0.59                      | 14.5                       | 9.50 | 700.9    | 5.84                      | 0.0                        | 9.50 | 689.7    | 4.15                      | 1.3           | 9.50 | 698.     | 1.7          | 377.2         | 20.8                | -0.22             | -0.13              | 0.1                        | 0.0                        | 563.2                        |                              |
| A                 | 9.51 | 671.6    | 0.29                      | 5.0                        | 9.50 | 699.3    | 4 35                      | 636.8                      | 9.50 | 687.2    | 2.60                      | 24.3          | 9.50 | 698      | 7 25         | 155.6         | 21.0                | -0.22             | -0.04              | 0.1                        | 0.1                        | 178.4                        | 0                            |
| AVU               | 7.01 |          |                           | 5.9                        | 9.50 |          | 4.35                      | 0.36.8                     | 9.50 |          |                           | 24.3          | 9.50 | 0.10.    | 2.5          | 155.6         | 21.0                |                   |                    | 0.1                        | 0.1                        | 1/8.4                        | 0                            |
| IVIII             | 9.48 | 667.2    | 0.00                      | 0.0                        | 9.49 | 688.7    | 0.00                      | 0.0                        | 7.07 | 640.2    | 0.35                      | 0.0           | 7.10 | 674.     | 0.0          | 6.0           | 20.1                | 0.20              | -0.14              | 0.0                        | 0.0                        | 00.0                         | 0                            |
| Max               | 9.67 | 716.0    | 0.70                      | 23.7                       | 9.52 | 702.3    | 11.73                     | 2061.7                     | 9.54 | 707.2    | 4.15                      | 299.9         | 9.57 | 707.3    | 6.5          | 511.2         | 21.9                | -0.20             | 0.33               | 0.1                        | 3.5                        | 563.2                        | 0                            |

#### Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report December 2020

|                   |      |          | East Scrubber                                        |      | Ferr     | menter Scrubber                                      |      | 1        | West Scrubber             |                            |      |          | EPT Scrubber |               |                     | GRF Scru          | bber               |                            | Grit 6/7 Building Scrubber | Screen 4-8 Building Scrubber | Dewatering Facility Scrubber |
|-------------------|------|----------|------------------------------------------------------|------|----------|------------------------------------------------------|------|----------|---------------------------|----------------------------|------|----------|--------------|---------------|---------------------|-------------------|--------------------|----------------------------|----------------------------|------------------------------|------------------------------|
| Date              | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) H <sub>2</sub> S Out (ppb) | рН   | ORP (mV) | H <sub>2</sub> S In (ppm) H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H <sub>2</sub> S In (ppm) | H <sub>2</sub> S Out (ppb) | pН   | ORP (mV) | H2S In (ppm) | H2S Out (ppb) | Temperature In (°C) | Pressure In (kPa) | Pressure Out (kPa) | H <sub>2</sub> S Out (ppm) | H <sub>2</sub> S Out (ppb) | H₂S Out (ppb)                | H <sub>2</sub> S Out (ppb)   |
| December 1, 2020  | 9.50 | 670.1    | 0.58 14.7                                            | 9.49 | 698.8    | 5.54 0.0                                             | 9.49 | 693.1    | 3.99                      | 2.6                        | 9.50 | 700.     | 1 1.5        | 231.8         | 20.7                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 656.6                        |                              |
| December 2, 2020  | 9.50 | 670.9    | 0.39 12.6                                            | 9.49 | 698.9    | 5.11 0.0                                             | 9.50 | 701.1    | 3.48                      | 1.8                        | 9.50 | 701.1    | 1 1.4        | 219.0         | 20.4                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 403.7                        |                              |
| December 3, 2020  | 9.41 | 667.9    | 0.58 14.9                                            | 9.44 | 704.9    | 5.33 0.0                                             | 9.48 | 685.4    | 4.20                      | 0.0                        | 9.49 | 699.0    | 1.7          | 328.6         | 20.8                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 592.4                        |                              |
| December 4, 2020  | 9.50 | 671.7    | 0.46 8.5                                             | 9.50 | 699.8    | 5.46 0.0                                             | 9.50 | 692.0    | 3.86                      | 0.0                        | 9.50 | 700.3    | 3 1.5        | 152.7         | 20.5                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 402.2                        | 0                            |
| December 5, 2020  | 9.49 | 665.1    | 0.72 11.6                                            | 9.50 | 699.1    | 5.47 0.0                                             | 9.51 | 689.4    | 3.87                      | 0.0                        | 9.50 | 698.8    | 1.8          | 242.0         | 20.9                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 451.4                        |                              |
| December 6, 2020  | 9.51 | 673.5    | 0.77 10.2                                            | 9.50 | 700.0    | 5.84 0.0                                             | 9.49 | 713.0    | 4.32                      | 0.0                        | 9.50 | 699.4    | 1.7          | 224.1         | 20.8                | -0.22             | -0.13              | 3 0.1                      | 0.0                        | 547.9                        |                              |
| December 7, 2020  | 9.50 | 670.9    | 0.89 10.9                                            |      | 699.3    | 5.20 0.0                                             | 9.51 | 685.6    | 4.81                      | 2.0                        | 9.50 | 697.2    | 2 2.3        | 389.3         | 20.4                | -0.22             | -0.13              | 3 0.1                      | 0.0                        | 582.2                        |                              |
| December 8, 2020  | 9.52 | 671.9    | 0.26 7.1                                             | 9.50 | 701.3    | 6.17 14.1                                            | 9.50 | 718.1    | 2.17                      | 0.0                        | 9.50 | 700.6    | 5 0.6        | 47.4          | 20.3                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 184.4                        |                              |
| December 9, 2020  | 9.50 | 668.6    | 0.34 8.1                                             | 9.50 | 699.6    | 5.31 32.6                                            | 9.50 | 688.3    | 2.54                      | 0.0                        | 9.50 | 699.3    | 3 1.1        | 72.7          | 20.6                | -0.23             | -0.13              | 3 0.1                      | 0.0                        | 215.5                        | 0                            |
| December 10, 2020 | 9.49 | 668.3    | 0.51 8.8                                             | 9.50 | 700.1    | 4.96 20.4                                            | 9.49 | 689.6    | 3.44                      | 0.0                        | 9.50 | 699.9    | 9 1.4        | 121.9         | 20.7                | -0.22             | -0.13              | 3 0.1                      | 0.0                        | 334.7                        |                              |
| December 11, 2020 | 9.51 | 671.3    | 0.50 7.7                                             | 9.51 | 701.8    | 4.27 17.5                                            | 9.51 | 703.2    | 3.26                      | 0.0                        | 9.51 | 700.4    |              | 190.1         | 21.1                | -0.21             | -0.13              | 3 0.1                      | 0.0                        | 427.1                        |                              |
| December 12, 2020 | 9.50 | 669.8    | 0.49 8.9                                             | 7.0  |          | 4.16 37.7                                            | 9.50 | 689.2    | 3.34                      | 0.0                        | 9.50 | 697.6    |              | 167.3         | 20.9                | -0.21             |                    |                            | 0.0                        | 386.3                        |                              |
| December 13, 2020 | 9.51 | 674.6    | 00                                                   | 7.3  |          | 4.03 50.9                                            | 9.49 | 708.8    | 2.86                      | 0.0                        | 9.51 | 710.     |              | 146.3         | 20.6                | -0.20             |                    |                            | 0.0                        | 410.9                        |                              |
| December 14, 2020 | 9.49 | 669.3    | 0.61 5.3                                             | 9.50 | 699.8    | 3.35 0.0                                             | 9.50 | 700.8    | 2.91                      | 0.0                        | 9.50 | 700.0    | 1.2          | 207.2         | 20.7                | -0.21             | -0.13              | 3 0.1                      | 0.0                        | 458.1                        |                              |
| December 15, 2020 | 9.49 | 669.1    | 0.58 2.7                                             |      | 9 699.7  | 14.29 376.7                                          | 9.49 | 691.3    | 3.72                      | 0.0                        | 9.50 | 699.     |              | 274.0         | 20.7                | -0.20             |                    |                            | 0.0                        | 257.1                        | 0                            |
| December 16, 2020 | 9.51 | 670.9    | 0.45 0.0                                             |      | 699.7    | 23.22 627.3                                          | 9.48 | 694.5    | 4.08                      | 7.6                        | 7.00 | 700.2    |              | 275.6         | 20.8                | -0.21             |                    |                            | 0.0                        | 0.0                          |                              |
| December 17, 2020 | 9.50 | 669.8    | 0.56 0.0                                             |      | 1 700.5  | 23.14 607.7                                          | 9.52 | 692.7    | 4.60                      | 1.4                        | 9.50 | 699.8    |              | 387.9         | 20.8                | -0.21             |                    |                            | 0.0                        | 0.0                          |                              |
| December 18, 2020 | 9.50 | 669.6    | 0.52 3.9                                             |      | 699.6    | 13.31 215.2                                          | 9.50 | 693.2    | 4.22                      | 0.2                        | 9.50 |          |              | 292.8         | 20.9                | -0.20             |                    |                            |                            | 0.0                          |                              |
| December 19, 2020 | 9.49 | 668.5    | 0.57 6.5                                             |      |          | 5.98 0.6                                             | 9.50 | 675.4    | 5.40                      | 0.9                        | 9.50 | 699.8    |              | 255.0         | 20.5                | -0.22             |                    |                            | 0.0                        | 0.0                          |                              |
| December 20, 2020 | 9.50 |          | 0.48 6.0                                             |      | 700.0    | 6.07 0.6                                             |      | 680.3    | 5.46                      | 3.6                        |      | 700.     |              | 242.9         | 20.6                | -0.22             |                    |                            | 0.0                        | 0.0                          |                              |
| December 21, 2020 | 9.50 | 670.0    | 0.45 6.9                                             |      | 699.8    | 1.73 0.6                                             | 7.00 | 690.8    | 4.79                      | 0.0                        |      | , 00.2   |              | 149.2         | 20.9                | -0.22             |                    |                            | 0.0                        | 0.0                          | 0                            |
| December 22, 2020 | 9.50 | 007.7    | 0.71 7.9                                             |      |          | 0.00 0.5                                             |      | 625.9    | 6.08                      | 373.5                      |      | 699.1    |              | 288.0         | 21.0                | -0.21             |                    |                            | 0.0                        | 145.8                        |                              |
| December 23, 2020 | 9.50 | 000.0    | 0.54 8.4                                             |      |          | 0.00 0.7                                             |      | 669.3    | 6.21                      | 0.0                        | 9.50 | 077.0    |              | 254.5         | 20.8                | -0.22             |                    |                            | 0.0                        | 422.2                        |                              |
| December 24, 2020 | 9.50 | 071.0    | 0.46 6.9                                             |      |          | 0.00 0.6                                             | 7.00 | 693.2    | 6.02                      | 20.€                       |      |          |              | 228.1         | 20.8                | -0.23             |                    |                            | 0.0                        | 377.2                        |                              |
| December 25, 2020 | 9.51 | 670.2    | 0.22 5.3                                             |      |          | 0.00 0.5                                             |      | 688.9    | 4.48                      | 11.1                       | 9.50 | 699.8    |              | 193.9         | 20.9                | -0.22             |                    |                            | 0.0                        | 294.4                        |                              |
| December 26, 2020 | 9.51 | 672.0    | 0.30 4.8                                             |      |          | 0.00 0.4                                             |      | 690.1    | 4.43                      | 1.9                        | 7.00 |          |              | 217.0         | 21.1                | -0.21             |                    |                            | 0.0                        | 278.7                        |                              |
| December 27, 2020 | 9.50 | 669.1    | 0.29 4.5                                             |      | 700.2    | 0.00 0.4                                             |      | 685.7    | 4.14                      | 0.7                        | 9.50 |          |              | 143.1         | 20.9                | -0.21             |                    |                            | 0.0                        | 280.2                        |                              |
| December 28, 2020 | 9.50 | 669.5    | 0.46 4.9                                             |      | 699.7    | 0.00 0.5                                             | 7.00 | 682.2    | 4.89                      | 0.4                        | 9.50 | 700.2    |              | £7£.7         | 21.1                | -0.22             |                    |                            | 0.0                        | 286.5                        | 0                            |
| December 29, 2020 | 9.50 | 669.9    | 0.51 6.2                                             | 7.00 | 700.2    | 0.00 0.4                                             | 7.00 | 689.2    | 4.93                      | 0.0                        | 7.00 | 077.     |              | 315.5         | 20.7                | -0.21             |                    |                            | 0.0                        | 303.0                        |                              |
| December 30, 2020 | 9.49 | 669.0    | 0.51 5.8                                             | /    | 699.1    | 3.26 0.4                                             | 7.17 | 685.5    | 4.85                      | 0.0                        | 9.49 | 699.6    |              | 277.8         | 20.9                | -0.21             |                    |                            | 0.0                        | 275.4                        |                              |
| December 31, 2020 | 9.49 | 669.2    | 0.66 5.0                                             | 9.50 | 700.1    | 4.69 0.1                                             | 9.50 | 672.4    | 5.74                      | 0.0                        | 9.50 | 699.4    | 1.8          | 264.2         | 21.1                | -0.21             | -0.13              | 3 0.1                      | 0.0                        | 364.7                        |                              |
|                   |      |          |                                                      |      |          |                                                      |      |          |                           |                            | ,    | ,        |              |               |                     |                   |                    |                            |                            |                              |                              |
| Avg               | 9.50 |          | 0.51 7.1                                             | 7.00 |          | 5.35 64.7                                            | 9.51 | 689.0    | 4.29                      | 13.8                       | 9.50 | 700.1    |              | 228.9         | 20.8                | -0.22             |                    |                            | 0.0                        | 301.2                        | 0                            |
| Min               | 9.41 | 665.1    | 0.22 0.0                                             | 7.1  | 070.1    | 0.00 0.0                                             | 7.40 | 625.9    | 2.17                      | 0.0                        | 9.49 | 697.2    |              | 47.4          | 20.3                | -0.23             |                    |                            | 0.0                        | 0.0                          | 0                            |
| Max               | 9.52 | 674.6    | 0.89 14.9                                            | 9.51 | 1 705.1  | 23.22 627.3                                          | 9.83 | 718.1    | 6.21                      | 373.5                      | 9.52 | 710.7    | 7 2.3        | 389.3         | 21.1                | -0.20             | -0.12              | 2 0.1                      | 0.0                        | 656.6                        | 0                            |



## 2020 Scrubber Bleach Usage (L as delivered 16% sodium hypochlorite solution)

|       |         | •        | -020 001 ax | obci bicac | ni Osugo ( | L as aciive | 71 CG 1070 . | ocalalli II) | pocinorit | Joiation | '/       |          |
|-------|---------|----------|-------------|------------|------------|-------------|--------------|--------------|-----------|----------|----------|----------|
| _     | January | February | March       | April      | May        | June        | July         | August       | September | October  | November | December |
| 1     | 1028    | 914      | 448         | 510        | 2080       | 598         | 483          | 1415         | 1885      | 1518     | 1764     | 1298     |
| 2     | 1050    | 892      | 541         | 373        | 957        | 529         | 341          | 1505         | 2036      | 1749     | 1801     | 1410     |
| 3     | 1131    | 446      | 364         | 526        | 1015       | 683         | 439          | 1507         | 2062      | 1906     | 1750     | 1489     |
| 4     | 1033    | 715      | 367         | 573        | 492        | 776         | 453          | 1112         | 1945      | 1923     | 1848     | 1406     |
| 5     | 1023    | 709      | 303         | 352        | 528        | 997         | 636          | 1224         | 1699      | 1845     | 2112     | 1446     |
| 6     | 988     | 997      | 465         | 462        | 437        | 977         | 484          | 1362         | 1521      | 1434     | 1213     | 1648     |
| 7     | 1022    | 636      | 446         | 493        | 467        | 662         | 629          | 1564         | 1832      | 1289     | 1473     | 1552     |
| 8     | 484     | 811      | 587         | 694        | 510        | 759         | 373          | 1198         | 1777      | 1858     | 1434     | 1378     |
| 9     | 783     | 925      | 618         | 491        | 546        | 582         | 388          | 1214         | 1701      | 1877     | 1563     | 1270     |
| 10    | 1004    | 952      | 546         | 400        | 580        | 540         | 380          | 1379         | 1554      | 1969     | 1396     | 1323     |
| 11    | 921     | 1105     | 487         | 253        | 619        | 848         | 364          | 1149         | 1421      | 1933     | 1399     | 553      |
| 12    | 804     | 756      | 468         | 388        | 586        | 1044        | 475          | 526          | 1461      | 1816     | 1506     | 1046     |
| 13    | 755     | 740      | 406         | 604        | 696        | 1048        | 747          | 1320         | 1642      | 1260     | 1570     | 979      |
| 14    | 676     | 713      | 516         | 460        | 759        | 1175        | 623          | 1162         | 1025      | 1758     | 1581     | 938      |
| 15    | 642     | 694      | 527         | 332        | 832        | 535         | 721          | 1177         | 1173      | 1276     | 1523     | 1038     |
| 16    | 806     | 769      | 492         | 327        | 861        | 608         | 736          | 1364         | 1628      | 1702     | 1550     | 1106     |
| 17    | 725     | 628      | 590         | 393        | 799        | 941         | 421          | 1349         | 2000      | 1484     | 1458     | 1143     |
| 18    | 716     | 618      | 676         | 290        | 639        | 987         | 364          | 1468         | 1663      | 1439     | 1079     | 1127     |
| 19    | 774     | 715      | 543         | 412        | 879        | 1057        | 546          | 677          | 1949      | 1419     | 1191     | 1275     |
| 20    | 763     | 621      | 554         | 428        | 839        | 998         | 856          | 896          | 1793      | 1496     | 1210     | 1220     |
| 21    | 789     | 672      | 582         | 566        | 722        | 957         | 692          | 1626         | 1311      | 1660     | 1251     | 1193     |
| 22    | 832     | 707      | 543         | 498        | 385        | 1196        | 1127         | 1356         | 1513      | 1849     | 1320     | 1138     |
| 23    | 618     | 566      | 444         | 606        | 295        | 1062        | 983          | 1647         | 1261      | 1602     | 1514     | 1144     |
| 24    | 971     | 636      | 505         | 706        | 374        | 1540        | 1069         | 1822         | 1301      | 1879     | 1559     | 1347     |
| 25    | 659     | 1214     | 497         | 771        | 326        | 1354        | 884          | 1479         | 1434      | 1533     | 1404     | 1188     |
| 26    | 865     | 513      | 482         | 861        | 719        | 897         | 1074         | 1576         | 1385      | 1634     | 1538     | 1209     |
| 27    | 733     | 607      | 430         | 685        | 601        | 1098        | 1018         | 1620         | 1542      | 1675     | 1401     | 1162     |
| 28    | 757     | 496      | 245         | 620        | 768        | 1150        | 1115         | 2129         | 1629      | 1349     | 1482     | 1311     |
| 29    | 780     | 419      | 450         | 903        | 724        | 889         | 1304         | 1984         | 1433      | 1468     | 1350     | 1243     |
| 30    | 887     |          | 405         | 1086       | 992        | 1141        | 1334         | 1786         | 1146      | 1819     | 1510     | 1333     |
| 31    | 627     |          | 502         |            | 1022       |             | 1522         | 1926         |           | 1532     |          | 1551     |
| a (1) | 25 646  | 21 185   | 15 031      | 16 065     | 22.050     | 27 625      | 22 580       | //3 518      | 47 720    | 50.950   | 11 718   | 38 464   |

Total (L) 25,646 21,185 15,031 16,065 22,050 27,625 22,580 43,518 47,720 50,950 44,748 38,464

## 2020 Scrubber Caustic Usage (kg)

|      |         |          |       |       | 2020 3 | CIUDDEI C | adstic Osc | ige (kg) |           |         |          |          |
|------|---------|----------|-------|-------|--------|-----------|------------|----------|-----------|---------|----------|----------|
| _    | January | February | March | April | May    | June      | July       | August   | September | October | November | December |
| 1    | 72      | 107      | 64    | 68    | 86     | 73        | 108        | 146      | 136       | 135     | 163      | 117      |
| 2    | 77      | 87       | 68    | 57    | 84     | 72        | 84         | 134      | 126       | 163     | 152      | 113      |
| 3    | 78      | 92       | 58    | 52    | 68     | 68        | 88         | 138      | 132       | 170     | 136      | 117      |
| 4    | 80      | 86       | 59    | 55    | 91     | 84        | 71         | 139      | 136       | 162     | 145      | 136      |
| 5    | 78      | 87       | 38    | 44    | 91     | 91        | 93         | 118      | 126       | 156     | 172      | 127      |
| 6    | 71      | 92       | 66    | 51    | 65     | 98        | 78         | 120      | 115       | 141     | 122      | 141      |
| 7    | 72      | 77       | 49    | 59    | 55     | 83        | 81         | 142      | 131       | 129     | 147      | 122      |
| 8    | 62      | 86       | 59    | 66    | 62     | 82        | 90         | 129      | 136       | 146     | 119      | 121      |
| 9    | 63      | 88       | 22    | 54    | 61     | 69        | 87         | 117      | 115       | 138     | 136      | 128      |
| 10   | 69      | 87       | 53    | 55    | 69     | 76        | 87         | 127      | 150       | 153     | 140      | 122      |
| 11   | 66      | 92       | 53    | 46    | 64     | 77        | 71         | 128      | 106       | 142     | 103      | 127      |
| 12   | 62      | 68       | 57    | 55    | 62     | 84        | 76         | 125      | 116       | 135     | 137      | 108      |
| 13   | 65      | 70       | 53    | 53    | 62     | 77        | 78         | 112      | 129       | 143     | 143      | 102      |
| 14   | 55      | 65       | 51    | 57    | 67     | 103       | 99         | 118      | 124       | 143     | 130      | 95       |
| 15   | 54      | 63       | 45    | 49    | 66     | 72        | 80         | 114      | 135       | 97      | 124      | 92       |
| 16   | 75      | 65       | 59    | 42    | 62     | 71        | 79         | 121      | 144       | 181     | 119      | 105      |
| 17   | 50      | 66       | 51    | 43    | 106    | 79        | 92         | 114      | 185       | 128     | 111      | 100      |
| 18   | 60      | 58       | 61    | 58    | 97     | 99        | 72         | 135      | 133       | 101     | 116      | 91       |
| 19   | 63      | 69       | 67    | 47    | 98     | 98        | 78         | 88       | 142       | 114     | 112      | 107      |
| 20   | 56      | 64       | 49    | 63    | 96     | 87        | 107        | 120      | 140       | 118     | 97       | 106      |
| 21   | 72      | 62       | 66    | 61    | 92     | 87        | 80         | 191      | 117       | 123     | 110      | 103      |
| 22   | 39      | 62       | 59    | 48    | 70     | 110       | 117        | 141      | 138       | 125     | 100      | 98       |
| 23   | 72      | 59       | 53    | 61    | 59     | 96        | 105        | 159      | 119       | 126     | 110      | 98       |
| 24   | 108     | 62       | 55    | 65    | 71     | 114       | 103        | 153      | 117       | 149     | 104      | 113      |
| 25   | 119     | 73       | 54    | 70    | 59     | 114       | 96         | 154      | 120       | 100     | 75       | 108      |
| 26   | 91      | 57       | 59    | 76    | 73     | 97        | 115        | 149      | 126       | 128     | 155      | 104      |
| 27   | 76      | 57       | 72    | 64    | 71     | 106       | 97         | 145      | 125       | 154     | 120      | 96       |
| 28   | 82      | 72       | 51    | 74    | 80     | 104       | 103        | 143      | 139       | 120     | 97       | 115      |
| 29   | 74      | 63       | 70    | 90    | 76     | 100       | 111        | 136      | 166       | 122     | 95       | 94       |
| 30   | 126     |          | 52    | 62    | 92     | 115       | 126        | 126      | 121       | 132     | 89       | 118      |
| 31   | 123     |          | 44    |       | 92     |           | 91         | 120      |           | 178     |          | 117      |
| (ka) | 2 313   | 2 137    | 1 716 | 1 745 | 2 346  | 2 686     | 2 843      | 4 101    | 3 947     | 4 251   | 3 682    | 3 441    |

Total (kg) 2,313 2,137 1,716 1,745 2,346 2,686 2,843 4,101 3,947 4,251 3,682 3,441





#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings January 2020

| Date             |       |      |      | H <sub>2</sub> S ( | ppb) |      |      |      | Comments            |
|------------------|-------|------|------|--------------------|------|------|------|------|---------------------|
| Date             | 1     | 2    | 3    | 4                  | 5    | 6    | 7    | 8    | Comments            |
| January 1, 2020  | 19.25 | 9.08 | 4.73 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 2, 2020  | 5.06  | 3.72 | 3.37 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 3, 2020  | 4.59  | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 4, 2020  | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 5, 2020  | 0     | 3.53 | 3.59 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 6, 2020  | 0     | 3.27 | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 7, 2020  | 4.88  | 0    | 0    | 0                  | 0    | 0    | 0    | 3.2  |                     |
| January 8, 2020  | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 9, 2020  | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 10, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 11, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 12, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 13, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A | Temperature too low |
| January 14, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A | Temperature too low |
| January 15, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 16, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 17, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 18, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 19, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A |                     |
| January 20, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 21, 2020 | 15.15 | 4.97 | 9.26 | 3.5                | 3.08 | 0    | 3.47 | 0    |                     |
| January 22, 2020 | 0     | 0    | 9.69 | 7.16               | 0    | 0    | 0    | 0    |                     |
| January 23, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 24, 2020 | 6.22  | 0    | 3.95 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 25, 2020 | 0     | 0    | 5.59 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 26, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 3.46 |                     |
| January 27, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 28, 2020 | 3.71  | 0    | 3.61 | 0                  | 0    | 0    | 0    | 0    |                     |
| January 29, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 30, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| January 31, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
|                  |       |      |      |                    |      |      |      |      |                     |
| Avg              | 3.10  | 1.29 | 2.30 | 0.56               | 0.16 | 0    | 0.18 | 0.35 |                     |
| Min              | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                     |
| Max              | 19.25 | 9.08 | 9.69 | 7.16               | 3.08 | 0    | 3.47 | 3.46 |                     |



#### Gold Bar Wastewater Treatment Plant Fenceline H<sub>2</sub>S Readings February 2020

| Date              | H₂S (ppb) |      |      |      |      |      |      |      | Comments            |
|-------------------|-----------|------|------|------|------|------|------|------|---------------------|
| Date              | 1         | 2    | 3    | 4    | 5    | 6    | 7    | 8    | Comments            |
| February 1, 2020  | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 2, 2020  | 0         | 3.36 | 0    | 0    | 0    | 3.81 | 0    | 0    |                     |
| February 3, 2020  | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 4, 2020  | 3.52      | 3.61 | 3.21 | 0    | 0    | 0    | 3.76 | 0    |                     |
| February 5, 2020  | 6.91      | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 6, 2020  | 3.06      | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 7, 2020  | 0         | 3.28 | 3.26 | 0    | 0    | 0    | 0    | 0    |                     |
| February 8, 2020  | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 9, 2020  | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 10, 2020 | 0         | 0    | 0    | 0    | 0    | 5.01 | 0    | 0    |                     |
| February 11, 2020 | 0         | 3.41 | 0    | #N/A | 0    | 0    | 0    | 0    |                     |
| February 12, 2020 | #N/A      | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | Temperature too low |
| February 13, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 14, 2020 | 6.75      | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 15, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 16, 2020 | 6.64      | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 17, 2020 | #N/A      | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | Temperature too low |
| February 18, 2020 | #N/A      | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | Temperature too low |
| February 19, 2020 | 6.5       | 0    | 0    | 0    | 0    | 3.09 | 5.72 | 0    |                     |
| February 20, 2020 | 6.68      | 4.73 | 3.27 | 0    | 0    | 0    | 0    | 0    |                     |
| February 21, 2020 | 0         | 3.34 | 0    | 0    | 0    | 3.83 | 0    | 0    |                     |
| February 22, 2020 | 5.26      | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 23, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 24, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 25, 2020 | 13.06     | 0    | 0    | 0    | 0    | 0    | 7.28 | 0    |                     |
| February 26, 2020 | 0         | 0    | 3.35 | 3.79 | 0    | 0    | 0    | 0    |                     |
| February 27, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 28, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| February 29, 2020 | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
|                   |           |      |      |      |      |      |      |      |                     |
| Avg               | 2.25      | 0.84 | 0.50 | 0.15 | 0    | 0.61 | 0.64 | 0    |                     |
| Min               | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                     |
| Max               | 13.06     | 4.73 | 3.35 | 3.79 | 0    | 5.01 | 7.28 | 0    |                     |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings March 2020

| Date           |       |      |      | H <sub>2</sub> S ( | opb) |      |      |       | Comments            |
|----------------|-------|------|------|--------------------|------|------|------|-------|---------------------|
| Date           | 1     | 2    | 3    | 4                  | 5    | 6    | 7    | 8     | Comments            |
| March 1, 2020  | 3.65  | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 2, 2020  | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 3, 2020  | 6.46  | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 4, 2020  | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 5, 2020  | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 6, 2020  | 3.91  | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 7, 2020  | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A  | Temperature too low |
| March 8, 2020  | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 9, 2020  | 5.65  | 3.48 | 0    | 0                  | 3.56 | 5.01 | 3.85 | 24.79 |                     |
| March 10, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 11, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 12, 2020 | 5.58  | 0    | 5.66 | 0                  | 0    | 0    | 0    | 0     |                     |
| March 13, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A  | Temperature too low |
| March 14, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A  | remperature too low |
| March 15, 2020 | 0     | 3.58 | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 16, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 17, 2020 | 4.79  | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 18, 2020 | 20.77 | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 19, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 4.76 | 0     |                     |
| March 20, 2020 | 4.66  | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 21, 2020 | 8.68  | 3.89 | 4.2  | 0                  | 0    | 0    | 0    | 3.15  |                     |
| March 22, 2020 | 4.05  | 3.24 | 3.28 | 3.32               | 3.49 | 3.24 | 3.48 | 3.45  |                     |
| March 23, 2020 | 4.89  | 0    | 0    | 3.24               | 3.39 | 3.97 | 3.81 | 3.57  |                     |
| March 24, 2020 | 0     | 3.08 | 3.02 | 0                  | 0    | 0    | 0    | 0     |                     |
| March 25, 2020 | 3.95  | 0    | 0    | 0                  | 0    | 0    | 3.12 | 0     |                     |
| March 26, 2020 | 4.23  | 3.33 | 3.55 | 3.52               | 4.53 | 3.66 | 3.92 | 3.57  |                     |
| March 27, 2020 | 4.23  | 0    | 0    | 0                  | 0    | 0    | 3.84 | 3.29  |                     |
| March 28, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 29, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 30, 2020 | 0     | 0    | 0    | 0                  | 0    | 0    | 0    | 0     |                     |
| March 31, 2020 | #N/A  | #N/A | #N/A | #N/A               | #N/A | #N/A | #N/A | #N/A  | Temperature too low |

| Avg | 3.17  | 0.76 | 0.73 | 0.37 | 0.55 | 0.59 | 0.99 | 1.55  |
|-----|-------|------|------|------|------|------|------|-------|
| Min | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Max | 20.77 | 3.89 | 5.66 | 3.52 | 4.53 | 5.01 | 4.76 | 24.79 |



#### Gold Bar Wastewater Treatment Plant Fenceline H<sub>2</sub>S Readings April 2020

| Date           |       |      |      |      | Comments |      |      |      |                     |
|----------------|-------|------|------|------|----------|------|------|------|---------------------|
| Date           | 1     | 2    | 3    | 4    | 5        | 6    | 7    | 8    | Comments            |
| April 1, 2020  | #N/A  | #N/A | #N/A | #N/A | #N/A     | #N/A | #N/A | #N/A | Temperature too low |
| April 2, 2020  | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 3, 2020  | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 4, 2020  | 3.02  | 0    | 0    | 3.89 | 0        | 0    | 0    | 0    |                     |
| April 5, 2020  | 0     | 0    | 0    | 0    | 0        | 0    | 3.12 | 0    |                     |
| April 6, 2020  | 3.24  | 8.48 | 3.29 | 0    | 0        | 3.93 | 3.4  | 3.42 |                     |
| April 7, 2020  | 10.11 | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 8, 2020  | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 9, 2020  | 3.04  | 0    | 0    | 0    | 0        | 3.32 | 0    | 0    |                     |
| April 10, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 11, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 12, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 13, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 14, 2020 | 0     | 3.04 | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 15, 2020 | 0     | 0    | 0    | 4.03 | 0        | 0    | 0    | 0    |                     |
| April 16, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 17, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 18, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 19, 2020 | 0     | 0    | 0    | 0    | 0        | 3.67 | 0    | 0    |                     |
| April 20, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 21, 2020 | 0     | 3.22 | 0    | 4.5  | 0        | 0    | 0    | 0    |                     |
| April 22, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 23, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 24, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 25, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 26, 2020 | 0     | 0    | 0    | 0    | 0        | 4.69 | 0    | 0    |                     |
| April 27, 2020 | 4.51  | 0    | 3.09 | 0    | 0        | 0    | 3.37 | 0    |                     |
| April 28, 2020 | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 29, 2020 |       | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| April 30, 2020 | 12.55 | 0    | 0    | 9.76 | 0        | 0    | 0    | 0    |                     |
|                |       | •    | •    | -    | ,        |      | •    |      | 1                   |
| Avg            | 1.26  | 0.51 | 0.22 | 0.76 | 0        | 0.54 | 0.34 | 0.12 |                     |
| Min            | 0     | 0    | 0    | 0    | 0        | 0    | 0    | 0    |                     |
| Max            | 12.55 | 8.48 | 3.29 | 9.76 | 0        | 4.69 | 3.4  | 3.42 |                     |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings May 2020

| Date         |      |      |      |      | Comments |      |      |      |          |
|--------------|------|------|------|------|----------|------|------|------|----------|
| Date         | 1    | 2    | 3    | 4    | 5        | 6    | 7    | 8    | Comments |
| May 1, 2020  | 0    | 0    | 3.54 | 3.52 | 0        | 0    | 0    | 0    |          |
| May 2, 2020  | 0    | 0    | 0    | 5.45 | 0        | 0    | 3.44 | 0    |          |
| May 3, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 4, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 3.32 | 0    |          |
| May 5, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 6, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 7, 2020  | 0    | 0    | 0    | 4.3  | 0        | 0    | 0    | 0    |          |
| May 8, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 9, 2020  | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 10, 2020 | 3.18 | 0    | 0    | 6.71 | 0        | 0    | 0    | 0    |          |
| May 11, 2020 | 3.38 | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 12, 2020 | 4.63 | 3.57 | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 13, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 14, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 15, 2020 | 0    | 0    | 0    | 5.86 | 0        | 0    | 0    | 0    |          |
| May 16, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 17, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 18, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 19, 2020 | 0    | 0    | 0    | 4.71 | 0        | 0    | 0    | 0    |          |
| May 20, 2020 | 0    | 0    | 0    | 7.46 | 0        | 0    | 0    | 0    |          |
| May 21, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 8.36 |          |
| May 22, 2020 | 0    | 0    | 0    | 0    | 1.039    | 5.05 | 0    | 0    |          |
| May 23, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 24, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 25, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 26, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 27, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 28, 2020 | 0    | 0    | 0    | 4.96 | 0        | 0    | 0    | 0    |          |
| May 29, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 30, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| May 31, 2020 | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
|              |      |      |      |      |          |      |      |      |          |
| Avg          | 0.36 | 0.12 | 0.11 | 1.39 | 0.03     | 0.16 | 0.22 | 0.27 |          |
| Min          | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |          |
| Max          | 4.63 | 3.57 | 3.54 | 7.46 | 1.04     | 5.05 | 3.44 | 8.36 |          |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings June 2020

| Date          |   |   |      | Comments |   |                                       |   |      |          |
|---------------|---|---|------|----------|---|---------------------------------------|---|------|----------|
| Date          | 1 | 2 | 3    | 4        | 5 | 6                                     | 7 | 8    | Comments |
| June 1, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 2, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 3, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 4, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 5, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 6, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 7, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 8, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 9, 2020  | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 10, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 11, 2020 | 0 | 0 | 0    | 5.12     | 0 | 0                                     | 0 | 0    |          |
| June 12, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 13, 2020 | 0 | 0 | 3.4  | 4.92     | 0 | 0                                     | 0 | 0    |          |
| June 14, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 15, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 16, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 17, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 18, 2020 | 0 |   | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 19, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 20, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 21, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 22, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 23, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 24, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 25, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 26, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 27, 2020 | 0 | 0 | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 28, 2020 | 0 | - | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 29, 2020 | 0 |   | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| June 30, 2020 | 0 | 0 | 0    | 3.11     | 0 | 0                                     | 0 | 5.27 |          |
|               | ī |   | -    |          |   | · · · · · · · · · · · · · · · · · · · | - |      |          |
| Avg           | 0 |   | 0.11 | 0.44     | 0 | 0                                     | 0 | 0.18 |          |
| Min           | 0 |   | 0    | 0        | 0 | 0                                     | 0 | 0    |          |
| Max           | 0 | 0 | 3.4  | 5.12     | 0 | 0                                     | 0 | 5.27 |          |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings July 2020

| Date          |   |   | Comments |       |      |   |      |   |          |
|---------------|---|---|----------|-------|------|---|------|---|----------|
| Date          | 1 | 2 | 3        | 4     | 5    | 6 | 7    | 8 | Comments |
| July 1, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 2, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 3, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 4, 2020  | 0 | 0 | 3.29     | 0     | 0    | 0 | 0    | 0 |          |
| July 5, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 6, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 7, 2020  | 0 | 0 | 0        | 0     | 3.46 | 0 | 0    | 0 |          |
| July 8, 2020  | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 9, 2020  |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 10, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 11, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 12, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 13, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 14, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 15, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 16, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 17, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 18, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 19, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 20, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 21, 2020 |   | 0 | 0        | 0     | 0    | 0 | 3.97 | 0 |          |
| July 22, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 23, 2020 | 0 | 0 | 0        | 14.2  | 0    | 0 | 0    | 0 |          |
| July 24, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 25, 2020 |   | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 26, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 3.26 | 0 |          |
| July 27, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 28, 2020 | 0 | 0 | 0        | 11.59 | 3.03 | 0 | 0    | 0 |          |
| July 29, 2020 | 0 | 0 | 3.09     | 5.38  | 0    | 0 | 0    | 0 |          |
| July 30, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| July 31, 2020 | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
|               |   |   |          |       |      |   |      |   |          |
| Avg           | 0 | 0 | 0.21     | 1.01  | 0.21 | 0 | 0.23 | 0 |          |
| Min           | 0 | 0 | 0        | 0     | 0    | 0 | 0    | 0 |          |
| Max           | 0 | 0 | 3.29     | 14.2  | 3.46 | 0 | 3.97 | 0 |          |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings August 2020

| Dat   | Δ          |       |      | Comments |      |      |      |      |      |            |
|-------|------------|-------|------|----------|------|------|------|------|------|------------|
| Dat   | C          | 1     | 2    | 3        | 4    | 5    | 6    | 7    | 8    | Confinents |
| Augu  | st 1, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 4.09 | 0    |            |
| Augu  | st 2, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augu  | st 3, 2020 | 0     | 0    | 0        | 3.58 | 0    | 0    | 0    | 0    |            |
| Augu  | st 4, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augu  | st 5, 2020 | 0     | 4.02 | 0        | 3.09 | 0    | 0    | 0    | 0    |            |
| Augu  | st 6, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augu  | st 7, 2020 | 0     | 3.25 | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augu  | st 8, 2020 | 12.76 | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augu  | st 9, 2020 | 0     | 0    | 5.66     | 0    | 0    | 3.84 | 0    | 0    |            |
| Augus | t 10, 2020 | 12.04 | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 11, 2020 | 7.81  | 0    | 0        | 0    | 0    | 0    | 7.45 | 0    |            |
| Augus | t 12, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 13, 2020 | 5.37  | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 14, 2020 | 0     | 3.39 | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 15, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 16, 2020 | 0     | 0    | 0        | 4.9  | 9.21 | 0    | 0    | 0    |            |
| Augus | t 17, 2020 | 0     | 0    | 0        | 0    | 3.46 | 0    | 0    | 0    |            |
| Augus | t 18, 2020 | 0     | 0    | 3.02     | 7.59 | 0    | 0    | 0    | 0    |            |
| Augus | t 19, 2020 | 0     | 0    | 3.48     | 3.99 | 0    | 0    | 0    | 0    |            |
| Augus | t 20, 2020 | 20.54 | 0    | 0        | 0    | 0    | 0    | 0    | 3.17 |            |
| Augus | t 21, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 22, 2020 | 4.16  | 4.18 | 11.82    | 4.44 | 3.11 | 0    | 0    | 0    |            |
| Augus | t 23, 2020 | 0     | 4.08 | 0        | 6.98 | 0    | 0    | 0    | 0    |            |
| Augus | t 24, 2020 | 4.5   | 0    | 0        | 4.84 | 0    | 0    | 0    | 0    |            |
| Augus | t 25, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 26, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 27, 2020 | 6.29  | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 28, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 29, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 30, 2020 | 19.13 | 4.51 | 3.86     | 0    | 0    | 0    | 0    | 0    |            |
| Augus | t 31, 2020 | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
|       |            |       |      |          |      |      |      |      |      |            |
| Avg   |            | 2.99  | 0.76 | 0.90     | 1.27 | 0.51 | 0.12 | 0.37 | 0.10 |            |
| Min   |            | 0     | 0    | 0        | 0    | 0    | 0    | 0    | 0    |            |
| Max   |            | 20.54 | 4.51 | 11.82    | 7.59 | 9.21 | 3.84 | 7.45 | 3.17 |            |



#### Gold Bar Wastewater Treatment Plant Fenceline H<sub>2</sub>S Readings September 2020

| Date               |      |      |   | Comments |   |      |   |   |          |
|--------------------|------|------|---|----------|---|------|---|---|----------|
| Date               | 1    | 2    | 3 | 4        | 5 | 6    | 7 | 8 | Comments |
| September 1, 2020  | 7.38 | 0    | 0 | 3.33     | 0 | 0    | 0 | 0 |          |
| September 2, 2020  | 0    |      | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 3, 2020  | 0    |      | 0 | 0        | 0 | 3.09 | 0 | 0 |          |
| September 4, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 5, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 6, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 7, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 8, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 9, 2020  | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 10, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 11, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 12, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 13, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 14, 2020 | 5.27 | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 15, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 16, 2020 | 3.87 | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 17, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 18, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 19, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 20, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 21, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 22, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 23, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 24, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 25, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 26, 2020 | 0    | 4.68 | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 27, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 28, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 29, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| September 30, 2020 | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
|                    |      |      |   |          |   |      |   |   |          |
| Avg                | 0.55 | 0.16 | 0 | 0.11     | 0 | 0.10 | 0 | 0 |          |
| Min                | 0    | 0    | 0 | 0        | 0 | 0    | 0 | 0 |          |
| Max                | 7.38 | 4.68 | 0 | 3.33     | 0 | 3.09 | 0 | 0 |          |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings October 2020

| Date             |      |      |      | H <sub>2</sub> S ( | ppb) |      |      |      | Comments                                |
|------------------|------|------|------|--------------------|------|------|------|------|-----------------------------------------|
| Date             | 1    | 2    | 3    | 4                  | 5    | 6    | 7    | 8    | Comments                                |
| October 1, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 2, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 3, 2020  | 3.53 | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 4, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 5, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 6, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 7, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 8, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 9, 2020  | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 10, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 11, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 12, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 13, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 14, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 15, 2020 | 0    | 0    | 0    | 0                  | 0    | 4.85 | 0    | 0    |                                         |
| October 16, 2020 | 4.23 | 0    | 0    | 3.48               | 0    | 0    | 0    | 0    |                                         |
| October 17, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 18, 2020 | 4.73 | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 19, 2020 | 5.34 | 0    | 0    | 0                  | 0    | 0    | 0    | 3.07 |                                         |
| October 20, 2020 | 5.02 | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 21, 2020 | 0    | 3.38 | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 22, 2020 | 0    | 4.26 | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 23, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 24, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 25, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 26, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 27, 2020 | 0    | 0    | 3.17 | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 28, 2020 | 0    | 0    | 4.09 | 0                  | 3.33 | 0    | 0    | 0    |                                         |
| October 29, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 30, 2020 | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| October 31, 2020 | 5.89 | 1.84 | 1.43 | 1.29               | 3    | 2.47 | 2.07 | 1.32 | Unusual readings due to zero air filter |
|                  | ,    |      |      |                    |      |      |      |      |                                         |
| Avg              | 0.93 | 0.31 | 0.28 | 0.15               | 0.20 | 0.24 | 0.07 | 0.14 |                                         |
| Min              | 0    | 0    | 0    | 0                  | 0    | 0    | 0    | 0    |                                         |
| Max              | 5.89 | 4.26 | 4.09 | 3.48               | 3.33 | 4.85 | 2.07 | 3.07 |                                         |



#### Gold Bar Wastewater Treatment Plant Fenceline H<sub>2</sub>S Readings November 2020

| Date              |       |      |      | H₂S ( | ppb) |      |      |      | Comments                                |
|-------------------|-------|------|------|-------|------|------|------|------|-----------------------------------------|
| Date              | 1     | 2    | 3    | 4     | 5    | 6    | 7    | 8    | Comments                                |
| November 1, 2020  | 3.51  | 3.14 | 2.12 | 1.1   | 2.51 | 2.63 | 1.89 | 1.15 | Unusual readings due to zero air filter |
| November 2, 2020  | 7.95  | 0    | 0    | 0     | 0    | 0    | 0    | 0    | Replaced zero air filter                |
| November 3, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 4, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 5, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 6, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 7, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 8, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 9, 2020  | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 10, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 11, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 12, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 13, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 14, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 15, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 16, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 17, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 18, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 19, 2020 | #N/A  | #N/A | #N/A | #N/A  | #N/A | #N/A | #N/A | #N/A | Temperature too low                     |
| November 20, 2020 | 0     | 0    | 0    | 0     | 0    | _    | 0    | 0    |                                         |
| November 21, 2020 | 3.86  | 0    | 0    | 0     | 0    | 3.36 | 0    | 0    |                                         |
| November 22, 2020 | 10.65 | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 23, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 24, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 25, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 26, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 27, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 28, 2020 | 16.02 | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 29, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| November 30, 2020 | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    |                                         |
| Δ                 | 1 45  | 0 11 | 0.07 | 0.04  | 0.00 | 0.04 | 0.07 | 0.04 |                                         |
| Avg               | 1.45  | 0.11 | 0.07 | 0.04  | 0.09 | 0.21 | 0.07 | 0.04 |                                         |
| Min               | 0     | 0    | 0    | 1 10  | 0    | 0    | 1.00 | 0    |                                         |
| Max               | 16.02 | 3.14 | 2.12 | 1.10  | 2.51 | 3.36 | 1.89 | 1.15 |                                         |



#### Gold Bar Wastewater Treatment Plant Fenceline H₂S Readings December 2020

| Date              |       |      |      | H <sub>2</sub> S ( <sub> </sub> | opb) |       |      |      | Comments            |
|-------------------|-------|------|------|---------------------------------|------|-------|------|------|---------------------|
| Date              | 1     | 2    | 3    | 4                               | 5    | 6     | 7    | 8    | Comments            |
| December 1, 2020  | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 2, 2020  | 3.3   | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 3, 2020  | 38.12 | 0    | 0    | 4.26                            | 0    | 0     | 0    | 3.22 |                     |
| December 4, 2020  | 21.37 | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 5, 2020  | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 6, 2020  | 0     | 0    | 0    | 3.56                            | 0    | 0     | 0    | 0    |                     |
| December 7, 2020  | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 8, 2020  | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 9, 2020  | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 10, 2020 | 5.11  | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 11, 2020 | 10.36 | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 12, 2020 | 0     | 3.25 | 3.05 | 0                               | 0    | 0     | 0    | 0    |                     |
| December 13, 2020 | #N/A  | #N/A | #N/A | #N/A                            | #N/A | #N/A  | #N/A | #N/A | Temperature too low |
| December 14, 2020 | #N/A  | #N/A | #N/A | #N/A                            | #N/A | #N/A  | #N/A | #N/A | Temperature too low |
| December 15, 2020 | 0     | 0    | 0    | 3.52                            | 0    | 0     | 0    | 0    |                     |
| December 16, 2020 | 0     | 0    | 0    | 3.21                            | 0    | 0     | 0    | 0    |                     |
| December 17, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 18, 2020 | 4.64  | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 19, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 20, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 21, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 22, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 23, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 24, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 25, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 26, 2020 | 5.25  | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 27, 2020 | 15.12 | 3.23 | 0    | 3.58                            | 0    | 0     | 0    | 0    |                     |
| December 28, 2020 | 3.25  | 0    | 0    | 0                               | 0    | 3.11  | 3.06 | 0    |                     |
| December 29, 2020 | 3.44  | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| December 30, 2020 | 0     | 0    | 0    | 0                               | 5.18 | 0     | 0    | 0    |                     |
| December 31, 2020 | 0     | 0    | 0    | 0                               | 0    | 0     | 0    | 0    |                     |
| Avg               | 3.79  | 0.22 | 0.11 | 0.63                            | 0.18 | 0.11  | 0.11 | 0.11 | 1                   |
| Min               | 0     | 0.22 | 0.11 | 0.03                            | 0.10 | 0.11  | 0.11 | 0.11 |                     |
| Max               | 38.12 | 3.25 | 3.05 | 4.26                            | 5.18 | 3.11  | 3.06 | 3.22 |                     |
| Ινίαλ             | 30.12 | 3.20 | 3.03 | 4.20                            | 5.10 | ا ا ، | 3.00 | 3.22 | J                   |



| #        | Date      | Location      | Complaint Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Call Back Details                                                                                                                                                                                                                                                                                                                                             | Wind<br>Direction<br>/Velocity | Scrubber<br>Status | Maintenance<br>Activities | Action Taken                                                                                                                                                                                                                                                                              | Is<br>GBWWTP<br>the Likely<br>Source?<br>(Y/N) | Consistent with Envirosuite Model? |
|----------|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| 2020-001 | 1/1/2020  | 4424-109A Ave | SEWER ODOUR CONCERN. COMING FROM<br>GOLD BAR TREATMENT PLANT. WOULD LIKE<br>A CALL BACK ON THIS ISSUE. January 1, 2020<br>A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I talked to customer to let her know wind direction at the time of call (250 degrees) which is from the west and fence line monitoring registered 19.6 ppb early this morning, all scrubbers working with no issues, odour probably caused due to low flow at that time in the morning. Called at 2:24 PM Jan 1.                                              | 250 deg                        | OK                 | N/A                       | Crews ensured all doors to headworks building were closed and there were no other sources of fugitive emissions discharging to atmosphere. New odour scrubbers currently under construction at the grit and screen buildings should help reduce odours under this scenario in the future. | Y                                              | N/A                                |
| 2020-002 | 1/1/2020  | N/A           | Customer phoned control room. Shift Foreman received a call at 3:30 pm about an odour complaint, I gave customer a call back to let him know that we are receiving higher than normal H2S coming into the plant at the head works, 19 ppb and that odour scrubber are all working and wind direction was from the W to NW which may affect where he lives.                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phoned customer back at 5:06 PM. Shift Foreman received a call at 3:30 pm about an odour complaint, I gave customer a call back to let him know that we are receiving higher than normal H2S coming into the plant at the head works, 19 ppb and that odour scrubber are all working and wind direction was from the W to NW which may affect where he lives. | From the W to NW               |                    | N/A                       | Crews ensured all doors to headworks building were closed and there were no other sources of fugitive emissions discharging to atmosphere. New odour scrubbers currently under construction at the grit and screen buildings should help reduce odours under this scenario in the future. | У                                              | N/A                                |
| 2020-003 | 1/23/2020 | 4504-109 Ave  | Details of customer odour complaint: very bad sewer odour coming from outside, offensive toilet smell outside Description: Odour inside or outside: outside Description of odour: Odour intensity (scale from 1-10): 6-7 Time noticed odour and for how long: this morning. Unknown Is it a reoccurring issue? Yes, lived there for 35 years and it always happens.                                                                                                                                                                                                                                                                                                                                                                                                                            | Phoned customer back Jan 23 11:00 AM. "Received her voice mail and left a message, even though call was just south of the plant we did not pick up any H2S from the fence line Jerome meter and wind direction was from the S to SW going N to NE. Do not believe Gold Bar was the source of the odour."                                                      | From the south                 | OK                 | None                      | N/A                                                                                                                                                                                                                                                                                       | N                                              | N/A                                |
| 2020-004 | 4/22/2020 | 3809-110 Ave  | Customer called saying she was having a sewer odour in her house. It was a smell that was outside and inside the residence. A mixture of rotten eggs and sewer gas. She contacted Atco and an inspector came out and told her it was a sewer gas smell. He told her to run water in her traps she did that solved the problem for a day. The smell came back Apr 21 in the PM. Atco told her if the smell persists to call the city which they transferred her to drainage.  Details of customer odour complaint:  Description:  Odour inside or outside BOTH  Description of odour: ROTTEN EGGS MIXED  WITH SEWER SMELL  Odour intensity (scale from 1-10): 9  Time noticed odour and for how long: APR 20 IN THE EVENING till today  Is it a reoccurring issue? FIRST TIME THIS HAS HAPPENED | Even though it was in the GB boundary, it was determined it was a drainage issue, since the smell was detected indoors. Email was sent back to Drainage Operations, and they acknowledged they would take care of it.                                                                                                                                         | N/A                            | N/A                | N/A                       | Even though it was in the GB boundary, it was determined it was a drainage issue, since the smell was detected indoors. Email was sent back to Drainage Operations, and they acknowledged they would take care of it.                                                                     | N                                              | N                                  |

| 2020-005 | 5/2/2020  | 5211-109A Ave | Details of customer odour complaint: Description: for sure a sewer odour. Odour inside or outside Description of odour: outside sewer odour. Odour intensity (scale from 1-10): 7 -8 Time noticed odour and for how long: around 7 am the smell was noticeable Is it a reoccurring issue? Very often, once a month for sure                                                                                                                                                                                                              | Received voice mail so left a message. Odour looks like it is from Gold Bar and I have an Operator out to do Jerome meter readings along the fence line right now, wind direction is from the east and with low flow this morning. Staff member did say that we have odours at the diversion structure as the flow comes in, I am having Utility Crew set up an odour mister at the diversion structure to help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Low<br>Velocity (as<br>per<br>Envirosuite)        | OK | N/A                      | Emergency WR put in to put out odour misters. Looked at Envirosuite model for this time. Wind velocity was low, and direction was variable. Model indicates some plume around the plant, but below to OU threshold. Did not create an alarm at the alert point.                                                                                                                                                                                                                                                      | Y | Y |
|----------|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 2020-006 | 7/7/2020  | 4808-109 Ave  | Details of customer odour complaint: Sewer Odour Description: Sewer Odour. Customer believes it's the GBWWTP Odour inside or outside: Outside Description of odour: Sewer Odour intensity (scale from 1-10): 8 Time noticed odour and for how long: July 7, 2020 at 17:00 30 minutes Is it a reoccurring issue? Yes                                                                                                                                                                                                                      | with the odour.  Phoned customer back at 6:43 PM, and customer asked him to phone back again after supper. Called customer back at 7:37 PM.  Scrubbers were working properly. Jerome meter readings did not show any spikes. Notified customer that Bio 2 is being cleaned at this time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From NNE,<br>low wind<br>velocity at<br>this time | ОК | Cleaning<br>Bioreactor 2 | Checked with the plant and all scrubbers running with no issues. Checked the wind direction and odor units and did not show much. The odor could be from Bio 2 washing so asked Shift Crew to make sure odor misters are running. Envirosuite model does not show high odour at this address, but there is a plume that is close by, but projected to be below 10 OU. There was lots of wet weather in days before, so less likely for H2S smell from diversion structure or from collection system due to flushing. | Y | Y |
| 2020-007 | 7/23/2020 | 4424-109A Ave | Details of customer odour complaint: Odour has been unbearable from the Gold Bar Treatment plant all week now. Initial complaint was made on Monday July 20 Description: Strong, sewage smell Odour inside or outside: Outside Description of odour: Odour intensity (scale from 1-10): 10 / 10 Time noticed odour and for how long: Has been extremely noticeable now for going on a week. Seems to get worse in the early evenings Is it a reoccurring issue? Has been pretty steady throughout the week but worsening in the evenings | Phoned resident back July 23 approx.  11:30 PM to get more information. Left a message and she phoned back.  She described the odour as "smells like mushrooms", which could be the smell coming from our bioreactors. The wind often comes from the north, and is low velocity overnight. Resident described the smells taking place in the middle of the night. At midnight they had to get up to close their windows. Also, she said she made a complaint to 311 a few days earlier, but did not hear anything. Advised her to phone EPCOR 4500 line directly with odour complaints related to Gold Bar.  She had a lot of bigger picture concerns that the expressed. She has some questions about future projects to capture odours, how odour complaints are managed and tracked from a city wide basis, and it sounds like about the SIA stations. She admitted is getting lots of information from her neighbors. I suggested that I could put her in contact with somebody that could help walk her through some of the information EPCOR has to provided. P&GA department phone phoned her back and sent an email report around 1:40 PM. Also called customer back to confirm that no H2S was detected (additional fenceline readings were taken), all scrubbers were working properly. | From north, low velocity over night               | OK | None                     | Additional fenceline reading taken. If smell is "mushrooms", then this is not H2S, possibly Bioreactors, which cannot be suppressed. Envirosuite model did not show any plume at this time.                                                                                                                                                                                                                                                                                                                          | N | N |

| 2020-008 | 8/20/2020 | 4654-107 Ave | Details of customer odour complaint: SHE SAID IT IS COMING FROM THE TREATMENT PLANT Description: SEWER ODOUR VERY STRONG OUTSIDE Odour inside or outside: OUTSIDE Description of odour: SEWAGE Odour intensity (scale from 1-10): 8 Time noticed odour and for how long: 9 PM AND CONTINUING Is it a reoccurring issue? YES. SHE SAID THAT SHE IS NOTICING THIS ODOUR MORE AND MORE THAN EVER. SHE ALSO WOULD LIKE A CALL TO LET HER KNOW WHAT IS GOING ON OR WHAT WILL BE DONE TO STOP THIS FROM OCCURING. | The complaint is related to the wet weather event we had last night and have added two alert point analysis graphs as close to where the complaint is from. Also added the wet weather event flows (total plant influent flow along with RTC flow). I have also added the H2S readings we had from 2 points, one from the SE of grit building 4/5 and the other is from the NW which is the screen building, we did notice a bit of H2S and then it cleared up.  We treated a maximum of 1470 ML and we did not have a screened or unscreened bypass. FI-4006 which is the static weir flow for Channel 2 did record a flow but it was due to that Channel 2 level reached 2.674. The set point is 2.67 so anything above that it assumes we had a static weir bypass and records a flow. I checked outfall 20 sample bottles and flow meter and we did not have a bypass from Outfall 20. | From plant | OK | None | Due to wet weather flow out Outfall 30. Crews ensured all doors to headworks building were closed and there were no other sources of fugitive emissions discharging to atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y | Y |
|----------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 2020-009 | 9/1/2020  | Capilano     | "Starting around 4:00 AM and it dissipated around 7:00 AM. There was a horrible smell from outside. The smell is like chemical and skunk. It was so strong it woke me up and gave me a headache. This is the second time this has happened in the last 2 weeks. What is the cause? Should I be concerned for my health?"                                                                                                                                                                                    | Called customer back.  After investigation, it was determined that Gold Bar is not the source. The complaint was sent back to Drainage Operations for investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From west  | OK | N/A  | Email sent to Drainage Operations: Good morning Drainage, We took a look at our odour model, and we are not seeing anything outside the plant boundaries at that time. Wind velocity was very low, but blowing slightly from the west. H2S readings from our fence line samples do not indicate anything. The hand held measurements were actually taken at 715am Monday morning, so at the end of the reported time by the caller. Our staff did not observe anything described by the caller coming from the site. The description of "skunky" and "chemical smell" does not match they types of odours typically attributed to the wastewater treatment plant. We don't believe this odour reported is associated with Gold Bar WWTP. Maybe Drainage Ops wants to investigate further? | N | N |

| 2020-010 | 9/4/2020  | 10907-38 St   | Details of customer odour complaint: Customer HAS NOTICED A ROTTEN EGG SULPHUR SMELL FOR THE LAST TWO WEEKS AND IT IS NOW STARTED COMING INTO HIS HOUSE. GAVE RENE THE NUMBER FOR ATCO GAS AS WELL Description: ROTTEN EGGS SULPHUR Odour inside or outside: OUTSIDE COMING INTO HIS HOUSE Description of odour: ROTTEN EGGS AND SULPHUR Odour intensity (scale from 1-10): 10 OUT OF 10 Time noticed odour and for how long: 2 WEEKS NOW Is it a reoccurring issue? YES                                                                                                                                                                         | Determined not to be Gold Bar - sent back to Drainage Operations for investigation.  "Good morning Drainage Ops. We took a look at our plant operations, online analyzers, our recent fence line monitoring data and our odour model from the last week. We cannot seem to find anything that would point to the odour this customer is describing at their address that could be attributed to the Gold Bar WWTP. Could drainage ops have a look to see if it is possible this is coming from the collection system, or other sources? Is there still a flare stack in the rundle park area that is part of the old landfill?" | N/A                | OK                                        | N/A                      | Sent back to Drainage Operations.                                                                                                                                                                                                 | N | N   |
|----------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 2020-011 | 9/4/2020  | 4428-109A Ave | CALLER SAID THAT THE ODOUR FROM THE GBWWTP IS VERY BAD TODAY. TOLD HIM THAT SOMEONE WOULD CONTACT HIM MOST LIKELY ON MONDAY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Determined not to be Gold Bar WWTP - sent back to Drainage Operations for investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                | OK                                        | N/A                      | Sent complaint back to Drainage Operations.                                                                                                                                                                                       | N | N   |
| 2020-012 | 9/22/2020 | 4609-115 Ave  | From across the river in Beverley. Details of customer odour complaint: Ongoing odour from the Gold Bar area. Description: Outside odour coming from the direction of the Gold Bar plant Description of odour: Strong Sewage smell Odour intensity (scale from 1-10): 8 / 10 Time noticed odour and for how long: Ongoing                                                                                                                                                                                                                                                                                                                        | Informed caller that no noticeable odours onsite, all readings were zero. Customer confirmed that he smelled it around 7:30 AM, at that time there was nothing out of the ordinary detectable at the plant.                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                | OK                                        | None                     | Jerome meter readings reading zero around plant. Sent operator to residence across river - readings were zero. Wind speed was pretty much zero around the plant.  Sent back to drainage ops for further investigation CR# 486054. | N | N/A |
| 2020-013 | 9/15/2020 | 4615-109A Ave | Details of customer odour complaint: Sewer odour all over the neighborhood daily. Please investigate and call customer with the findings. They can't sit outside nor open any windows because of the smell outside.  Description: Odour inside or outside (outside) Note this complaint initially came from drainage operator, not through normal Drainage Operations Control email channels. Came through normal email the following day (Sept 16) Description of odour: (smells like sewer) Odour intensity (scale from 1-10): (6-9) Time noticed odour and for how long: (a couple of weeks now) Is it a reoccurring issue? (yes reoccurring) | Wind was coming from the north; EPT Scrubber was out. Informed customer that we were doing scrubber maintenance, but scrubber is now back online.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From north         | EPT<br>Scrubber out<br>for<br>maintenance | N/A                      | Informed customer that we were doing scrubber maintenance, but scrubber is now back online.                                                                                                                                       | Y | N/A |
| 2020-014 | 9/30/2020 | Gold Bar Park | Customer and her mother were walking in Gold Bar Park and noticed a strong sewage odour (outside). She states this was today September 30, 2020 at 10:00 AM. And noticed it for 2 hours. They say the odour was an 8 out of 10 intensity. Customer lives in Wabamun Alberta and her Mother lives at 10643 – 48 St.                                                                                                                                                                                                                                                                                                                               | During this time Operations was draining Secondary 11 for maintenance on a valve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From north<br>west | ОК                                        | Draining<br>Secondary 11 | Set up odour misters, work was finished within the day.                                                                                                                                                                           | Y | N/A |

#### Appendix G - Odour Complaints

| 2020-015 | 11/2/2020 | Gold Bar Park | Details of customer odour complaint: STRONG    | Phoned customer and left message. Did | Low wind  | OK | Cleaning         | Odour misters at Diversion     | Υ | Υ |
|----------|-----------|---------------|------------------------------------------------|---------------------------------------|-----------|----|------------------|--------------------------------|---|---|
|          |           |               | SEWER ODOUR BY GOLD BAR                        | not get a call back. Not able to      | velocity, |    | Diversion        | Structure if temperature above |   |   |
|          |           |               | Description:                                   | determine exact location of           | from west |    | Structure at the | freezing.                      |   |   |
|          |           |               | Odour inside or outside: OUTSIDE               | complaint. Let them know scrubbers    |           |    | time             |                                |   |   |
|          |           |               | Description of odour: SEWAGE                   | working properly.                     |           |    |                  |                                |   |   |
|          |           |               | Odour intensity (scale from 1-10):10           |                                       |           |    |                  |                                |   |   |
|          |           |               | Time noticed odour and for how long: AN HOUR   |                                       |           |    |                  |                                |   |   |
|          |           |               | AGO (13:40)                                    |                                       |           |    |                  |                                |   |   |
|          |           |               | Is it a reoccurring issue? YES BUT THIS IS THE |                                       |           |    |                  |                                |   |   |
|          |           |               | WORST IT HAS EVER BEEN.                        |                                       |           |    |                  |                                |   |   |



## <u>Substance Loading Rates on Nutrigold Fields - 2020</u>

| Nutrigold Field # | # <b>2020NW2</b> 5 | 5627              |      |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|--------------------|-------------------|------|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS           | Dry Tonnes        | Ac   | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 1487              | 24.0               | 357.3             | 55   | 22 | 16.2         | TP        | 25200     | 9004     | 409    |       |            |       |            |
|                   |                    |                   |      |    |              | TN        | 25400     | 9075     | 413    |       |            |       |            |
|                   |                    |                   |      |    |              | NH3-N     | 8010      | 2862     | 130    |       |            |       |            |
| Landowner         |                    | Greg Kyle         |      |    |              | As        | 4.6       | 1.64     | 0.075  |       |            |       |            |
| Legal Description |                    | NW-25-67-27-4     |      |    |              | Cd        | 2.7       | 0.97     | 0.044  | 9338  | 1500       | 9265  | 600        |
| Start Date        |                    | 31-May-20         |      |    |              | Cr        | 53        | 18.8     | 0.86   | 482   | 20         | 478   | 8          |
| End Date          |                    | 19-Oct-20         |      |    |              | Cu        | 455       | 163      | 7.39   | 56    | 15         | 55    | 6          |
| Soil Class        |                    | Class 1           |      |    |              | Pb        | 24.2      | 8.6      | 0.393  | 1050  | 20         | 1041  | 8          |
| Biosolids Type    |                    | Digested          |      |    |              | Mn        | 300       | 107      | 4.87   |       |            |       |            |
|                   |                    | Centrifuge Dewate | ered |    |              | Hg        | 1.03      | 0.368    | 0.017  | 24660 | 3000       | 24466 | 1100       |
|                   |                    |                   |      |    |              | Ni        | 34.8      | 12.4     | 0.565  | 730   | 100        | 724   | 40         |
|                   |                    |                   |      |    |              | Se        | 5.4       | 1.93     | 0.088  |       |            |       |            |
|                   |                    |                   |      |    |              | Zn        | 813       | 290      | 13.2   | 31    | 10         | 31    | 4          |
|                   |                    |                   |      |    |              | Со        | 5.3       | 2        | 0.1    |       |            |       |            |

| Nutrigold Field # | 2020NW12 | 5219                     |     |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|----------|--------------------------|-----|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes               | Ac  | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 23694             | 7.52     | 1783.09                  | 225 | 91 | 19.6         | TP        | 30000     | 53493    | 588    |       |            |       |            |
|                   |          |                          |     |    |              | TN        | 32600     | 58129    | 639    |       |            |       |            |
|                   |          |                          |     |    |              | NH3-N     | 16000     | 28529    | 314    |       |            |       |            |
| Landowner         |          | Mike Warwa               |     |    |              | As        | 6.80      | 12.13    | 0.133  |       |            |       |            |
| Legal Description |          | NW-12-52-19-4            |     |    |              | Cd        | 2.33      | 4.15     | 0.046  | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 27-May-20                |     |    |              | Cr        | 100       | 177.6    | 1.95   | 327   | 20         | 301   | 8          |
| End Date          |          | 10-Jun-20                |     |    |              | Cu        | 319       | 569      | 6.25   | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1                  |     |    |              | Pb        | 31.6      | 56.3     | 0.619  | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested                 |     |    |              | Mn        | 290       | 517      | 5.68   |       |            |       |            |
|                   |          | <b>Gravity Thickened</b> |     |    |              | Hg        | 1.32      | 2.354    | 0.026  | 24697 | 3000       | 22727 | 1100       |
|                   |          |                          |     |    |              | Ni        | 56.3      | 100.4    | 1.103  | 579   | 100        | 533   | 40         |
|                   |          |                          |     |    |              | Se        | 20.5      | 36.55    | 0.402  |       |            |       |            |
|                   |          |                          |     |    |              | Zn        | 700       | 1248     | 13.7   | 47    | 10         | 43    | 4          |
|                   |          |                          |     |    |              | Со        | 9.70      | 17       | 0.2    |       |            |       |            |

| Nutrigold Field # | 2020SE1252 | 214                      |     |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|------------|--------------------------|-----|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS   | Dry Tonnes               | Ac  | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 29412             | 7.26       | 2136.26                  | 241 | 98 |              | TP        | 30000     | 64088    | 657    |       |            |       |            |
|                   |            |                          |     |    |              | TN        | 32600     | 69642    | 714    |       |            |       |            |
|                   |            |                          |     |    |              | NH3-N     | 16000     | 34180    | 351    |       |            |       |            |
| Landowner         |            | Earnie Warawa            |     |    |              | As        | 6.80      | 14.53    | 0.149  |       |            |       |            |
| Legal Description |            | SE-12-52-14-4            |     |    |              | Cd        | 2.33      | 4.98     | 0.051  | 13991 | 1500       | 12876 | 600        |
| Start Date        |            | 25-Jun-20                |     |    |              | Cr        | 100       | 212.8    | 2.18   | 327   | 20         | 301   | 8          |
| End Date          |            | 11-Jul-20                |     |    |              | Cu        | 319       | 681      | 6.99   | 102   | 15         | 94    | 6          |
| Soil Class        |            | Class 1                  |     |    |              | Pb        | 31.6      | 67.5     | 0.692  | 1032  | 20         | 949   | 8          |
| Biosolids Type    |            | Digested                 |     |    |              | Mn        | 290       | 620      | 6.35   |       |            |       |            |
|                   |            | <b>Gravity Thickened</b> |     |    |              | Hg        | 1.32      | 2.820    | 0.029  | 24697 | 3000       | 22727 | 1100       |
|                   |            |                          |     |    |              | Ni        | 56.3      | 120.3    | 1.234  | 579   | 100        | 533   | 40         |
|                   |            |                          |     |    |              | Se        | 20.5      | 43.79    | 0.449  |       |            |       |            |
|                   |            |                          |     |    |              | Zn        | 700       | 1495     | 15.3   | 47    | 10         | 43    | 4          |
|                   |            |                          |     |    |              | Со        | 9.70      | 21       | 0.2    |       |            |       |            |

| Nutrigold Field # | 2020NW12 | 5418                     |     |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|--------------------------|-----|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes               | Ac  | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 13707             | 7.70     | 1055.99                  | 115 | 47 | 15.0         | TP        | 30000     | 31680    | 681   |       |            |       |            |
|                   |          |                          |     |    |              | TN        | 32600     | 34425    | 740   |       |            |       |            |
|                   |          |                          |     |    |              | NH3-N     | 16000     | 16896    | 363   |       |            |       |            |
| Landowner         |          | Inez Hunter              |     |    |              | As        | 6.80      | 7.18     | 0.154 |       |            |       |            |
| Legal Description |          | NW-12-54-18-4            |     |    |              | Cd        | 2.33      | 2.46     | 0.053 | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 19-Jul-20                |     |    |              | Cr        | 100       | 105.2    | 2.26  | 327   | 20         | 301   | 8          |
| End Date          |          | 27-Jul-20                |     |    |              | Cu        | 319       | 337      | 7.24  | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1                  |     |    |              | Pb        | 31.6      | 33.4     | 0.718 | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested                 |     |    |              | Mn        | 290       | 306      | 6.59  |       |            |       |            |
|                   |          | <b>Gravity Thickened</b> |     |    |              | Hg        | 1.32      | 1.394    | 0.030 | 24697 | 3000       | 22727 | 1100       |
|                   |          |                          |     |    |              | Ni        | 56.3      | 59.5     | 1.279 | 579   | 100        | 533   | 40         |
|                   |          |                          |     |    |              | Se        | 20.5      | 21.65    | 0.466 |       |            |       |            |
|                   |          |                          |     |    |              | Zn        | 700       | 739      | 15.9  | 47    | 10         | 43    | 4          |
|                   |          |                          |     |    |              | Со        | 9.70      | 10       | 0.2   |       |            |       |            |

| Nutrigold Field # | 2020NE225 | 519               |     |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|-----------|-------------------|-----|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS  | Dry Tonnes        | Ac  | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 23818             | 7.73      | 1843.75           | 204 | 83 | 16.0         | TP        | 30000     | 55313    | 666    |       |            |       |            |
|                   |           |                   |     |    |              | TN        | 32600     | 60106    | 724    |       |            |       |            |
|                   |           |                   |     |    |              | NH3-N     | 16000     | 29500    | 355    |       |            |       |            |
| Landowner         |           | Larry Olstad      |     |    |              | As        | 6.80      | 12.54    | 0.151  |       |            |       |            |
| Legal Description |           | NE-22-55-19       |     |    |              | Cd        | 2.33      | 4.30     | 0.052  | 13991 | 1500       | 12876 | 600        |
| Start Date        |           | 30-Jul-20         |     |    |              | Cr        | 100       | 183.6    | 2.21   | 327   | 20         | 301   | 8          |
| End Date          |           | 11-Aug-20         |     |    |              | Cu        | 319       | 588      | 7.09   | 102   | 15         | 94    | 6          |
| Soil Class        |           | Class 1           |     |    |              | Pb        | 31.6      | 58.3     | 0.702  | 1032  | 20         | 949   | 8          |
| Biosolids Type    |           | Digested          |     |    |              | Mn        | 290       | 535      | 6.44   |       |            |       |            |
|                   |           | Gravity Thickened |     |    |              | Hg        | 1.32      | 2.434    | 0.029  | 24697 | 3000       | 22727 | 1100       |
|                   |           |                   |     |    |              | Ni        | 56.3      | 103.8    | 1.251  | 579   | 100        | 533   | 40         |
|                   |           |                   |     |    |              | Se        | 20.5      | 37.80    | 0.455  |       |            |       |            |
|                   |           |                   |     |    |              | Zn        | 700       | 1291     | 15.5   | 47    | 10         | 43    | 4          |
|                   |           |                   |     |    |              | Со        | 9.70      | 18       | 0.2    |       |            |       |            |

| Nutrigold Field # | 2020NW34 | 5419             |      |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------|------|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes       | Ac   | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 2985              | 24.00    | 720.28           | 118  | 47 | 9.0          | TP        | 25200     | 18151    | 386   |       |            |       |            |
|                   |          |                  |      |    |              | TN        | 25400     | 18295    | 389   |       |            |       |            |
|                   |          |                  |      |    |              | NH3-N     | 8010      | 5769     | 123   |       |            |       |            |
| Landowner         |          | Al MacDonell     |      |    |              | As        | 4.6       | 3.31     | 0.070 |       |            |       |            |
| Legal Description |          | NW-34-54-19-4    |      |    |              | Cd        | 2.7       | 1.96     | 0.042 | 9338  | 1500       | 9265  | 600        |
| Start Date        |          | 20-Oct-20        |      |    |              | Cr        | 53        | 38.0     | 0.81  | 482   | 20         | 478   | 8          |
| End Date          |          | 1-Nov-20         |      |    |              | Cu        | 455       | 328      | 6.97  | 56    | 15         | 55    | 6          |
| Soil Class        |          | Class 1          |      |    |              | Pb        | 24.2      | 17.4     | 0.371 | 1050  | 20         | 1041  | 8          |
| Biosolids Type    |          | Digested         |      |    |              | Mn        | 300       | 216      | 4.60  |       |            |       |            |
|                   |          | Centrifuge Dewat | ered |    |              | Hg        | 1.03      | 0.742    | 0.016 | 24660 | 3000       | 24466 | 1100       |
|                   |          |                  |      |    |              | Ni        | 34.8      | 25.1     | 0.533 | 730   | 100        | 724   | 40         |
|                   |          |                  |      |    |              | Se        | 5.4       | 3.89     | 0.083 |       |            |       |            |
|                   |          |                  |      |    |              | Zn        | 813       | 586      | 12.5  | 31    | 10         | 31    | 4          |
|                   |          |                  |      |    |              | Со        | 5.3       | 4        | 0.1   |       |            |       |            |

| Nutrigold Field # | 2020NW29 | 5218              |      |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|----------|-------------------|------|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes        | Ac   | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 82                | 24.3     | 20.01             | 4    | 2  | 17.0         | TP        | 25200     | 504      | 252    |       |            |       |            |
|                   |          |                   |      |    |              | TN        | 25400     | 508      | 254    |       |            |       |            |
|                   |          |                   |      |    |              | NH3-N     | 8010      | 160      | 80     |       |            |       |            |
| Landowner         |          | Emil Ruzycki      |      |    |              | As        | 4.6       | 0.09     | 0.046  |       |            |       |            |
| Legal Description |          | NW-29-52-18-4     |      |    |              | Cd        | 2.7       | 0.05     | 0.027  | 9338  | 1500       | 9265  | 600        |
| Start Date        |          | 2-Nov-20          |      |    |              | Cr        | 53        | 1.1      | 0.53   | 482   | 20         | 478   | 8          |
| End Date          |          | 2-Nov-20          |      |    |              | Cu        | 455       | 9        | 4.55   | 56    | 15         | 55    | 6          |
| Soil Class        |          | Class 1           |      |    |              | Pb        | 24.2      | 0.5      | 0.242  | 1050  | 20         | 1041  | 8          |
| Biosolids Type    |          | Digested          |      |    |              | Mn        | 300       | 6        | 3.00   |       |            |       |            |
|                   |          | Centrifuge Dewate | ered |    |              | Hg        | 1.03      | 0.021    | 0.010  | 24660 | 3000       | 24466 | 1100       |
|                   |          |                   |      |    |              | Ni        | 34.8      | 0.7      | 0.348  | 730   | 100        | 724   | 40         |
|                   |          |                   |      |    |              | Se        | 5.4       | 0.11     | 0.054  |       |            |       |            |
|                   |          |                   |      |    |              | Zn        | 813       | 16       | 8.1    | 31    | 10         | 31    | 4          |
|                   |          |                   |      |    |              | Со        | 5.3       | 0        | 0.1    |       |            |       |            |

| Nutrigold Field # | 2020NE/SE( | 025417            |     |    | Loading Rate |           | Biosolids | Field Lo | oading |       | Minimum    |       | Minimum    |
|-------------------|------------|-------------------|-----|----|--------------|-----------|-----------|----------|--------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS   | Dry Tonnes        | Ac  | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha  | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 4542              | 23.9       | 1090.04           | 185 | 75 | 17.0         | TP        | 25200     | 27469    | 366    |       |            |       |            |
|                   |            |                   |     |    |              | TN        | 25400     | 27687    | 369    |       |            |       |            |
|                   |            |                   |     |    |              | NH3-N     | 8010      | 8731     | 116    |       |            |       |            |
| Landowner         |            | Ted Gavinchuk     |     |    |              | As        | 4.6       | 5.01     | 0.067  |       |            |       |            |
| Legal Description |            | NE/SE-02-54-17-4  |     |    |              | Cd        | 2.7       | 2.96     | 0.040  | 9338  | 1500       | 9265  | 600        |
| Start Date        |            | 4-Nov-20          |     |    |              | Cr        | 53        | 57.4     | 0.77   | 482   | 20         | 478   | 8          |
| End Date          |            | 23-Nov-20         |     |    |              | Cu        | 455       | 496      | 6.61   | 56    | 15         | 55    | 6          |
| Soil Class        |            | Class 1           |     |    |              | Pb        | 24.2      | 26.4     | 0.352  | 1050  | 20         | 1041  | 8          |
| Biosolids Type    |            | Digested          |     |    |              | Mn        | 300       | 327      | 4.36   |       |            |       |            |
|                   |            | Centrifuge Dewate | red |    |              | Hg        | 1.03      | 1.123    | 0.015  | 24660 | 3000       | 24466 | 1100       |
|                   |            |                   |     |    |              | Ni        | 34.8      | 37.9     | 0.506  | 730   | 100        | 724   | 40         |
|                   |            |                   |     |    |              | Se        | 5.4       | 5.89     | 0.078  |       |            |       |            |
|                   |            |                   |     |    |              | Zn        | 813       | 886      | 11.8   | 31    | 10         | 31    | 4          |
|                   |            |                   |     |    |              | Со        | 5.3       | 6        | 0.1    |       |            |       |            |

| Nutrigold Field # | 2020SE1455 | 523               |      |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|------------|-------------------|------|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS   | Dry Tonnes        | Ac   | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 1245              | 23.6       | 298.54            | 40   | 16 | 17.0         | TP        | 25200     | 7523     | 470   |       |            |       |            |
|                   |            |                   |      |    |              | TN        | 25400     | 7583     | 474   |       |            |       |            |
|                   |            |                   |      |    |              | NH3-N     | 8010      | 2391     | 149   |       |            |       |            |
| Landowner         |            | Barbara Hostyn    |      |    |              | As        | 4.6       | 1.37     | 0.086 |       |            |       |            |
| Legal Description |            | SE-14-55-23-4     |      |    |              | Cd        | 2.7       | 0.81     | 0.051 | 9338  | 1500       | 9265  | 600        |
| Start Date        |            | 24-Nov-20         |      |    |              | Cr        | 53        | 15.7     | 0.98  | 482   | 20         | 478   | 8          |
| End Date          |            | 30-Nov-20         |      |    |              | Cu        | 455       | 136      | 8.49  | 56    | 15         | 55    | 6          |
| Soil Class        |            | Class 1           |      |    |              | Pb        | 24.2      | 7.2      | 0.452 | 1050  | 20         | 1041  | 8          |
| Biosolids Type    |            | Digested          |      |    |              | Mn        | 300       | 90       | 5.60  |       |            |       |            |
|                   |            | Centrifuge Dewate | ered |    |              | Hg        | 1.03      | 0.307    | 0.019 | 24660 | 3000       | 24466 | 1100       |
|                   |            |                   |      |    |              | Ni        | 34.8      | 10.4     | 0.649 | 730   | 100        | 724   | 40         |
|                   |            |                   |      |    |              | Se        | 5.4       | 1.61     | 0.101 |       |            |       |            |
|                   |            |                   |      |    |              | Zn        | 813       | 243      | 15.2  | 31    | 10         | 31    | 4          |
|                   |            |                   |      |    |              | Со        | 5.3       | 2        | 0.1   |       |            |       |            |



| Olstad Field DG   | -01      |                 |     |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|-----------------|-----|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes      | Ac  | Ha | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 12222             | 7.31%    | 893.04          | 122 | 49 | 18.1         | TP        | 30000     | 26791    | 542   |       |            |       |            |
|                   |          |                 |     |    |              | TN        | 32600     | 29113    | 589   |       |            |       |            |
|                   |          |                 |     |    |              | NH3-N     | 16000     | 14289    | 289   |       |            |       |            |
| Landowner         |          | Doug Gabert     |     |    |              | As        | 6.8       | 6.07     | 0.123 |       |            |       |            |
| Legal Description |          | NE-07-54-21-4   |     |    |              | Cd        | 2.33      | 2.08     | 0.042 | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 12-May-20       |     |    |              | Cr        | 99.6      | 88.9     | 1.80  | 327   | 20         | 301   | 8          |
| End Date          |          | 14-May-20       |     |    |              | Cu        | 319       | 285      | 5.76  | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1         |     |    |              | Pb        | 31.6      | 28.2     | 0.571 | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested        |     |    |              | Mn        | 290       | 259      | 5.24  |       |            |       |            |
|                   |          | Gravity Thicken | ed  |    |              | Hg        | 1.32      | 1.179    | 0.024 | 24697 | 3000       | 22727 | 1100       |
|                   |          |                 |     |    |              | Ni        | 56.3      | 50.3     | 1.017 | 579   | 100        | 533   | 40         |
|                   |          |                 |     |    |              | Se        | 20.5      | 18.31    | 0.370 |       |            |       |            |
|                   |          |                 |     |    |              | Zn        | 700       | 625      | 12.6  | 47    | 10         | 43    | 4          |
|                   |          |                 |     |    |              | Со        | 9.7       | 9        | 0.2   |       |            |       |            |

| Olstad Field SG-  | -02      |                        |     |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------------|-----|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes             | Ac  | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 15996             | 7.22%    | 1155.41                | 146 | 59 | 19.6         | TP        | 30000     | 34662    | 588   |       |            |       |            |
|                   |          |                        |     |    |              | TN        | 32600     | 37666    | 639   |       |            |       |            |
|                   |          |                        |     |    |              | NH3-N     | 16000     | 18487    | 313   |       |            |       |            |
| Landowner         |          | Scott Gabert           |     |    |              | As        | 6.8       | 7.86     | 0.133 |       |            |       |            |
| Legal Description |          | SE-18-54-21-4          |     |    |              | Cd        | 2.33      | 2.69     | 0.046 | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 15-May-20              |     |    |              | Cr        | 99.6      | 115.1    | 1.95  | 327   | 20         | 301   | 8          |
| End Date          |          | 19-May-20              |     |    |              | Cu        | 319       | 369      | 6.25  | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1                |     |    |              | Pb        | 31.6      | 36.5     | 0.619 | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested               |     |    |              | Mn        | 290       | 335      | 5.68  |       |            |       |            |
|                   |          | <b>Gravity Thicken</b> | ed  |    |              | Hg        | 1.32      | 1.525    | 0.026 | 24697 | 3000       | 22727 | 1100       |
|                   |          |                        |     |    |              | Ni        | 56.3      | 65.0     | 1.103 | 579   | 100        | 533   | 40         |
|                   |          |                        |     |    |              | Se        | 20.5      | 23.69    | 0.402 |       |            |       |            |
|                   |          |                        |     |    |              | Zn        | 700       | 809      | 13.7  | 47    | 10         | 43    | 4          |
|                   |          |                        |     |    |              | Со        | 9.7       | 11       | 0.2   |       |            |       |            |

| Olstad Field OC   | -03      |                        |           |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------------|-----------|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes             | Ac        | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 8748              | 7.44%    | 650.66                 | 70        | 28 | 23.0         | TP        | 30000     | 19520    | 690   |       |            |       |            |
|                   |          |                        |           |    |              | TN        | 32600     | 21212    | 750   |       |            |       |            |
|                   |          |                        |           |    |              | NH3-N     | 16000     | 10411    | 368   |       |            |       |            |
| Landowner         |          | Larry Olstad           |           |    |              | As        | 6.8       | 4.42     | 0.157 |       |            |       |            |
| Legal Description | l        | NE-15-55-19-4          | (east hal | f) |              | Cd        | 2.33      | 1.52     | 0.054 | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 14-Aug-20              |           |    |              | Cr        | 99.6      | 64.8     | 2.29  | 327   | 20         | 301   | 8          |
| End Date          |          | 18-Aug-20              |           |    |              | Cu        | 319       | 208      | 7.34  | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1                |           |    |              | Pb        | 31.6      | 20.6     | 0.727 | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested               |           |    |              | Mn        | 290       | 189      | 6.67  |       |            |       |            |
|                   |          | <b>Gravity Thicken</b> | ed        |    |              | Hg        | 1.32      | 0.859    | 0.030 | 24697 | 3000       | 22727 | 1100       |
|                   |          |                        |           |    |              | Ni        | 56.3      | 36.6     | 1.296 | 579   | 100        | 533   | 40         |
|                   |          |                        |           |    |              | Se        | 20.5      | 13.34    | 0.472 |       |            |       |            |
|                   |          |                        |           |    |              | Zn        | 700       | 455      | 16.1  | 47    | 10         | 43    | 4          |
|                   |          |                        |           |    |              | Со        | 9.7       | 6        | 0.2   |       |            |       |            |

| Olstad Field OC   | C-04     |                 |            |       | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|-----------------|------------|-------|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes      | Ac         | На    | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 27734             | 8.03%    | 2228.26         | 244        | 99    | 22.6         | TP        | 30000     | 66848    | 678   |       |            |       |            |
|                   |          |                 |            |       |              | TN        | 32600     | 72641    | 737   |       |            |       |            |
|                   |          |                 |            |       |              | NH3-N     | 16000     | 35652    | 361   |       |            |       |            |
| Landowner         |          | Larry Olstad    |            |       |              | As        | 6.8       | 15.15    | 0.154 |       |            |       |            |
| Legal Description | า        | NW-14-55-19-4   | l (north l | half) |              | Cd        | 2.33      | 5.19     | 0.053 | 13991 | 1500       | 12876 | 600        |
|                   |          | NW-14-55-19-4   | ļ          |       |              | Cr        | 99.6      | 221.9    | 2.25  | 327   | 20         | 301   | 8          |
|                   |          | SW-23-55-19-4   |            |       |              | Cu        | 319       | 711      | 7.21  | 102   | 15         | 94    | 6          |
| Start Date        |          | 18-Aug-20       |            |       |              | Pb        | 31.6      | 70.4     | 0.714 | 1032  | 20         | 949   | 8          |
| End Date          |          | 30-Aug-20       |            |       |              | Mn        | 290       | 646      | 6.55  |       |            |       |            |
| Soil Class        |          | Class 1         |            |       |              | Hg        | 1.32      | 2.941    | 0.030 | 24697 | 3000       | 22727 | 1100       |
| Biosolids Type    |          | Digested        |            |       |              | Ni        | 56.3      | 125.5    | 1.272 | 579   | 100        | 533   | 40         |
|                   |          | Gravity Thicker | ned        |       |              | Se        | 20.5      | 45.68    | 0.463 |       |            |       |            |
|                   |          |                 |            |       |              | Zn        | 700       | 1560     | 15.8  | 47    | 10         | 43    | 4          |
|                   |          |                 |            |       |              | Со        | 9.7       | 22       | 0.2   |       |            |       |            |

| Olstad Field LS-  | 05       |                        |     |     | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------------|-----|-----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes             | Ac  | На  | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 34235             | 7.34%    | 2511.99                | 259 | 105 | 23.9         | TP        | 30000     | 75360    | 718   |       |            |       |            |
|                   |          |                        |     |     |              | TN        | 32600     | 81891    | 781   |       |            |       |            |
|                   |          |                        |     |     |              | NH3-N     | 16000     | 40192    | 383   |       |            |       |            |
| Landowner         |          | Lee Speers             |     |     |              | As        | 6.8       | 17.08    | 0.163 |       |            |       |            |
| Legal Description | 1        | NE-11-55-23-4          |     |     |              | Cd        | 2.33      | 5.85     | 0.056 | 13991 | 1500       | 12876 | 600        |
|                   |          | NW-11-55-23-4          |     |     |              | Cr        | 99.6      | 250.2    | 2.39  | 327   | 20         | 301   | 8          |
| Start Date        |          | 8-Sep-20               |     |     |              | Cu        | 319       | 801      | 7.64  | 102   | 15         | 94    | 6          |
| End Date          |          | 22-Sep-20              |     |     |              | Pb        | 31.6      | 79.4     | 0.757 | 1032  | 20         | 949   | 8          |
| Soil Class        |          | Class 1                |     |     |              | Mn        | 290       | 728      | 6.95  |       |            |       |            |
| Biosolids Type    |          | Digested               |     |     |              | Hg        | 1.32      | 3.316    | 0.032 | 24697 | 3000       | 22727 | 1100       |
|                   |          | <b>Gravity Thicken</b> | ed  |     |              | Ni        | 56.3      | 141.4    | 1.348 | 579   | 100        | 533   | 40         |
|                   |          |                        |     |     |              | Se        | 20.5      | 51.50    | 0.491 |       |            |       |            |
|                   |          |                        |     |     |              | Zn        | 700       | 1758     | 16.8  | 47    | 10         | 43    | 4          |
|                   |          |                        |     |     |              | Со        | 9.7       | 24       | 0.2   |       |            |       |            |

| Olstad Field BH   | -06      |                  |    |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------|----|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes       | Ac | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 11243             | 7.46%    | 838.23           | 88 | 35 | 23.6         | TP        | 30000     | 25147    | 709   |       |            |       |            |
|                   |          |                  |    |    |              | TN        | 32600     | 27326    | 770   |       |            |       |            |
|                   |          |                  |    |    |              | NH3-N     | 16000     | 13412    | 378   |       |            |       |            |
| Landowner         |          | Barbara Hostyn   |    |    |              | As        | 6.8       | 5.70     | 0.161 |       |            |       |            |
| Legal Description |          | SE-14-55-23-4    |    |    |              | Cd        | 2.33      | 1.95     | 0.055 | 13991 | 1500       | 12876 | 600        |
| Start Date        |          | 23-Sep-20        |    |    |              | Cr        | 99.6      | 83.5     | 2.35  | 327   | 20         | 301   | 8          |
| End Date          |          | 27-Sep-20        |    |    |              | Cu        | 319       | 267      | 7.54  | 102   | 15         | 94    | 6          |
| Soil Class        |          | Class 1          |    |    |              | Pb        | 31.6      | 26.5     | 0.747 | 1032  | 20         | 949   | 8          |
| Biosolids Type    |          | Digested         |    |    |              | Mn        | 290       | 243      | 6.85  |       |            |       |            |
|                   |          | Gravity Thickene | ed |    |              | Hg        | 1.32      | 1.106    | 0.031 | 24697 | 3000       | 22727 | 1100       |
|                   |          |                  |    |    |              | Ni        | 56.3      | 47.2     | 1.330 | 579   | 100        | 533   | 40         |
|                   |          |                  |    |    |              | Se        | 20.5      | 17.18    | 0.484 |       |            |       |            |
|                   |          |                  |    |    |              | Zn        | 700       | 587      | 16.5  | 47    | 10         | 43    | 4          |
|                   |          |                  |    |    |              | Со        | 9.7       | 8        | 0.2   |       |            |       |            |

| Olstad Field CH   | -07      |                        |     |    | Loading Rate |           | Biosolids | Field Lo | ading |       | Minimum    |       | Minimum    |
|-------------------|----------|------------------------|-----|----|--------------|-----------|-----------|----------|-------|-------|------------|-------|------------|
| Wet Tonnes        | Ave. %TS | Dry Tonnes             | Ac  | На | Tonnes/Ha    | Substance | mg/Kg     | Kg       | Kg/Ha | N/TE  | N/TE Ratio | P/TE  | P/TE Ratio |
| 27107             | 7.88%    | 2136.49                | 222 | 90 | 23.8         | TP        | 30000     | 64095    | 714   |       |            |       |            |
|                   |          |                        |     |    |              | TN        | 32600     | 69650    | 776   |       |            |       |            |
|                   |          |                        |     |    |              | NH3-N     | 16000     | 34184    | 381   |       |            |       |            |
| Landowner         |          | Chris Hardman          |     |    |              | As        | 6.8       | 14.53    | 0.162 |       |            |       |            |
| Legal Description | 1        | SW-07-55-23-4          |     |    |              | Cd        | 2.33      | 4.98     | 0.055 | 13991 | 1500       | 12876 | 600        |
|                   |          | SE-07-55-23-4          |     |    |              | Cr        | 99.6      | 212.8    | 2.37  | 327   | 20         | 301   | 8          |
| Start Date        |          | 30-Sep-20              |     |    |              | Cu        | 319       | 682      | 7.60  | 102   | 15         | 94    | 6          |
| End Date          |          | 8-Oct-20               |     |    |              | Pb        | 31.6      | 67.5     | 0.752 | 1032  | 20         | 949   | 8          |
| Soil Class        |          | Class 1                |     |    |              | Mn        | 290       | 620      | 6.91  |       |            |       |            |
| Biosolids Type    |          | Digested               |     |    |              | Hg        | 1.32      | 2.820    | 0.031 | 24697 | 3000       | 22727 | 1100       |
|                   |          | <b>Gravity Thicken</b> | ed  |    |              | Ni        | 56.3      | 120.3    | 1.341 | 579   | 100        | 533   | 40         |
|                   |          |                        |     |    |              | Se        | 20.5      | 43.80    | 0.488 |       |            |       |            |
|                   |          |                        |     |    |              | Zn        | 700       | 1496     | 16.7  | 47    | 10         | 43    | 4          |
|                   |          |                        |     |    |              | Со        | 9.7       | 21       | 0.2   |       |            |       |            |



# 2020 Biosolids Land Application Management Report

January 2021

#### Prepared for:

EPCOR 9504 49 St NW Edmonton, AB Canada, T6B 2M9

#### Prepared by:

SYLVIS Environmental 427 Seventh Street New Westminster, BC Canada, V3M 3L2 Phone: 1.800.778.1377 Fax: 604.777.9791 www.SYLVIS.com

SYLVIS DOCUMENT 1375-21
© SYLVIS Environmental 2021



### **EPCOR**

## 2020 BIOSOLIDS LAND APPLICATION MANAGEMENT REPORT

| ENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| roject Name: BIOSALIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ER Approval/Reference Number: 00011364-03-00, as amended                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| roject Start Date: April 1, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| roject End Date: December 31, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iosolids Type: Dewatered                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| otal Solids Content (%): Average 23.87%                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ctual Biosolids Utilization – Dry Tonnes (dt): 6,000.0 dt (in 2020) ctual Biosolids Utilization (dt): 5,995.39 dt were delivered between June 15 and October 15, 2020. combination with the material stockpiled in 2019, a total of approximately 8,881 dt was applied to approximately 345 ha of land within the Paintearth Mine site in 2020. There are approximately 510 dt ockpiled at the land application site. This material will be land applied and incorporated during the bring of 2021. |
| ROJECT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Agricultural (Thickened) – Nutri Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ☐ Agricultural (Dewatered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ Marginal Land Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ☐ Biomass Plantation Establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Off-spec Agricultural Land (i.e. outside the purview of the guidelines)                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other (please specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EGULATORY ADMINISTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ☐ Letter of No Objection                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other (please specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AER Authorization for applications outside the context of current regulatory guidance.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Modified AEP Notifications including assessment of trace elements/metals against Alberta Tier 1 Soil and Groundwater Remediation Guidelines.                                                                                                                                                                                                                                                                                                                                                        |
| AER Approval Number: 00011364-03-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ONTACTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## **EPCOR (Owner / Biosolids Generator)**

Name: David Curran

Address: 9504 49 St NW, Edmonton AB, T6B 2M9

Phone: 780-718-2126 Email: dcurran@epcor.ca

## Contractor and Qualified Professional: SYLVIS Environmental

Name: John Lavery

Address: 427 Seventh Street, New Westminster, BC

Phone: 604-341-0955 Email: jlavery@sylvis.com

Core Responsibilities: Regulatory approval, demonstration project design, environmental monitoring

and reporting; transportation supervision; stockpiling and land application supervision

## **Subcontractor: Whiterock Ventures**

Name: Kal Kingra

Address: 2235 76 Ave, Edmonton, AB, T6P 1P6

Phone: 780-469-0819

Email: kal@whiterockventures.ca

Core Responsibilities: Biosolids transportation

## Landowner / Leaser: Westmoreland Coal Company, Paintearth Coal Mine

Name: Mark Matthews

Address: 1100-10123 99 Street NW, Edmonton, AB

Phone: 780-420-5896

Email: Mmatthews@westmoreland.com

## **Regional Regulatory Liaison**

Name: Fengqin Wang

Agency: Alberta Environment and Parks

Address: 111 Twin Atria Building, 4999-98 Ave, Edmonton AB, T6B 2X3

Email: fengqin.wang@gov.ab.ca

## **APPLICATION AREAS**

Name: Paintearth Coal Mine

Physical Address: Highway 855, Forestburg, AB

**Application Sites:** 

The application sites are legacy and newly reclaimed land located within the footprint of the Paintearth Coal Mine. The sites for which biosolids were delivered to and applied on in 2020 are described in Table 1 (Appendix One – Tables).

# Truck Route Description from Edmonton Waste Management Centre, EWMC (distances estimated):

Exit EWMC, turn right onto Aurum Road NE; Take the ramp and merge unto AB-216, head south on AB-216 for 17.3 km; Exit onto AB-14 E and continue for 77.6 km; Turn right onto AB-855 S, follow AB-855 S for 91.8 km; Turn right on AB-601, follow AB-601 for 1.6 km; Turn left to enter Paintearth Coal Mine.

Distance from EWMC: Approximately 188 km

## Vegetation prior to biosolids application:

Pasture grasses, annual crops, or unvegetated, freshly placed topsoil.

## Vegetation following biosolids applications for next three growing seasons:

Hybrid coppice willow plantation and cereal crops. A summary of willow plantation areas during the 2019-20 planting season can be found in Figure 1 (Appendix Two – Figures).

## SUPPORTING DOCUMENTATION (FILL OUT APPLICABLE FIELDS AS REQUIRED)

## Road Use Agreement (if applicable):

Issuing county: County of Paintearth No. 18

Contact: Colm Fitz-Gerald, Community Peace Officer, 403-740-2997

Roads and distances: Township Road 400 - Rural Road 155 to Highway 855, Township Road 404 to

mine property

Road bans (if applicable): Not Applicable for the hauling period

Value of bond posted: Not Applicable

**Agreement Date:** Agreement made effective on June 8, 2020 and expires on November 30, 2022

Post-project inspection completion date: A post-haul inspection may be conducted at the County's

sole discretion. The County shall notify SYLVIS of the date and time of the inspection.

## SITE MAP

Figure 2 (Appendix Two – Figures) provides an overview of all biosolids application areas completed in 2019 and 2020.

Table 2 (Appendix One – Tables) describes the distances from specified features for all the application sites.

## **HISTORIC BIOSOLIDS APPLICATIONS**

Biosolids have not been applied to areas within the Paintearth mine footprint previous to this project.

## **QUALITY ASSURANCE**

SYLVIS completed due diligence for biosolids quality assurance by reviewing laboratory results from August through October 2020. Comparison of the geometric mean to current regulatory criteria for biosolids quality and land application loading rates is provided in Table 3 and Table 4, Appendix One – Tables.

## **CURRENT PROJECT APPLICATION RATES AND METHODOLOGY**

**Biosolids Type:** Dewatered **Biosolids stockpiled?** Yes

Stockpile Duration<sup>1</sup>: September 2020 to June 2021

Application Method: Surface application with rear-discharge manure spreaders and incorporation with

agricultural tillage equipment

**Application rate:** Included in Table 1 by application area.

Have other amendments (e.g. lime) been co-applied? If so, specify material and application rate: Yes, lime was applied to two of seven sub-areas (land units) in Section 17 at rates of 2.7 (Land Unit #6) and 3.5 (Land Unit #5) dt/ha.

#### **POST-APPLICATION MONITORING**

**Required?:** Yes, post-application monitoring is required as per authorizations outside of the guidelines for the *Application of Municipal Wastewater Sludges to Agricultural Lands* (13/18 and West Pit Subsoil). Notifications meeting the guidelines but subject to monitoring requirements as per the Environmental Protection and Enhancement Act approval (00011364-03, as amended) will undergo post-application monitoring for AB Tier 1 trace elements/metals. This is a clarification of the report last year indicating that all applications made in 2019 do not require post-application monitoring.

Matrix (e.g. soil, crop, surface waste): soil (authorizations and notifications), surface water (13/18 authorization)

Constituents: Nutrients (soil & surface water), Salinity (soil), Trace elements/metals (soil).

**Frequency and duration:** One season following application (notifications) or as specified in the respective authorization monitoring plans (authorizations).

Application of results: Soil and surface water monitoring reports to AER and AEP.

### **PROJECT CHALLENGES**

Provided below is a summary of challenges experienced during the project and actions to improve project execution.

## Challenge 1 – Variability in Biosolids Availability:

Technical dewatering issues impacted biosolids availability. This had multiple project impacts including postponement of biosolids hauling, reductions in daily hauling cycles, and occasionally underfilled trucks. Trucks were also delayed due to slow fill times when silos were low. One incident this year involving watery biosolids helped identify a lack of control measures in place for identifying this issue. SUEZ quickly developed a new process to monitor water content by switching to taking samples from the silos, which was employed until the issue was resolved. A summary of the actual hauling schedule for the 2020 hauling season can be found in Figure 3 (Appendix Two – Figures).

To resolve the scheduling impacts, frequent communication was established with the primary contact at the dewatering facility to monitor silo levels and plan hauling on a day-to-day basis. The hauling season

<sup>&</sup>lt;sup>1</sup> Refers to timeframe wherein biosolids are over-wintering in stockpiles.

was extended to fulfill the 6,000 dt commitment (see Table 5, Appendix One – Tables for schedule details). To further streamline hauling next season, a 15:30 h no-go call time for hauling on a subsequent day could also be established. An enhanced feedback loop between WRV and SYLVIS is another proposed process to facilitate schedule and load solutions, i.e., information sharing would occur immediately if a truck takes too long to load or is below the 35 bt minimum.

## Challenge 2 – Accurate Reporting of Biosolids Transported to Site:

Inefficiencies were identified in the data sharing process between SYLVIS, EPCOR, and SUEZ as it relates to biosolids transportation. Weekly haul reports were being produced with preliminary data that were invalidated once SUEZ monthly reports were issued with more accurate data.

The issue of providing accurate biosolids hauling information has been addressed by decreasing the turnaround time for final %TS to one week.

## Challenge 3 – Haul Truck Breakdowns:

Mechanical breakdowns with WRV's haul trucks caused delays in hauling, varying from half-day to multiple-day adjustments. Open communication and information sharing was invaluable for addressing these circumstances and ensured any related safety concerns were addressed.

## APPENDIX ONE - TABLES

**Table 1:** Biosolids application site details for the Biosalix project in 2020.

| Site Name                                                                                                     | Classification                       | Application Rate <sup>(a)</sup><br>(dt/ha) | Application Area (ha) | Legal Descriptions                                                                                                                                                                          | Biosolids Application<br>Dates                                                    |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Section 5                                                                                                     | Class 1<br>(SW5-SW is Class 2)       | 19                                         | 95.9                  | 5-40-14W4M                                                                                                                                                                                  | May – June 2020                                                                   |
| Section 7                                                                                                     | Class 1                              | 24                                         | 49                    | SW 7-40-15-W4M                                                                                                                                                                              | May – June 2020;<br>October 2020                                                  |
| Section 12Ag                                                                                                  | Class 1                              | 19                                         | 11                    | NW/SW 12-40-15-W4M                                                                                                                                                                          | September 2020                                                                    |
| Section 13SE (13N)                                                                                            | Class 1                              | 24                                         | 6.5                   | SE13-40-16-W4M                                                                                                                                                                              | July – August 2020                                                                |
| Section 17                                                                                                    | Class 1 (Land Unit<br>#5 is Class 2) | 19                                         | 93                    | NW/SW 17-40-15-W4M<br>and SW 20-40-15-W4M                                                                                                                                                   | October – November<br>2020                                                        |
| Section 19                                                                                                    | Class 3                              | 10                                         | 12.6                  | NE 19-40-15-W4M                                                                                                                                                                             | May 2020                                                                          |
| Section 19E                                                                                                   | Class 1                              | 10                                         | 3.5                   | NE 19-40-15-W4M                                                                                                                                                                             | November 2020                                                                     |
| Section 20 (20NW)                                                                                             | Class 1                              | 24                                         | 26.2                  | NW/SW 20-40-15-W4M                                                                                                                                                                          | September 2020                                                                    |
| Section 24                                                                                                    | Class 1                              | 24                                         | 11.6                  | NW/NE 24-40-15-W4M                                                                                                                                                                          | May 2020                                                                          |
| Section 24N                                                                                                   | Class 1                              | 19                                         | 6.5                   | 24-40-15-W4M                                                                                                                                                                                | October 2020                                                                      |
| West Pit – consolidated application area* (WP1, WP2, WP4, WP5, WP7, WPNW11, WPSW11, WP SE15 (1), WP SE15 (2)) | Class 1 and 2                        | 25                                         | 116                   | The site is a long,<br>narrow strip of the SE<br>22-40-15-W4M, the<br>NE/SE 15-40-15-W4M,<br>NE 10-40-15-W4M,<br>NW/SW 11-40-15-W4M,<br>NE/NW 2-40-15-W4M,<br>and SE 15/NE10-40-16-<br>W4M. | June – September<br>2020 (applications<br>occurred as site<br>conditions allowed) |
| 13/18 Authorization                                                                                           | Class 1                              | 75                                         | 27                    | SE 13-40-16-W4M and<br>SW 18-40-15-W4M                                                                                                                                                      | August – September<br>2020                                                        |
| West Pit Subsoil<br>(WPSS) Authorization                                                                      | Class 1                              | 25                                         | 25.3                  | SE 22-40-16-W4M and<br>NE 15-40-16-W4M                                                                                                                                                      | October – November<br>2020                                                        |

<sup>(</sup>a) Highest rate shown if multiple rates used.



**Table 2:** Distances from specified features for all application sites.

| Features                                          | Buffer from Feature | Minimum Guideline Buffer |
|---------------------------------------------------|---------------------|--------------------------|
| Property Boundaries                               | > 10 m              | 10 m                     |
| Watercourses, Drainage<br>Courses, Surface Waters | > 30 m              | 30 m                     |
| Water Wells                                       | > 20 m              | 20 m                     |
| Public Roads                                      | > 30 m              | 30 m                     |
| Areas Zoned Residential or Urban Use              | > 500 m             | 500 m                    |
| Occupied Dwellings                                | > 60 m              | 60 m                     |
| Public Buildings                                  | > 60 m              | 60 m                     |
| School Yard Boundaries (in session)               | > 200 m             | 200 m                    |
| Cemeteries, Playgrounds,<br>Parks, Campgrounds    | > 200 m             | 200 m                    |

Table 3: Trace element (TE) concentrations and minimum acceptable ratios of nitrogen (N) and phosphorus (P) to TEs.

| Constituent           | Concentration <sup>1</sup> (mg/kg) | N/TE   | Guideline N/TE<br>Minimum Ratio <sup>2</sup> | P/TE   | Guideline P/TE<br>Minimum Ratio <sup>2</sup> |
|-----------------------|------------------------------------|--------|----------------------------------------------|--------|----------------------------------------------|
| Trace Elements        |                                    |        |                                              |        |                                              |
| Cadmium               | 3.22                               | 17,396 | 1,500                                        | 9,439  | 600                                          |
| Chromium              | 62.9                               | 847.0  | 20                                           | 460    | 8                                            |
| Copper                | 522                                | 94     | 15                                           | 51     | 6                                            |
| Lead                  | 37.2                               | 1,633  | 20                                           | 886    | 8                                            |
| Mercury               | 1.06                               | 45,229 | 3,000                                        | 24,542 | 1,100                                        |
| Nickel                | 35.4                               | 1,330  | 100                                          | 722    | 40                                           |
| Zinc                  | 743                                | 58     | 10                                           | 31     | 4                                            |
| Fertility Parameters  |                                    |        |                                              |        |                                              |
| Nitrogen <sup>2</sup> | 45,229                             | -      | -                                            | -      | -                                            |
| Total Phosphorus      | 24,542                             | -      | -                                            | -      | -                                            |

<sup>&</sup>lt;sup>1</sup> Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of June through October in 2020. EPCOR lab reports 202006230045, 202007310022, 202009100009, 202009150034, and 202010140040.

<sup>&</sup>lt;sup>2</sup> Minimum ratios as specified in the *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, 2001.* 

**Table 4:** Trace element and nutrient loading rates based on the maximum biosolids application rate of 24 dt/ha.

| Constituent          | Unit  | Biosolids<br>Concentration <sup>2</sup> | Loading Rate<br>(kg/ha) | Guideline Limit <sup>1</sup> |
|----------------------|-------|-----------------------------------------|-------------------------|------------------------------|
| Trace Elements       |       |                                         |                         |                              |
| Arsenic              | mg/kg | 2.6                                     | 0.3                     | -                            |
| Cadmium              | mg/kg | 2.6                                     | 0.06                    | 1.5                          |
| Chromium             | mg/kg | 53.4                                    | 1.28                    | 100                          |
| Copper               | mg/kg | 480                                     | 11.5                    | 200                          |
| Lead                 | mg/kg | 27.7                                    | 0.66                    | 100                          |
| Manganese            | mg/kg | 287                                     | 6.89                    | -                            |
| Mercury              | mg/kg | 1.0                                     | 0.02                    | 0.5                          |
| Nickel               | mg/kg | 34                                      | 0.82                    | 25                           |
| Selenium             | mg/kg | 5.3                                     | 0.13                    | -                            |
| Zinc                 | mg/kg | 784                                     | 18.8                    | 300                          |
| Fertility Parameters |       |                                         |                         |                              |
| Total Phosphorus     | mg/kg | 24542                                   | 601                     | -                            |
| Total Nitrogen       | mg/kg | 45229                                   | 833                     | -                            |

<sup>&</sup>lt;sup>1</sup> Maximum Cumulative Additions to Class 1 Sites for a single application from the *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Land, 2001.* Where values are not provided, there is no applicable guideline.

<sup>&</sup>lt;sup>2</sup> Concentrations are the geometric mean of data from the Quality Assurance Laboratory for Gold Bar for the months of June through October in 2020. EPCOR lab reports 202006230045, 202007310022, 202009100009, 202009150034, and 202010140040.

**Table 5:** Documentation of daily biosolids transfers to the project site.

| Date          | Target Biosolids<br>Tonnage<br>(dt) | Actual<br>Biosolids<br>Tonnage<br>(dt) | Running Total<br>(dt) | Daily Variance<br>(dt) | Reason for Significant Variances                                                                                                |
|---------------|-------------------------------------|----------------------------------------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| June 15, 2020 | 34.93                               | 33.75                                  | 33.75                 | -1.18                  |                                                                                                                                 |
| June 16, 2020 | 87.32                               | 66.38                                  | 100.13                | -20.94                 |                                                                                                                                 |
| June 17, 2020 | 87.32                               | 71.75                                  | 171.88                | -15.57                 |                                                                                                                                 |
| June 18, 2020 | 87.32                               | 35.73                                  | 207.61                | -51.59                 | Suez had equipment issues - insufficient materials to haul.                                                                     |
| June 19, 2020 | 87.32                               | 86.06                                  | 293.67                | -1.26                  |                                                                                                                                 |
| June 20, 2020 | 87.32                               | 51.22                                  | 344.89                | -36.10                 |                                                                                                                                 |
| June 22, 2020 | 87.32                               | 68.36                                  | 413.25                | -18.96                 |                                                                                                                                 |
| June 23, 2020 | 87.32                               | 34.45                                  | 447.70                | -52.87                 | Suez had delay in polymer delivery – insufficient materials to haul.                                                            |
| June 24, 2020 | 87.32                               | 60.13                                  | 507.83                | -27.19                 | Suez had equipment issues – insufficient materials to haul.                                                                     |
| June 25, 2020 | 87.32                               | 0                                      | 507.83                | -87.32                 |                                                                                                                                 |
| June 26, 2020 | 87.32                               | 62.81                                  | 570.64                | -24.51                 | Suez had equipment issues – insufficient materials to haul.                                                                     |
| June 27, 2020 | 87.32                               | 69.71                                  | 640.35                | -17.61                 |                                                                                                                                 |
| June 29, 2020 | 87.32                               | 86.58                                  | 726.93                | -0.74                  |                                                                                                                                 |
| June 30, 2020 | 87.32                               | 86.61                                  | 813.54                | -0.71                  |                                                                                                                                 |
| July 2, 2020  | 87.32                               | 86.01                                  | 899.55                | -1.31                  |                                                                                                                                 |
| July 3, 2020  | 87.32                               | 113.02                                 | 1012.57               | 25.70                  |                                                                                                                                 |
| July 4, 2020  | 87.32                               | 62.54                                  | 1075.11               | -24.78                 | WRV truck broke down during haul.                                                                                               |
| July 6, 2020  | 87.32                               | 75.88                                  | 1150.99               | -11.44                 | 9 loads total provided by Suez, and the remaining 1/2 load delivered from broken down WRV truck.                                |
| July 7, 2020  | 87.32                               | 60.31                                  | 1211.3                | -27.01                 | Watery biosolids resulted in washing of 2 WRV trucks, low tonnage, and delays from vacuuming for the last WRV truck of the day. |
| July 8, 2020  | 87.32                               | 69.36                                  | 1280.66               | -17.96                 |                                                                                                                                 |

| Date           | Target Biosolids<br>Tonnage<br>(dt) | Actual<br>Biosolids<br>Tonnage<br>(dt) | Running Total<br>(dt) | Daily Variance<br>(dt) | Reason for Significant Variances                                                                    |
|----------------|-------------------------------------|----------------------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------|
| July 9, 2020   | 87.32                               | 86.31                                  | 1366.97               | -1.01                  |                                                                                                     |
| July 10, 2020  | 87.32                               | 114.20                                 | 1481.17               | 26.88                  |                                                                                                     |
| July 11, 2020  | 87.32                               | 61.21                                  | 1542.38               | -26.11                 |                                                                                                     |
| July 13, 2020  | 87.32                               | 88.03                                  | 1630.41               | 0.71                   |                                                                                                     |
| July 14, 2020  | 87.32                               | 90.19                                  | 1720.60               | 2.87                   |                                                                                                     |
| July 15, 2020  | 87.32                               | 56.87                                  | 1777.47               | -30.45                 | Equipment issues – insufficient material to haul.                                                   |
| July 16, 2020  | 87.32                               | 86.59                                  | 1864.06               | -0.73                  |                                                                                                     |
| July 17, 2020  | 87.32                               | 44.80                                  | 1908.86               | -42.52                 | Equipment issues – insufficient material to haul.                                                   |
| July 18, 2020  | 87.32                               | 0.00                                   | 1908.86               | -87.32                 | Suez unable to provide any biosolids due to an issue with their production facility.                |
| July 20, 2020  | 87.32                               | 93.53                                  | 2002.39               | 6.21                   |                                                                                                     |
| July 21, 2020  | 87.32                               | 90.76                                  | 2092.96               | 3.44                   |                                                                                                     |
| July 22, 2020  | 87.32                               | 86.79                                  | 2179.75               | -0.53                  |                                                                                                     |
| July 23, 2020  | 87.32                               | 89.09                                  | 2268.84               | 1.77                   | WRV truck broke down.                                                                               |
| July 24, 2020  | 87.32                               | 98.70                                  | 2367.54               | 11.38                  |                                                                                                     |
| July 25, 2020  | 87.32                               | 77.18                                  | 2444.72               | -10.14                 |                                                                                                     |
| July 27, 2020  | 87.32                               | 78.06                                  | 2522.78               | -9.26                  | WRV truck did not come back for second load.                                                        |
| July 28, 2020  | 87.32                               | 95.91                                  | 2618.69               | 8.59                   |                                                                                                     |
| July 29, 2020  | 87.32                               | 36.58                                  | 2655.27               | -50.74                 | Two WRV trucks broke down. Issues with dewatering the biosolids left insufficient material to haul. |
| July 30, 2020  | 87.32                               | 62.59                                  | 2717.86               | -24.73                 | Issues with dewatering the biosolids left insufficient material to haul.                            |
| July 31, 2020  | 87.32                               | 92.01                                  | 2809.87               | 4.69                   |                                                                                                     |
| August 1, 2020 | 87.32                               | 71.54                                  | 2881.41               | -15.78                 |                                                                                                     |
| August 2, 2020 | 87.32                               | 0.00                                   | 2881.41               | -87.32                 |                                                                                                     |
| August 4, 2020 | 87.32                               | 64.41                                  | 2945.82               | -22.91                 | Power outage at Suez facility – insufficient material to haul.                                      |

| Date            | Target Biosolids<br>Tonnage<br>(dt) | Actual<br>Biosolids<br>Tonnage<br>(dt) | Running Total<br>(dt) | Daily Variance<br>(dt) | Reason for Significant Variances                                                                 |
|-----------------|-------------------------------------|----------------------------------------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------|
| August 5, 2020  | 87.32                               | 46.69                                  | 2992.51               | -40.63                 | Repairs from power outage at Suez facility – insufficient material to haul.                      |
| August 6, 2020  | 87.32                               | 54.67                                  | 3047.18               | -32.65                 | WRV short of drivers due to re-assignment during Suez power outage.                              |
| August 7, 2020  | 87.32                               | 36.93                                  | 3084.11               | -50.39                 | Sylvis and WRV agreed to halt hauling for the afternoon due to strong wind conditions.           |
| August 8, 2020  | 87.32                               | 54.25                                  | 3138.36               | -33.07                 | WRV short of drivers due to re-assignment during Suez power outage.                              |
| August 10, 2020 | 87.32                               | 87.89                                  | 3226.25               | 0.57                   |                                                                                                  |
| August 11, 2020 | 87.32                               | 89.34                                  | 3315.59               | 2.02                   |                                                                                                  |
| August 12, 2020 | 87.32                               | 92.02                                  | 3407.61               | 4.70                   |                                                                                                  |
| August 13, 2020 | 87.32                               | 85.56                                  | 3493.17               | -1.76                  | WRV truck broke down.                                                                            |
| August 14, 2020 | 87.32                               | 94.27                                  | 3587.44               | 6.95                   |                                                                                                  |
| August 15, 2020 | 87.32                               | 79.42                                  | 3666.86               | -7.90                  |                                                                                                  |
| August 17, 2020 | 87.32                               | 62.57                                  | 3729.43               | -24.75                 | Suez equipment issues – insufficient material to haul. WRV truck broke down.                     |
| August 18, 2020 | 87.32                               | 78.00                                  | 3807.43               | -9.32                  | WRV truck broke down – limited loads hauled.                                                     |
| August 19, 2020 | 87.32                               | 89.39                                  | 3896.82               | 2.07                   |                                                                                                  |
| August 20, 2020 | 87.32                               | 87.68                                  | 3984.5                | 0.36                   |                                                                                                  |
| August 21, 2020 | 87.32                               | 88.31                                  | 4072.81               | 0.99                   | Last WRV truck of day unable to deliver last load due to limited material available.             |
| August 22, 2020 | 87.32                               | 36.16                                  | 4108.97               | -51.16                 | Suez equipment issues – insufficient material to haul.                                           |
| August 24, 2020 | 87.32                               | 90.78                                  | 4199.75               | 3.46                   | 8 loads delivered to site, 2 trucks pre-loaded for next day.                                     |
| August 25, 2020 | 87.32                               | 80.26                                  | 4280.01               | -7.06                  | WRV truck needed repairs in the morning. Only 9 loads picked up from Suez and delivered to mine. |
| August 26, 2020 | 87.32                               | 87.83                                  | 4367.84               | 0.51                   |                                                                                                  |
| August 27, 2020 | 87.32                               | 87.37                                  | 4455.21               | 0.05                   |                                                                                                  |
| August 28, 2020 | 87.32                               | 85.27                                  | 4540.48               | -2.05                  |                                                                                                  |
| August 29, 2020 | 87.32                               | 69.07                                  | 4609.55               | -18.24646              |                                                                                                  |

| Date                                 | Target Biosolids<br>Tonnage<br>(dt) | Actual<br>Biosolids<br>Tonnage<br>(dt) | Running Total<br>(dt) | Daily Variance<br>(dt) | Reason for Significant Variances                                     |
|--------------------------------------|-------------------------------------|----------------------------------------|-----------------------|------------------------|----------------------------------------------------------------------|
| August 30 –<br>September 15,<br>2020 | 436.58 <sup>1</sup>                 | 0.00                                   | 4609.55               | -436.58                | Suez paused hauling for repairs.                                     |
| September 16,<br>2020                | 0.00                                | 53.49                                  | 4663.04               | 53.49                  | Pump issues – insufficient material to haul.                         |
| September 17,<br>2020                | 0.00                                | 61.87                                  | 4724.91               | 61.87                  | Suez recovering capacity from pump issues.                           |
| September 18,<br>2020                | 0.00                                | 88.02                                  | 4812.93               | 88.02                  |                                                                      |
| September 19,<br>2020                | 0.00                                | 88.87                                  | 4901.80               | 88.87                  |                                                                      |
| September 21,<br>2020                | 0.00                                | 87.68                                  | 4989.48               | 87.68                  |                                                                      |
| September 22,<br>2020                | 0.00                                | 89.04                                  | 5078.52               | 89.04                  |                                                                      |
| September 23,<br>2020                | 0.00                                | 87.91                                  | 5166.43               | 87.91                  |                                                                      |
| September 24,<br>2020                | 0.00                                | 0.00                                   | 5166.43               | 0                      |                                                                      |
| September 25,<br>2020                | 0.00                                | 96.92                                  | 5263.35               | 96.92                  |                                                                      |
| September 26,<br>2020                | 0.00                                | 81.49                                  | 5344.84               | 81.49                  |                                                                      |
| September 28,<br>2020                | 0.00                                | 91.36                                  | 5436.20               | 91.36                  |                                                                      |
| September 29,<br>2020                | 0.00                                | 87.29                                  | 5523.49               | 87.29                  |                                                                      |
| September 30,<br>2020                | 0.00                                | 46.09                                  | 5569.58               | 46.09                  | Suez had issues with utility water tank and centrate flow.           |
| October 2, 2020                      | 0.00                                | 87.92                                  | 5657.50               | 87.92                  | WRV truck required repairs.                                          |
| October 3, 2020                      | 0.00                                | 80.05                                  | 5737.55               | 80.05                  |                                                                      |
| October 5, 2020                      | 0.00                                | 0.00                                   | 5737.55               | 0.00                   | Suez unable to produce biosolids due to utility water system issues. |

| Date                | Target Biosolids<br>Tonnage<br>(dt) | Actual<br>Biosolids<br>Tonnage<br>(dt) | Running Total<br>(dt) | Daily Variance<br>(dt) | Reason for Significant Variances                              |
|---------------------|-------------------------------------|----------------------------------------|-----------------------|------------------------|---------------------------------------------------------------|
| October 6, 2020     | 0.00                                | 91.83                                  | 5829.38               | 91.83                  |                                                               |
| October 7, 2020     | 0.00                                | 35.16                                  | 5864.54               | 35.16                  | Equipment issues – insufficient material to haul.             |
| October 8, 2020     | 0.00                                | 85.52                                  | 5950.06               | 85.52                  |                                                               |
| October 9, 2020     | 0.00                                | 17.10                                  | 5967.16               | 17.10                  | Equipment issues – insufficient material to haul.             |
| October 10,<br>2020 | 0.00                                | 19.65                                  | 5986.81               | 19.65                  | Equipment issues – insufficient material to haul.             |
| October 14,<br>2020 | 0.00                                | 8.58                                   | 5995.39               | 8.58                   | Suez fulfilled final load required for end of hauling season. |

<sup>&</sup>lt;sup>1</sup>The Target Biosolids Tonnage (dt) accumulated to 6000 dt by September 3, 2020. This data reflects the target daily tonnage for August 30 – September 3, 2020.

## **APPENDIX TWO - FIGURES**

Figure 1. Overview map of willow planation areas for the Biosalix project in 2019 and 2020.

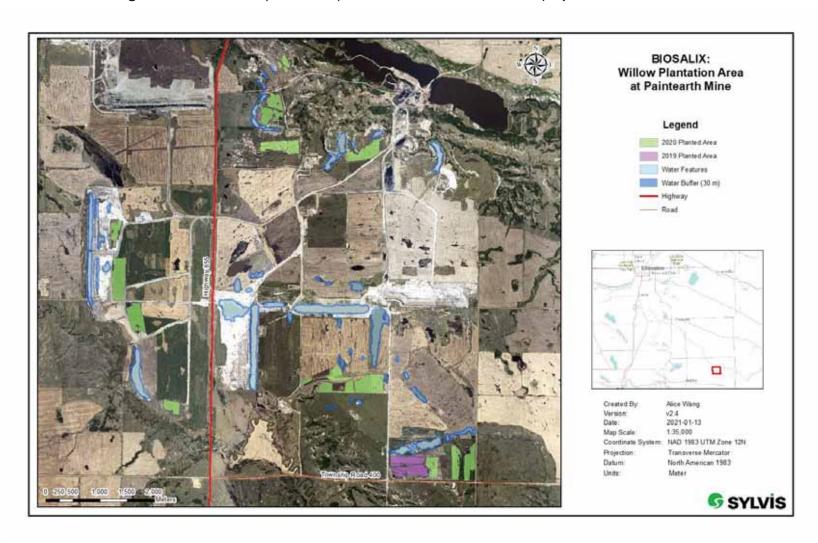





Figure 2. Overview map of application areas for biosolids delivered to the Biosalix project in 2019 and 2020.

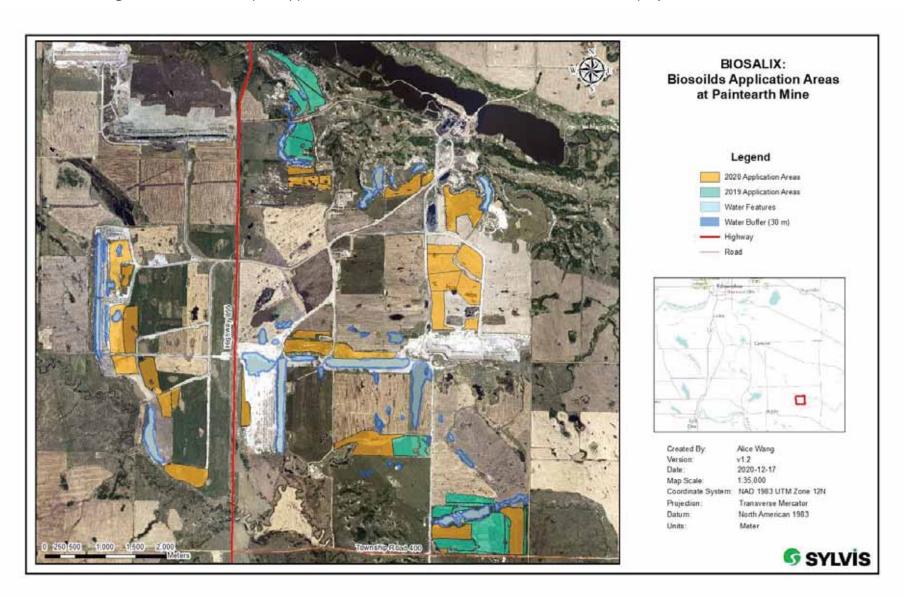
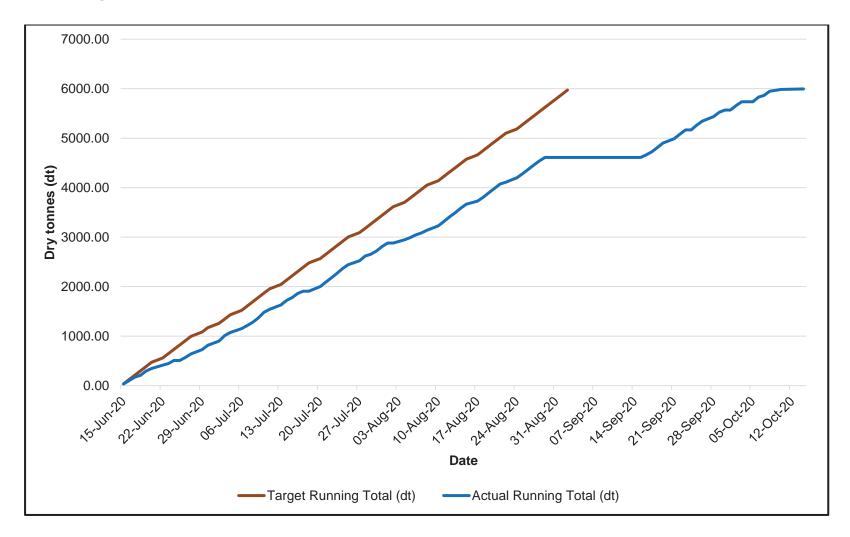
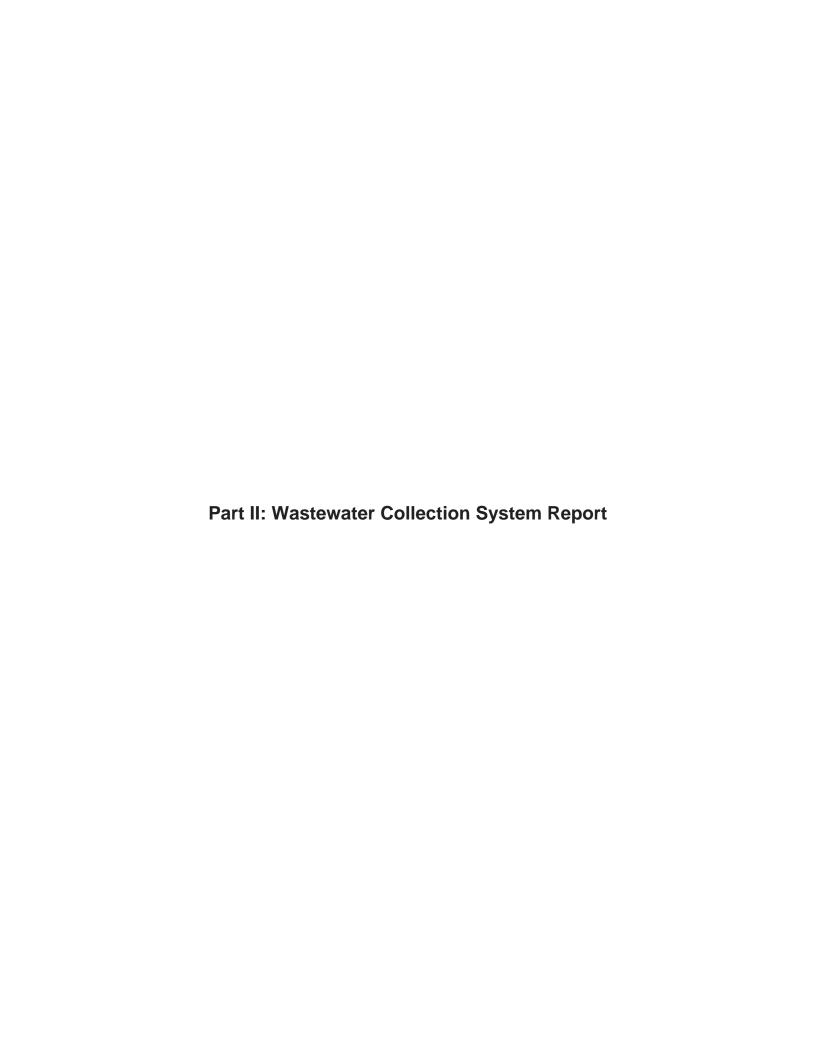





Figure 3. Cumulative targeted versus actual dry tonnage (dt) of biosolids hauled from June 15 to October 15, 2020.







# EPCOR Water Services Inc. Drainage Services Edmonton, Alberta

## 2020 Annual Wastewater Collection System Report

## **SUBMITTED TO:**

The Province of Alberta

**Alberta Environment and Parks (AEP)** 

As per requirements of:

**APPROVAL NO. 639-03-06** 

February - 2021

## TABLE OF CONTENTS

|                                                                                       | Approval No. 639-03-06 Requirement                                                                                  | Page |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|
| 2020 Overview                                                                         | N/A                                                                                                                 | 3    |
| Table 1: 2020 Summary of Completed Projects and Planned Major Rehabilitation Projects | 4.4.6 – Wastewater Collection System<br>Operations Plan                                                             | 5    |
| Interconnection Control Strategy                                                      | 4.4.6 (c) – Wastewater Collection System<br>Operations Plan, Interconnection<br>Identification and Control Strategy | 8    |
| Storm and CSO Volumes and Loadings                                                    | 4.4.6 (g) – Wastewater Collection System<br>Operations Plan –River Load Calculation<br>Protocol                     | 30   |
|                                                                                       | 6.3.3 (b) (v)– Annual Wastewater System<br>Report                                                                   |      |
| Table 2: 2020 Annual Discharge Volumes                                                | 4.4.6 (g) – Wastewater Collection System<br>Operations Plan –River Load Calculation<br>Protocol                     | 35   |
|                                                                                       | 6.3.3 (b) (v) – CSO Annual Discharge<br>Volumes                                                                     |      |
| Table 3: Calculated Flow-Weighted Mean<br>Monthly and Annual Constituents for 2020    | 4.4.6 (g) – Wastewater Collection System<br>Operations Plan –River Load Calculation<br>Protocol                     | 36   |
| Table 4: Constituent Loads for 2020                                                   | 4.4.6 (g) – Wastewater Collection System<br>Operations Plan –River Load Calculation<br>Protocol                     | 39   |
| Table 5: 2020 Rat Creek CSO Concentration Statistics                                  | 6.3.3 (b)(i,ii) – CSO Monthly Mean<br>Concentrations Release Events per<br>Table 6-1                                | 41   |
| Table 6: 2020 List of Certified Collection                                            | 4.5.2 – Certified Operator Requirements                                                                             | 42   |
| System Operators                                                                      | 6.3.3 (b)(iv) – Wastewater Collection<br>Supervising Operator                                                       | 72   |
| Table 7: 2020 Annual Product Usage at Pump Stations                                   | 4.4.6 (d) – Wastewater Collection System<br>Chemical Usage Protocol                                                 | 45   |
|                                                                                       | 6.3.3 (b)(iii) – summary of chemical added                                                                          |      |
| Table 8: 2020 Usage of Reward® Herbicide                                              | 4.4.6 (d) – Wastewater Collection System<br>Chemical Usage Protocol                                                 | 45   |
|                                                                                       | 6.3.3 (b)(iii) – summary of chemical added                                                                          |      |

| Table 9a: 2020 Usage of Potassium Permanganate           | 4.4.6 (d) – Wastewater Collection System<br>Chemical Usage Protocol        | 46 |
|----------------------------------------------------------|----------------------------------------------------------------------------|----|
| Table 9b: 2020 Usage of Bright Dyes®                     | 6.3.3 (b)(iii) – summary of chemical added                                 |    |
| Table 10: 2020 Usage of De-Icing Product (Arctic Blast®) | 4.4.6 (d) – Wastewater Collection System<br>Chemical Usage Protocol        | 47 |
|                                                          | 6.3.3 (b)(iii) – summary of chemical added                                 |    |
| Table 11: 2020 List of Operational Issues                | 6.3.3 (b)(vii, viii) – List of Operation Problems and Incidents Per 2.1.1. | 52 |

## 2020 Overview

EPCOR Drainage Services provides wastewater and stormwater drainage services to City of Edmonton (the 'City') residents by planning, building, operating, and maintaining the pipes, tunnels, pump stations, and stormwater management facilities that make up the drainage network.

Project Management and Engineering are responsible for projects that are in the preliminary design or detailed design phase. They manage in-house engineering design, cost estimation, and drafting. Projects include new sewer infrastructure projects like tunnels, pipes, manholes, wetlands, and the coordination of sewer rehabilitation work.

Drainage construction services is responsible for the in-house construction and emergency repairs on the collection systems. The rehabilitation construction team uses a wide variety of construction methods to rehabilitate the system and build for growth using open-cut and trenchless techniques. The customer construction group completes service connections, renews existing drainage assets, and completes emergency and high priority repairs.

Infrastructure like sewers and structures in the drainage system require ongoing maintenance. Drainage Services Operations — which includes pipeline maintenance, flow-control facilities, monitoring and compliance, and operations engineering — inspect and monitor drainage systems to ensure service to customers is maintained and to optimize the short-term maintenance required. They also reduce the possibility of customer sewer back-ups caused by service connection blockages and minimize disruptions to the public.

Drainage Services are supported by a number of other groups throughout EPCOR such as Public and Governmental Affairs, Supply Chain Management, Fleet and Equipment, Facilities and Finance.

Collection and conveyance of wastewater and stormwater is carried out through the drainage system which consists of sanitary and stormwater collection infrastructure.

The sanitary collection infrastructure includes nearly 2,800 km of sanitary sewer, over 800 km of combined sanitary and storm sewer that connect all customers to sanitary trunk sewers. Sanitary trunks then deliver wastewater directly to the Gold Bar Wastewater Treatment Plant (WWTP).

A portion of the conveyance of wastewater is covered under a Wastewater Exchange Agreement between EPCOR and the Alberta Capital Region Wastewater Commission (ACRWC). The ACRWC Treatment Plant takes wastewater from Clareview in northeast Edmonton and from the Clover Bar Industrial Area. In exchange, the sanitary collection system conveys wastewater from the south members (City and County of Leduc, and the Town of Beaumont) for treatment at the Gold Bar WWTP.

The stormwater collection infrastructure includes over 3,100 km of storm sewer, 61,000 catch basins, and 12,000 catch basin manholes. This stormwater collection infrastructure is connected to stormwater trunk sewers. Storm trunks then discharge stormwater to natural watercourses, i.e. creeks and the North Saskatchewan River, through one of 259 outfalls. Strategically placed within the stormwater collection system are 286 stormwater management facilities which provide flood prevention, peak-flow attenuation, and treatment through stormwater retention.

Between the sanitary/combined sewer system and stormwater system there are 91 pumpstations

which ensure proper servicing to EPCOR's customers in Edmonton.

In 2020, EPCOR's Drainage capital and operational projects focused on the improvement and expansion of the underground infrastructure system, reduction of odour nuisances and protection of the drainage infrastructure due to corrosion. This work was done through its in-house construction expertise, performing open-cut and tunnel construction, as well as specialized equipment such as tunnel boring machines.

In 2019, Edmonton City Council approved EPCOR's Stormwater Integrated Resource Plan (SIRP) to provide a risk-based approach to prioritize investments in stormwater infrastructure. SIRP was identified by the City as one of the action items to support overall City ability to adapt to changing climate conditions and aligned with the City's Climate Change Adaptation and Resiliency Strategy. In 2020, further strategy development occurred along with the beginning of capital investment to protect customers in Edmonton from the effects of flooding. The risk methodology captures capacity, condition, environmental, and social factors on a risk grid overlaid on a map of the City's neighbourhoods. The goal is to slow, move, secure, predict, and respond to flooding events to prevent or reduce the impact.

A second strategy approved in 2019 is the Corrosion and Odour Reduction (CORe) Strategy. The formation and release of hydrogen sulphide (H2S) gas from the sewer system negatively impacts communities, corrodes infrastructure, and makes maintenance and inspection challenging. In 2020, under CORe, Drainage Services created a city-wide snap shot of the hydrogen sulfide distribution in Edmonton's sewer head space by deploying monitoring infrastructure across more than 80 locations in the sanitary and combined sewer system. Through CORe, Drainage Services has increased its hydrogen sulfide monitoring capacity by purchasing an additional twenty-seven gas-phase monitors as well as two liquid phase field hydrogen sulfide monitors. Based on the information collected in 2020 and in consultation with the integrated resource planning working group, CORe is now finalizing the placement locations for 10 permanent in-sewer monitoring stations and is initiating an assessment to identify candidate locations for ambient surface monitoring of hydrogen sulfide.

Drainage Services is fully committed to the protection of the environment and the health and safety of its employees, customers, and neighbours. Health and safety and the environment (HSE), including public health safety, is one of the top priorities of EPCOR. In order to continually improve our environmental performance, Drainage Services operates with an ISO 14001:2015 registered Environmental Management System (EMS). In 2021 Drainage Services is planning the roll out of an integrated management system that operates according to the ISO14001:2015 standard and the ISO 45001:2014 standard for Safety Management Systems

As required by Approval #639-03-06, EPCOR - Drainage Services is submitting the 2020 Annual Wastewater Collection System Report.

This Annual Wastewater Collection System Report submission includes: 2020 Drainage Services Capital Program summary, Interconnection Control Strategy Annual Report, Collection System Monitoring and Assessment Annual Report, and Collection System Operational details.

# **TABLE 1: Summary of 2020 Completed Projects and Planned Major Rehabilitation Projects**

| Program/Project                                                    | Completion |
|--------------------------------------------------------------------|------------|
| Drainage System Expansion                                          |            |
| Imagine Jasper                                                     | Jan-2021   |
| Jasper New Vision                                                  | Jan-2021   |
| SWMF Safety Review Phase II                                        | Sep-2021   |
| Yellowhead Trail Freeway Conversion (Area 2)                       | Dec-2021   |
| Yellowhead Trail Freeway Conversion (Area 3)                       | Dec-2021   |
| 50 Street Wide & CPR Sewer Relocate                                | Dec-2021   |
| Servicing for Downtown Intensification (105 Sewer Lateral Project) | Dec-2022   |
| Orainage System Rehabilitation                                     |            |
| SW3 Trunk Sewer and Manhole Rehabilitation                         | Feb-2020   |
| Whitemud Drive Steel Plates Rehabilitation                         | Mar-2020   |
| Dunluce Pump Station Upgrade                                       | Mar-2020   |
| Jasper Utilidor Sewer Rehabilitation Project                       | Apr-2020   |
| Duggan Pump Station Upgrades                                       | Apr-2020   |
| Wedgewood                                                          | Apr-2020   |
| South Westridge                                                    | Apr-2020   |
| Rhatigan Road Emergency                                            | Apr-2020   |
| Whitemud Drive &106 Street NW                                      | Jun-2020   |
| Sanitary CB Lead Removal                                           | Jul-2020   |
| Station Safety Upgrades                                            | Aug-2020   |
| Groat Road Trunk Sewer Rehabilitation                              | Oct-2020   |
| Ottewell Major Flooding (62 St / 63 St at 94A Ave / 94B Ave NW)    | Nov-2020   |
| Pipe 38809 - 130 Avenue & E113A Street NW (Lauderdale)             | Dec-2020   |
| Emergency 184 Street & 57 Avenue NW                                | Dec-2020   |
| Trunk Sewer - 149 Street & Stony Plain Road NW                     | Dec-2020   |
| Emergency Whitemud Trestle #7                                      | Dec-2020   |
| Clifton Place Pump Station Upgrade                                 | Dec-2020   |
| Kaskitayo Carma-2C                                                 | Dec-2020   |
| St Georges Crescent NW                                             | Dec-2020   |
| Metro LRT PH1 Sewer Relocate                                       | Jan-2021   |
| Emergency 119 Street Westbrook                                     | Feb-2021   |
| RTC #4 Stop Logs Rehabilitation                                    | Feb-2021   |
| Westridge Subsidence                                               | Mar-2021   |
|                                                                    |            |

| Program/Project                                                      | Completion |
|----------------------------------------------------------------------|------------|
| Larkspur Pond Pump Replace                                           | Jun-2021   |
| Double Barrel SAN-11                                                 | Jun-2021   |
| Service Reconnection and Sanitary Sewer Replacement (15317-87Avenue) | Jun-2021   |
| Outfall Rehabilitation - #51                                         | Aug-2021   |
| Trestle #5                                                           | Nov-2021   |
| North Griesbach Pump Station                                         | Dec-2021   |
| Trestle #7 - Rehab and Replace                                       | Dec-2021   |
| Emergency Void (109 Street & 61 Avenue NW)                           | Dec-2021   |
| Sanitary Chamber Repair (127 Street & 153 Avenue NW)                 | Dec-2021   |
| New Buena Vista Pump Station                                         | Dec-2021   |
| Outfall Rehabilitation - #80                                         | Dec-2021   |
| Outfall Rehabilitation - #154                                        | Dec-2021   |
| Clareview Sanitary Trunk - Rehabilitation Project                    | Dec-2021   |
| Large Trunk Rehabilitation: Area S-1                                 | Dec-2021   |
| Cloverbar Valve, Chamber & Piping Rehab                              | Dec-2021   |
| 2019-2020 Pump Station Rehabilitation                                | Dec-2021   |
| 2020 Drill Drop Manhole (DDMH) Rehabilitation/Replacement Projects   | Dec-2021   |
| NC1 Bypass (121 Street & 153 Avenue NW)                              | Jan-2022   |
| Waterdale Pump Station #171                                          | Dec-2022   |
| Gold Bar Utilidor (PW552 and 147) Rehabilitation                     | Dec-2022   |
| Large Trunk Rehabilitation: Area S-2a                                | Dec-2022   |
| NL1 Sanitary Chamber Rehabilitation                                  | Dec-2022   |
| Sanitary Trunk Rehabilitation - Phase II (151 Street & 99 Avenue NW) | Dec-2023   |
| West Valley Line LRT - Sewer Relocation                              | Dec-2024   |
| 2019 Trunk Sewer Rehabilitation - Area C-2                           | Dec-2024   |
| Mill Creek Combined Trunk Rehabilitation                             | Dec-2024   |
| Environmental Quality Enhance                                        |            |
| Duggan Tunnel Replacement                                            | Jan-2025   |
| Kinnaird Opportunistic Sewer Separation                              | Dec-2022   |
| 2020 Pump Station Treatment                                          | Dec-2021   |
| 2019-2021 Manhole Access                                             | Dec-2021   |
| 2019 - 2021 Drop Shaft Modifications                                 | Dec-2021   |
| EPCOR Site Rain Garden                                               | Oct-2021   |
| Pump Station Optimiz                                                 | Jun-2021   |
| Accelerated Access Manhole                                           | Dec-2020   |

| Program/Project                                                       | Completion |
|-----------------------------------------------------------------------|------------|
| 2020 Ventilation Control Program                                      | Dec-2020   |
| Cloverbar Cell # 1-4 Redevelopment (Cell 3E Relining)                 | Nov-2020   |
| Silverberry 4 Pond Naturalization Pilot                               | Oct-2020   |
| Flood Mitigation                                                      |            |
| Malcolm Tweddle & Edith Rogers Dry Ponds                              | Dec-2023   |
| Rideau Park, Empire Park, Duggan Upgrade                              | Dec-2022   |
| Parkdale Dry Pond                                                     | Dec-2022   |
| Kenilworth Dry Pond                                                   | Dec-2022   |
| Ermineskin / Steinhauer                                               | Oct-2022   |
| Tweddle Place                                                         | Dec-2021   |
| 2020 Overland Drainage                                                | Dec-2021   |
| Proactive Manhole Sealing                                             | Dec-2021   |
| Proactive Pipe Relining                                               | Dec-2021   |
| 2019 2020 Low Impact Development on Public Lands Coordination Program | Dec-2020   |
| Hurstwood Estates (Maple Ridge)                                       | Oct-2020   |
| 2019 Manhole Relining and Insert                                      | Oct-2020   |
| Parkallen Dry Pond (PA1)                                              | Sep-2020   |
| Westbrook Estates                                                     | Jun-2020   |
| Opportunistic Pipe Relining                                           | Jun-2020   |
| Morris Pond                                                           | May-2020   |
| Aldergrove                                                            | Apr-2020   |
| SSSF Projects                                                         |            |
| SW5                                                                   | Dec-2024   |
| NEST NC2 & NC3                                                        | Jun-2022   |
| SESS SW4                                                              | Dec-2021   |
| SESS SA10A                                                            | Dec-2021   |
| SW1 Pump Station Upgrades                                             | Jun-2021   |

## Interconnection Control Strategy

#### **EXECUTIVE SUMMARY**

In response to a requirement in the 1995 Approval to Operate (No. 95-MUN-117), Drainage Services prepared an Interconnection Control Strategy. Through this Strategy, EPCOR embarked on its mitigation and monitoring program in the context of "perpetual monitoring and assessment" (Figure 1).

An interconnection is designed to allow sanitary or combined sewage to overflow into the storm system, in order to relieve the sewer system under high flow conditions. Since 1998, a program has been in place to minimize the contamination of stormwater with sanitary sewage by monitoring, assessing and eliminating or mitigating all interconnections between the two systems. This will reduce the total loading of contaminants to the North Saskatchewan River.

Under the current Approval (639-03-06), issued in 2020, EPCOR intends to continue with the existing processes and reporting through the Wastewater System Operations Plan. This report presents summaries of: status and mitigation activities for known and newly discovered interconnections (I/Cs); results of the 2020 monitoring program; and status of the Interconnection Rectification Assessment project.

## **Interconnection Status**

During 2020, no new I/C sites were discovered and no sites were closed. The I/C count for December 31, 2020 stands at 117 open I/Cs and 287 corrected sites (total 404).

The total monies spent on remedial work for I/C control in 2020 was \$230,000.

## Interconnection Monitoring

As of December 31, 2020, 110 of the 117 open I/Cs had monitoring devices. Two dry weather overflows (DWO) were discovered in 2020.

## **Interconnection Rectification Assessment Project**

Two consultants were hired in 2002 and 2003 to carry out the rectification assessment of about 90 and 40 sites, respectively. Their work focused mainly on active I/Cs and I/Cs with DWOs. Previous studies and monitoring data were utilized to quantify I/Cs activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. These assessment studies were completed in 2004 and EPCOR has been following up with the recommended mitigation work since. A long list of construction works has been identified that will absorb the funding for the next several years. New assessment projects will commence once this construction is largely completed.

## **TABLE OF CONTENTS**

| 1.0  | INTRODUCTION                                                                                                                            | .10 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.0  | MITIGATION MEASURES                                                                                                                     | .11 |
| 2.1  | CONSTRUCTION                                                                                                                            | .11 |
| 2.2  | COSTS                                                                                                                                   | .12 |
| 3.0  | 2020 MONITORING AND ASSESSMENT RESULTS                                                                                                  | .14 |
| 3.1  | DRY WEATHER OVERFLOWS (DWOS)                                                                                                            | .14 |
| 4.0  | RECTIFICATION ASSESSMENT PROJECT SUMMARY                                                                                                | .16 |
| Appe | ndix A - Interconnection Database December 31, 2020                                                                                     |     |
|      | LIST OF FIGURES e 1 Interconnection Control Strategy Perpetual Monitoring and Assessment e 2 2020 Cumulative Number of Interconnections |     |
|      | LIST OF TABLES 2 1 Interconnection Control Strategy Expenditure Summary                                                                 |     |
| 2020 | LIST OF PLANS Status & DWO Locations                                                                                                    |     |

## 1.0 INTRODUCTION

An Interconnection Control Strategy was prepared by EPCOR in response to a requirement by Alberta Environment, as part of the 1995 Approval. This program to minimize the contamination of stormwater by sanitary sewage, has been in effect since 1998.

A key commitment of the Interconnection Control Strategy is perpetual monitoring and assessment for all unmitigated interconnections (see Figure 1). This consists of identification, maintenance of data, evaluation, monitoring, correction, elimination and mitigation.

The focus of interconnection monitoring activities is to collect information on the frequency and duration of discharges from all interconnection (I/C) sites. The evaluation of the data for all sites is the core component of the assessment. All sites are to be evaluated annually for further action. More detailed monitoring will be conducted at highly active sites. Corrective measures will be taken at inactive sites or active sites where sufficient data has been collected and analyzed indicating that they can be safely closed. Monitoring information will be used as the basis for decisions in terms of remedial activity.

As part of the current Approval (639-03-06) issued in 2020, the *Interconnection Identification* and *Control Strategy* is continuing to be a component of the *Wastewater Collection System Operations Plan*. The *Wastewater Collection System Monitoring Protocol* includes the collection of overflow data from open (active) interconnection sites. This Protocol was submitted to Alberta Environment in 2007 and has been maintained since.

Through the *Wastewater Collection System Operations Plan*, EPCOR has committed to continue with the Interconnection Control Strategy and annual reporting of the I/C status by February 28 of each year. The intent of the annual report is to document changes and status of the I/Cs, including any corrections or closures, and to provide an updated I/C database. The following report documents the I/C status for 2020.

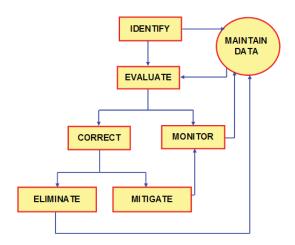



Figure 1 Interconnection Control Strategy Perpetual Monitoring and Assessment

## 2.0 MITIGATION MEASURES

On January 1, 2020 there were a total of 404 I/Cs. This consisted of 117 open I/Cs and 287 corrected (closed) I/Cs. The I/C count for December 31, 2020 stands at 117 open I/Cs and 287 corrected sites (total 404).

The enclosed plan "2020 Status and DWO Locations" shows the locations of all of the open I/Cs in the city. A database of I/C sites is located in Appendix A. Figure 2 shows the cumulative number of I/Cs over time.

## 2.1 CONSTRUCTION

The mitigation measures undertaken in 2020 included:

- Queen Mary Park Neighbourhood:
  - Preliminary design work was completed to facilitate future closure of IC 50 and IC
     51 in association with double barrel and LRT utility relocation work.

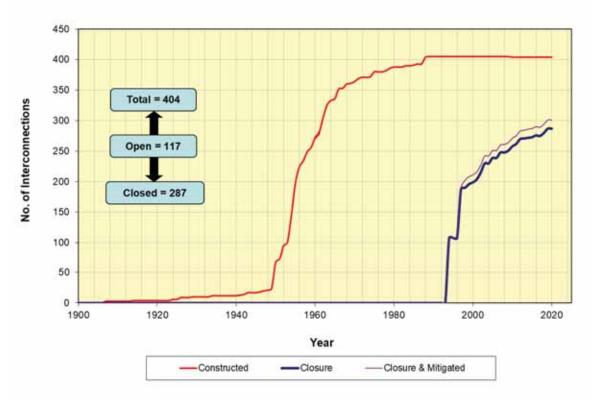



Figure 2 2020 Cumulative Number of Interconnections

## 2.2 COSTS

In 2020, the amount spent was \$145,000 on construction work as well as \$45,000 for monitoring the network.

In summary, the expenditures for the Interconnection Control Strategy each year from 1994 to 2020 include:

- Monitoring program approximately \$101,000 annually.
- Investigations consisting of personnel entry to the sewers to confirm or refute the occurrence of overflows approximately \$9,000 annually, paid for under regular operating budget (repair, blockage removal or bypass pumping costs are not included).
- Correcting the interconnections based on I/C monitoring and assessment. This can involve closure of an interconnection to eliminate overflow or raising the weir to reduce overflow frequency approximately \$528,000 annually.
- Assessing I/C sites for possible closure approximately \$63,000 annually (although the assessments are conducted on an intermittent basis).

**Table 1 Interconnection Control Strategy Expenditure Summary** 

|             | Year Dollars Spent |               |              |             |              |  |  |  |  |  |  |
|-------------|--------------------|---------------|--------------|-------------|--------------|--|--|--|--|--|--|
| Year        | Monitoring         | Investigation | Correcting   | Assessing   | Total        |  |  |  |  |  |  |
| 1994        | \$0                | \$0           | \$195,000    | \$50,000    | \$245,000    |  |  |  |  |  |  |
| 1995        | \$40,000           | \$0           | \$0          | \$960,000   | \$1,000,000  |  |  |  |  |  |  |
| 1996        | \$50,000           | \$0           | \$30,000     | \$0         | \$80,000     |  |  |  |  |  |  |
| 1997        | \$213,000          | \$0           | \$634,000    | \$0         | \$847,000    |  |  |  |  |  |  |
| 1998        | \$140,000          | \$2,205       | \$197,500    | \$0         | \$339,705    |  |  |  |  |  |  |
| 1999        | \$104,600          | \$5,760       | \$762,200    | \$0         | \$872,560    |  |  |  |  |  |  |
| 2000        | \$103,000          | \$8,100       | \$834,000    | \$0         | \$945,100    |  |  |  |  |  |  |
| 2001        | \$122,000          | \$5,265       | \$319,000    | \$168,000   | \$614,265    |  |  |  |  |  |  |
| 2002        | \$149,204          | \$3,360       | \$210,000    | \$133,319   | \$495,883    |  |  |  |  |  |  |
| 2003        | \$145,047          | \$2,340       | \$1,055,000  | \$367,897   | \$1,570,284  |  |  |  |  |  |  |
| 2004        | \$97,910           | \$3,350       | \$1,221,300  | \$1,033     | \$1,323,593  |  |  |  |  |  |  |
| 2005        | \$91,280           | \$3,600       | \$1,067,400  | \$16,896    | \$1,179,176  |  |  |  |  |  |  |
| 2006        | \$92,871           | \$2,600       | \$350,000    | \$0         | \$445,471    |  |  |  |  |  |  |
| 2007        | \$137,920          | \$3,197       | \$100,259    | \$0         | \$241,376    |  |  |  |  |  |  |
| 2008        | \$124,345          | \$3,329       | \$1,505,424  | \$0         | \$1,633,098  |  |  |  |  |  |  |
| 2009        | \$128,668          | \$3,570       | \$740,507    | \$0         | \$872,746    |  |  |  |  |  |  |
| 2010        | \$134,362          | \$5,300       | \$29,931     | \$0         | \$169,594    |  |  |  |  |  |  |
| 2011        | \$105,796          | \$7,950       | \$122,210    | \$0         | \$235,955    |  |  |  |  |  |  |
| 2012        | \$90,512           | \$11,918      | \$193,000    | \$0         | \$295,430    |  |  |  |  |  |  |
| 2013        | \$85,936           | \$21,491      | \$539,171    | \$0         | \$646,598    |  |  |  |  |  |  |
| 2014        | \$97,713           | \$23,606      | \$1,750,427  | \$0         | \$1,871,747  |  |  |  |  |  |  |
| 2015        | \$127,257          | \$22,507      | \$1,022,873  | \$0         | \$1,172,636  |  |  |  |  |  |  |
| 2016        | \$98,399           | \$11,338      | \$688,140    | \$0         | \$797,877    |  |  |  |  |  |  |
| 2017        | \$66,869           | \$8,884       | \$304,455    | \$0         | \$380,208    |  |  |  |  |  |  |
| 2018        | \$70,803           | \$15,907      | \$108,640    | \$0         | \$195,349    |  |  |  |  |  |  |
| 2019        | \$59,305           | \$29,360      | \$130,000    | \$0         | \$218,665    |  |  |  |  |  |  |
| 2020        | \$44,696           | \$40,056      | \$145,548    | \$0         | \$230,299    |  |  |  |  |  |  |
| Total       | \$2,721,492        | \$244,993     | \$14,255,985 | \$1,697,145 | \$18,919,615 |  |  |  |  |  |  |
| Annual Ave. | \$100,796          | \$9,074       | \$527,999    | \$62,857    | \$700,726    |  |  |  |  |  |  |
| Proportion  | 14.4%              | 1.3%          | 75.4%        | 9.0%        |              |  |  |  |  |  |  |

## 3.0 2020 MONITORING AND ASSESSMENT RESULTS

In 2017, a project was initiated to replace the loggers at all monitored interconnection sites. Data collection from the old style of logger was completed by driving a vehicle past each site, sometimes having to stop in traffic and place an antenna through the manhole cover. The new loggers are now equipped with cellular communication and no longer require a 'drive-by' to retrieve data.

Benefits to upgrading the loggers include;

- Decrease the safety risk exposure of the contractor by not requiring vehicle based data collection
- Increased data collection frequency from weekly to every 6 hours
- More data streams collected including battery voltage, signal strength, and temperature.
- Cost reduction by using cellular technology. Labour costs of collecting data are eliminated which were more than cellular service fees.
- Improved asset management as battery replacement can be planned to occur at the correct time, not too early or too late. Other data streams will help diagnose other problems as well.
- Sites not accessible by vehicle can now have sensors and loggers installed.

In the Interconnection Control Strategy, EPCOR committed to perpetual monitoring and assessment of all I/Cs. As of December 31, 2020, 110 of the 117 I/Cs had crest gauge type monitors equipped with cellular data loggers.

The rectification studies completed in the past, alongside the historical activity data for the I/C sites sets a well-defined history to draw on to inform management decisions on a go forward basis.

## 3.1 DRY WEATHER OVERFLOWS (DWOS)

In 2020, 235 investigations of possibly overflowing sites were made with 2 Dry Weather Overflows discovered.

## 3.2 INTERCONNECTION SITE ACTIVITY CHARACTERISTICS SUMMARY

As shown in Table 2 below, about 3% of the sites were found to have dry weather overflows each year during monitoring from 1997 to 2019, with an average of 2% over the past 5 years. These are the events of critical concern to the environment. Although only 2% of the sites experience dry weather overflow in a given year, different sites overflow each year. A total of 29% of the known open I/Cs (34 sites) have had a dry weather overflow event.

**Table 2 Interconnection Site Activity Characteristics Summary** 

| Year    | Known I/C    | I/C Sites    | Dry      | Rainfall   | Inactive | Unverified |
|---------|--------------|--------------|----------|------------|----------|------------|
|         | Sites        | Monitored    | Weather  | Correlated | Sites    | Overflows  |
|         |              |              | Overflow |            |          |            |
| 1997    | 186          | 182          | N/A      | 65         | 109      | 8          |
| 1998    | 188          | 179          | 3        | 72         | 64       | 43         |
| 1999    | 188          | 176          | 6        | 48         | 92       | 29         |
| 2000    | 186          | 173          | 6        | 36         | 76       | 56         |
| 2001    | 185          | 174          | 7        | 37         | 75       | 55         |
| 2002    | 179          | 161          | 6        | 29         | 110      | 16         |
| 2003    | 167          | 153          | 5        | 34         | 102      | 12         |
| 2004    | 155          | 139          | 5        | 64         | 51       | 19         |
| 2005    | 150          | 131          | 9        | 16         | 88       | 18         |
| 2006    | 151          | 131          | 5        | 39         | 70       | 17         |
| 2007    | 142          | 126          | 2        | 21         | 87       | 16         |
| 2008    | 142          | 126          | 3        | 25         | 75       | 24         |
| 2009    | 141          | 127          | 2        | 10         | 81       | 28         |
| 2010    | 133          | 118          | 3        | 17         | 72       | 26         |
| 2011    | 129          | 118          | 3        |            |          |            |
| 2012    | 121          | 113          | 4        |            |          |            |
| 2013    | 121          | 113          | 1        |            |          |            |
| 2014    | 124          | 113          | 2        |            |          |            |
| 2015    | 123          | 112          | 0        |            |          |            |
| 2016    | 120          | 112          | 0        |            |          |            |
| 2017    | 121          | 68           | 4        |            |          |            |
| 2018    | 116          | 93           | 4        |            |          |            |
| 2019    | 117          | 103          | 3        |            |          |            |
| 2020    | 117          | 107          | 2        |            |          |            |
| Average | 146          | 131          | 4        | 37         | 82       | 26         |
| Proport | ion of Monit | ored Sites = | 2.8%     | 28%        | 63%      | 20%        |

## 4.0 RECTIFICATION ASSESSMENT PROJECT SUMMARY

Two consultants were hired in 2002 and 2003 to carry out the second phase of a large-scale Interconnection Rectification Assessment project. The first project included about 90 I/C sites and the second included about 40 sites. Their work was focused mainly on active and DWO I/Cs. This work identified many I/Cs that could be closed if funds are available.

Previous studies and monitoring data collected between 1998 and 2003 were utilized to quantify interconnection activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. Major work requirements for this rectification assessment included:

- Perform sewer system data collection and field surveys
- Carry out sewer condition and hydraulic assessment
- Evaluate various remedial measures
- Develop conceptual and preliminary design plans
- Provide Cost estimates

A computer model called MOUSE (Model For Urban Sewers) developed by DHI (Danish Hydraulics Institute) was employed in these studies to simulate the existing system and recommend remedial measures under various wet weather flow conditions. Simulation results such as hydraulic grade line and by-pass volume were summarized and evaluated to ensure that an improved level of control can be achieved, and that proposed improvements would not cause other system problems.

These two assessment projects were completed in 2004 and we have been following up with construction of the recommended mitigation works since that time. The assessments identified a long list of construction works that will absorb the funding for the next several years. New assessment projects will commence once this construction is largely complete.

In 2018, a review of select neighbourhoods was done in addition to the rectification detailed design works. Further recommendations for interconnection closure work has been developed beyond the conceptual design phase. EPCOR will evaluate these recommendations alongside infrastructure plans of other programs such as neighbourhood rehab and the Stormwater Integrated Resource Plan (SIRP).

## **APPENDIX A**

# Interconnection Database December 31, 2020

|          |                  | T                |                  |            |         |            |        |          |     |          | 1        | T    |                              |        |                | T              |      |      | T.                              |               |
|----------|------------------|------------------|------------------|------------|---------|------------|--------|----------|-----|----------|----------|------|------------------------------|--------|----------------|----------------|------|------|---------------------------------|---------------|
|          |                  |                  |                  |            |         |            |        |          |     |          |          |      |                              |        |                |                |      |      |                                 |               |
|          |                  |                  |                  |            |         |            |        |          |     |          |          |      |                              |        |                |                |      |      |                                 | !             |
|          |                  |                  |                  |            |         |            |        |          |     |          |          |      |                              |        |                |                |      |      |                                 | !             |
|          |                  |                  | CADAS-           |            |         |            |        |          |     |          | SAN      | STRM |                              | Delete | COR-           |                | OF   | OF   |                                 | !             |
| IC Site# | Plan             | IC MH#           | TRAL             | SAN_MH     | STRM_MH | STREET     | AVEN   | JE OF_   | NUM |          | AGE      | AGE  | ICTYPE                       | date   |                | OF_LOC1        | _    | DIA  | NHOOD                           | COUNT         |
| ACTIVE   | NTERCON          | NECTION          | 9                |            |         |            |        |          |     |          |          |      |                              |        |                |                |      |      |                                 | $\overline{}$ |
| 12       | 97-177           | 241869           |                  | 046        | T3      | 146        | SUMM   | IT F20   |     | 71       | 30       | 1    | 9 HIGH PIPE                  |        | FALSE          | RIVER          | LEFT | 1650 | Crestwood                       | 4             |
| 14       | 96-041           | 315813           |                  | 803        | 13      | W142       | S. SUN |          |     | 61       | 55       |      | 1 OVERFLOW                   |        | FALSE          | RIVER          | LEFT |      | Glenora                         | 1             |
| 15       | 97-174           | 256174           | 343204           | 880        |         | 136        | S102   | 138      |     | 43       | 43       | _    | OVERFLOW                     |        | FALSE          | CREEK          | LEFT |      | Glenora                         | 3             |
| 16       | 96-040           | 239447           |                  | 801        |         | ST GEORGE  | 0102   | 122      |     | 55       | 29       |      | 5 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Glenora                         | 4             |
| 17       | 97-176           | 239449           | 313223           | 802        |         | E135       | SVICT  | ORI 123  |     | 43       |          |      |                              |        | FALSE          |                |      | 200  | G.G.I.G.G                       | 5             |
| 18       | 96-085           | 255955           |                  | 813        | 435     | 134        | _      | OR 124   |     | 64       | 29       | 6    | 4 HIGH PIPE                  |        | FALSE          | CREEK          | LEFT | 200  | Glenora                         | 6             |
| 19       | 96-084           | 255954           |                  | 812        | 404     | 133        |        | OR 126   |     | 55       | 55       |      | 5 OVERFLOW                   |        | FALSE          | CREEK          | LEFT |      | Glenora                         | 7             |
| 20       | 96-086           | 316420           |                  | 826        |         | 132        | _      | DSI 134  |     | 49       | 29       |      | 9 OVERFLOW/W                 | EIR    | FALSE          | CREEK          | LEFT |      | Glenora                         | 8             |
| 21       | 96-088           | 255983           | 343203           | 839        |         | E132       | S103   |          | 273 | 54       |          |      |                              |        | FALSE          |                |      |      | Glenora                         | 9             |
| 25       | 97-128           | 255832           | 343202           | 820        | 445     | W123       | 102    | 46       |     | 50       | 52       | 5    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | 1275 | Oliver                          | 10            |
| 26       | 97-127           | 255697           | 343202           | 827        | 456     | W122       | 102    | 46       |     | 50       | 9        | 5    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | 1275 | Oliver                          | 11            |
| 27       | 97-126           | 255840           | 343202           | 832        | 506     | W121       | 102    | 46       |     | 50       | 78       | 5    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | 1275 | Oliver                          | 12            |
| 28       | 97-125           | 255512           |                  | 805        | 402     | W120       | 102    | 46       |     | 50       | 90       | 5    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 13            |
| 29       | 97-124           | 255520           |                  | 816        | 411     | W119       | 102    | 46       |     | 50       | 13       |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | 1275 | Oliver                          | 14            |
| 30       | 97-123           | 255525           | 343201           | 830        | 416     | W118       | 102    | 46       |     | 50       | 12       | 5    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | 1275 | Oliver                          | 15            |
| 31       | 97-120           | 255534           | 343201           | 843        | 425     | W117       | 102    | 46       |     | 50       | 11       | _    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 16            |
| 32       | 97-119           | 255539           | 343201           | 855        | 431     | W116       | 102    | 46       |     | 50       | 11       | _    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 17            |
| 33       | 97-118           | 255562           | 343201           | 884        | 448     | W114       | 102    | 46       |     | 50       | 8        |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 18            |
| 34       | 97-117           | 265676           | 343605           | 805        | 805     | W113       | 102    | 46       |     | 50       | 8        |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | _    | Oliver                          | 19            |
| 35       | 97-116           | 265685           |                  | 817        | 430     | W112       | 102    | 46       |     | 50       | 8        |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 20            |
| 36       | 97-115           | 265684           | 343605           | 821        | 412     | 112        | 102    | 46       |     | 50       | 30       |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 21            |
| 37       | 97-114           | 265754           | 343605           | 833        | 414     | 111        | 102    | 46       |     | 50       | 46       |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 22            |
| 38       | 97-113           | 265728           |                  | 801        | 405     | 114        | N101   | 46       |     | 50       | 7        | _    | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 23            |
| 39       | 97-112           | 245736           |                  | 803        | 406     | 114        | S101   | 46       |     | 50       | 7        |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 24            |
| 41       | 97-142           | 245620           |                  | 871        | 110     | W113       | 99     | 46       |     | 50       | 10       |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT | _    | Oliver                          | 25            |
| 46       | 97-141           | 245582           | 313625           | 839        | 410     | 113        | S99    | 46       |     | 50       | 13       |      | 0 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Oliver                          | 26            |
| 48<br>49 | 97-145<br>97-122 | 255558<br>257004 | 343201           | 869        | 440     | 116<br>114 | S101   | 46<br>46 |     | 54       | 7        |      | 4 LOW PIPE<br>0 LOW PIPE/WEI | D      | FALSE          | RIVER          | LEFT |      | Oliver                          | 27<br>28      |
| 50       | 97-122           | 257004           | 343606<br>343210 | 803<br>835 | 404     | W116       | 104    | 54       |     | 50<br>64 | 27<br>64 |      | 4 LOW PIPE/WEI               | К      | FALSE<br>FALSE | RIVER<br>RIVER | LEFT | _    | Oliver                          |               |
| 50<br>51 | 97-109           | 256913           |                  | 846        | 412     | W115       | 106    | 54       |     | 83       | 64       |      | 3 LOW PIPE                   |        | FALSE          | RIVER          | LEFT |      | Queen Mary Park Queen Mary Park |               |
| 52       | 97-108           | 263239           |                  | 857        | 714     | 102        | 111    | 54       |     | 68       | 14       | _    | 8 FLOW SPLIT                 |        | FALSE          | RIVER          | LEFT |      | Spruce Avenue                   | 31            |
| 53       | 96-090           | 266055           |                  | 001        |         | 110 ST     | N111 A |          | 54  | 55       | 14       |      | O I LOW SELII                |        | FALSE          | KIVEK          | LEFI | 3000 | Prince Rupert                   | 32            |
| 60       | 97-129           | 272723           | 373220           |            | 401     | W120       | 129    | 31       | 54  | 55       | 55       | 5    | 5 OVERFLOW                   |        | FALSE          | RIVER          | LEFT | 2400 | Calder                          | 33            |
| 75       | 97-099           | 263753           | 343622           |            | 416     | W87        | 114    | 31       | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          | I VI V L I V   |      | 2400 | Parkdale                        | 34            |
| 76       | 97-098           | 263758           | 343622           |            | 422     | W86        | 114    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                |      |      | Parkdale                        | 35            |
| 78       | 97-096           | 263708           | 343621           |            | 401     | W83        | 114    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                |      |      | Parkdale                        | 36            |
| 79       | 97-095           | 263716           |                  |            | 406     | W82        | 114    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                |      |      | Parkdale                        | 37            |
| 80       | 97-080           | 261662           | 343621           |            | 423     | W80        | 113    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                |      |      | Cromdale                        | 38            |
| 81       | 97-078           | 261672           | 343621           |            | 430     | W79        | 113    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                |      |      | Cromdale                        | 39            |
| 83       | 97-081           | 261660           |                  |            | 422     | W80        | 114    |          | 56  | 56       | 56       |      | 3 OVERFLOW                   |        | FALSE          |                | +    |      | Edmonton Northla                |               |
| 00       | 31-001           | 201000           | J-JUZ I          |            | 744     | **00       | 1.17   |          | 50  | 50       | 50       |      | O O V LIVI LOVV              |        | IALUE          |                |      |      | Lamonton Northic                | 40            |

IC Database Page 1

|            |                  |                  |                  | 1          | 1          | 1              |                  | 1         |          |      | <u> </u> | 1                       | <u> </u> |                | <u> </u>       |                | <u> </u> |                                       |             |
|------------|------------------|------------------|------------------|------------|------------|----------------|------------------|-----------|----------|------|----------|-------------------------|----------|----------------|----------------|----------------|----------|---------------------------------------|-------------|
|            |                  |                  |                  |            |            |                |                  |           |          |      |          |                         |          |                |                |                |          |                                       |             |
|            |                  |                  |                  |            |            |                |                  |           |          |      |          |                         |          |                |                |                |          |                                       |             |
|            |                  |                  |                  |            |            |                |                  |           |          |      |          |                         |          |                |                |                |          |                                       |             |
| 10.0%      | DI.              | 10 1411/         | CADAS-           | 0.431.4411 | OTDM MIL   | OTDEET         | A > / E > 11 I E |           | 10 405   | SAN_ | STRM_    | IOTVDE                  | Delete   | COR-           | 05 100         | OF_            | OF_      | NULCOR                                | COLINIT     |
| IC Site#   |                  | IC MH#           | TRAL             | SAN_MH     | STRM_MH    | STREET         |                  | OF_ NUM   | _        | AGE  | AGE      | ICTYPE                  | date     |                | OF_ LOC        | _              | DIA      | NHOOD                                 | COUNT       |
| 94<br>95   | 96-008<br>96-010 | 227272           | 283606           | 803        | 412        | 110            | 57               | 22        | 52       |      |          | LOW PIPE                |          | FALSE          |                | RIGHT          |          | Pleasantview                          | 41          |
| 106        | 96-010           | 227234           | 283615           |            | 420        | 111            | S61              | 22        | 54       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Pleasantview                          | 42          |
|            | 00.007           | 224867           | 283221           | 040        | 445        | 112            | N76              | 22        | 54       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Parkallen                             | 43          |
| 107<br>110 | 96-007<br>97-021 | 224927<br>242851 |                  | 813        | 448<br>471 | 112<br>SASK DR | N75              | 22<br>23D | 86       |      |          | LOW PIPE                | 2        | FALSE<br>FALSE | RIVER          | RIGHT          |          | McKernan                              | 44<br>45    |
| 111        | 97-021           | 242051           | 313212<br>313212 | 009        | 443        | W120           | 89<br>89         | 23D       | 53<br>53 |      |          | LOW PIPE/WEII           | <b>1</b> | FALSE          | RIVER<br>RIVER | RIGHT<br>RIGHT |          | Windsor Park Windsor Park             | 45          |
| 113        | 97-022           | 228112           | 283625           | 006        | 429        | 109            | 73               | 22        | 54       | -    |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | McKernan                              | 40          |
| 114        | 96-018           | 227757           |                  | 842        | 743        | 109            | 67               | 22        | 51       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Parkallen                             | 47          |
| 116        | 96-009           | 227604           | 283615           | U+L        | 406        | 109            | 65               | 22        | 54       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Parkallen                             | 49          |
| 119        | 96-013           | 227636           | 283615           |            | 431        | 109            | 62               | 22        | 54       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Parkallen                             | 50          |
| 120        | 97-045           | 227702           |                  | 842        |            | 109            | 61               | 22        | 54       |      |          | DUAL                    |          | FALSE          | RIVER          | RIGHT          |          | Pleasantview                          | 51          |
| 134        | 97-195           | 229993           | 313601           | 861        | 473        | 89             | S77              | 44        | 55       |      |          | LOW PIPE                |          | FALSE          | RIVER          | RIGHT          |          | King Edward Park                      |             |
| 135        | 96-059           | 246571           | 313601           | 859        | 471        | 91             | S77              | 44        | 55       | 28   | 55       | LOW PIPE/WEII           | 3        | FALSE          | RIVER          | RIGHT          | 3800     | King Edward Park                      | k <b>53</b> |
| 139        | 96-053           | 229990           | 313601           | 828        | 435        | 91             | S80              | 44        | 55       | -    | 55       | LOW PIPE/WEII           | 3        | FALSE          | RIVER          | RIGHT          |          | King Edward Park                      |             |
| 143        | 96-064           | 243161           | 313610           | 859        |            | 93             | S83              | 116       | 55       | 39   | 55       | OVERFLOW/WE             | EIR      | FALSE          | CREEK          | RIGHT          | 750      | Bonnie Doon                           | 55          |
| 147        | 96-066           | 243180           | 313610           | 867        | 437        | 87             | S83              | 116       | 50       | 50   | 50       | LOW PIPE/WEI            | ₹        | FALSE          | CREEK          | RIGHT          | 750      | Bonnie Doon                           | 56          |
| 149        | 96-051           | 243858           | 313601           | 802        | 403        | 89             | 82               | 254       | 52       |      | 52       | LOW PIPE                |          | FALSE          | CREEK          | RIGHT          | 1050     | Bonnie Doon                           | 57          |
| 151        | 97-004           | 246539           | 313601           | 820        |            | 89             | S81              | 44        | 55       | 46   | 55       | LOW PIPE                |          | FALSE          | RIVER          | RIGHT          | 3800     | King Edward Park                      |             |
| 153        | 97-003           | 246506           | 313601           |            | 460        | 89             | S78              | 44        | 55       |      |          | LOW PIPE                |          | FALSE          | RIVER          | RIGHT          |          | King Edward Park                      |             |
| 154        | 96-025           | 229777           | 283621           | 804        | 436        | 87             | 76               | 44        | 55       | -    |          | LOW PIPE/WEI            |          | FALSE          | RIVER          | RIGHT          |          | King Edward Park                      |             |
| 155        | 96-060           | 246574           | 313601           | 864        | 477        | 87             | S77              | 44        | 55       |      |          | LOW PIPE/WEI            |          | FALSE          | RIVER          | RIGHT          |          | King Edward Park                      |             |
| 156        | 96-058           | 246570           | 313601           | 857        |            | 87             | 77               | 44        | 55       |      |          | LOW PIPE/WEII           | ₹        | FALSE          | RIVER          | RIGHT          | 3800     | King Edward Park                      |             |
| 159        | 97-211           | 251618           | 314005           |            | 423        | 85             | S80              | 44        | 55       |      | _        | OVERFLOW                |          | FALSE          |                |                |          | King Edward Park                      |             |
| 161        | 97-210           | 251792           | 314005           |            | 432        | 85             | S79              | 44        | 55       |      |          | OVERFLOW                |          | FALSE          |                |                |          | King Edward Park                      |             |
| 162<br>164 | 97-209           | 251797           | 314005           | 004        | 437        | 85             | S78              | 44        | 55       |      |          | OVERFLOW                | -10      | FALSE          | DIV/ED         | DIOLIT         | 0000     | King Edward Park                      |             |
| 176        | 97-205<br>97-001 | 251779<br>244348 | 314005<br>313621 | 804        | 408<br>409 | 83<br>87       | S82<br>98        | 52<br>52  | 55       |      |          | OVERFLOW/WE<br>OVERFLOW | IK I     | FALSE          | RIVER<br>RIVER | RIGHT<br>RIGHT | _        | King Edward Park                      |             |
| 176        | 97-001           | 244348           | 313621           | 811<br>809 | 409        | 88             | 98               | 52        | 52<br>52 |      |          | HIGH PIPE               |          | FALSE          | RIVER          | RIGHT          | _        | River Valley River River Valley River |             |
| 178        | 97-217           | 244347           | 313621           | 804        | 400        | 92             | 98               | 256       | 52       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          | _        | Cloverdale                            | 69          |
| 179        | 97-217           | 244347           | 313622           | 807        | 420        | 97             | 96<br>N97        | 50        | 69       |      |          | OVERFLOW                |          | FALSE          | RIVER          | RIGHT          |          | Cloverdale                            | 70          |
| 180 (n/m)  | 97-161           | 244671           | 313617           | 808        | 418        | 103            | 97               | 46        | 50       |      |          | LOW PIPE                |          | FALSE          | RIVER          | LEFT           | _        | Rossdale                              | 71          |
| 181        | 97-159           | 245429           | 313624           | 869        | 447        | 104            | S98              | 46        | 41       |      |          | LOW PIPE                |          | FALSE          | RIVER          | LEFT           |          | Rossdale                              | 72          |
| 182 (n/m)  | 97-158           | 245174           | 313617           | 807        | 416        | 104            | 97               | 46        | 50       |      |          | LOW PIPE                |          | FALSE          | RIVER          | LEFT           | _        | Downtown                              | 73          |
| 183 (n/m)  | 97-157           | 245040           | 313617           | 805        | -          | 105            | 97               | 46        | 50       |      |          |                         |          | FALSE          |                |                |          | Rossdale                              | 74          |
| 184        | 97-156           | 245170           | 313617           | 806        |            | 106            | 97               | 46        | 70       | -    |          |                         |          | FALSE          |                |                |          | Rossdale                              | 75          |
| 185        | 97-138           | 262096           |                  | 913        | 442        | 99             | 101              | 243       | 50       |      | 1        | LOW PIPE                |          | FALSE          | RIVER          | LEFT           | 1980     | Downtown                              | 76          |
| 191        | 97-002           | 246377           |                  | 813        |            | 100            | SASK DI          | R 188     | 52       |      | 52       | CHAMBER                 |          | FALSE          | RIVER          | RIGHT          | 1200     | Strathcona                            | 77          |
| 193        | 97-014           | 246787           | 313608           | 848        | 405        | 102            | 85               | 37        | 79       | 13   | 79       | HIGH PIPE               |          | FALSE          | RIVER          | RIGHT          | 900      | Strathcona                            | 78          |
| 194        | 97-013           | 246808           | 313608           | 863        | 406        | 102            | 83               | 37        | 79       | 35   | 79       | HIGH PIPE               |          | FALSE          | RIVER          | RIGHT          | 900      | Strathcona                            | 79          |
| 195        | 97-012           | 246799           | 313608           | 876        | 407        | 102            | 84               | 37        | 79       | 35   | 79       | HIGH PIPE               |          | FALSE          | RIVER          | RIGHT          | 900      | Strathcona                            | 80          |

| IC Site#      | Plan             | IC MH#           | CADAS-<br>TRAL | SAN_MH     | STRM_MH    | STREET         | AVENUE       | OF_ NU     | JM  | IC_ AGE  | SAN_<br>AGE | STRM_<br>AGE | ICTYPE         | Delete<br>date | COR-<br>RECTED | OF_ LOC1       | OF_<br>LOC2 | OF_<br>DIA | NHOOD                 | COUNT |
|---------------|------------------|------------------|----------------|------------|------------|----------------|--------------|------------|-----|----------|-------------|--------------|----------------|----------------|----------------|----------------|-------------|------------|-----------------------|-------|
|               | 97-              | 0.1.100.1        |                |            |            |                |              |            |     |          |             |              |                |                |                |                |             |            |                       |       |
| 198           | 152a             | 244681           | 313617         | 024        | 818        | 105            | S96          | 47         |     | 52       |             |              | DUAL           |                | FALSE          |                | LEFT        |            | Rossdale              | 8     |
| 199<br>200    | 97-151<br>97-146 | 245068<br>245204 |                | 818        | 502<br>443 | 105            | 96<br>94     | 47         |     | 52<br>52 |             |              | LOW PIPE       |                |                | RIVER<br>RIVER | LEFT        |            | Rossdale<br>Rossdale  | 8     |
| 200<br>201    | 97-146           | 245204           |                | 821<br>802 | 443        | 101            | 94<br>S94    | 188<br>145 |     | 52       | 11          |              | OVERFLOW/W     | EID            |                | RIVER          | LEFT        |            | Rossdale              | 84    |
| 201           | 97-148           | 245013           |                | 805        | 416        | 100A           | 97           | 145        | 46  | 50       | I           | 1 52         | OVERFLOW/W     | EIK            | FALSE          | KIVEK          | LEFI        | 300        | Rossdale              | 8     |
| 202<br>204    | 97-163           | 245209           | 313018         | 805        |            |                | 96           |            | 45  |          |             |              |                |                | FALSE          |                |             |            | U                     |       |
| 204<br>220    | 96-006           | 245216           | 313201         | 807        | 438        | E101           |              | 22         | 45  | 57<br>54 | 4-          | 7 54         | LOW PIPE       |                |                | RIVER          | RIGHT       | 4500       | Rossdale<br>Parkallen | 8.    |
|               | 96-006           |                  |                | 807        | 438        | 109            | L. N. 79     | 22         |     | 54       | 47<br>54    |              | _              | TID            |                |                | RIGHT       | 1500       | Pleasantview          | 8     |
| 221<br>224    |                  | 227702<br>243209 | 203010         |            |            | 89             | 61<br>83     |            | 116 | 54       | 54          | + 54         | OVERFLOW/W     | LIK            | FALSE          | RIVER          | KIGHI       |            | Bonnie Doon           | 89    |
| 224<br>226    |                  | 243209           | 313625         | 801        | -          | 111            | 97           | 46         | 110 | 50       | ı           | 5 50         | HIGH PIPE      |                | FALSE          | DI\/ED         | LEFT        | 1275       | Oliver                | 9     |
| 234           |                  | 246738           |                | 001        |            |                | Ban Saskatch | _          | 37  | 71       | ,           | 5 30         | HIGHFIFE       |                | FALSE          | KIVEK          | LEFI        | 1275       | Strathcona            | 9     |
| 235           |                  | 262142           |                |            |            | 102 (10111111) | S. Jaspei    |            | 47  | 26       |             |              |                |                | FALSE          |                |             |            | Downtown              | 9:    |
| 238           |                  | 246111           | 313608         |            |            | 101            | 81           | 1 /        | 37  | 79       |             |              |                |                | FALSE          |                |             |            | Ritchie               | 9:    |
| 240 (n/m)     |                  | 255527           | 313000         |            |            | 119            | S102         |            | 46  | 79       |             |              |                |                | FALSE          |                |             |            | Oliver                | 9,    |
| 244 (n/m)     |                  | 263246           |                |            |            | 102            | 110          |            | 54  | 68       |             |              |                |                | FALSE          |                |             |            | Central McDougall     |       |
| 245 (n/m)     |                  | 263247           |                |            |            | 102            | 110          |            | 54  | 68       |             |              |                |                | FALSE          |                |             |            | Central McDougall     |       |
| 249           |                  | 242945           | 313218         |            |            | Hawrelak Pa    |              |            | 27  | 66       |             |              |                |                | FALSE          |                |             |            | Hawrelak Park         | 9:    |
| 250 (03,n/m)  |                  | 255647           | 313210         |            |            | W114           | N101         |            | 46  | 88       |             |              |                |                | FALSE          |                |             |            | Oliver                | 98    |
| 254 (03,n/m)  |                  | 245584           |                |            |            | 112            | 98           |            | 46  | 50       |             |              |                |                | FALSE          |                |             |            | Oliver                | 9:    |
| 255 (03)      |                  | 245344           |                |            |            | 104            | 98           |            | 46  | 50       |             |              |                |                | FALSE          |                |             |            | Downtown              | 10    |
| 258 (03)      |                  | 247763           | 313614         |            |            | 103            | Sask. Dr     |            | 37  | 71       |             |              |                |                | FALSE          |                |             |            | River Valley Walte    |       |
| 265 (06, n/m) |                  | 240896           | 010014         |            |            | 137            | 82           |            | 21  | 65       |             |              | DUAL           |                | FALSE          |                |             |            | Laurier Heights       | 10:   |
| 266 (08)      |                  | 244346           | 313621         | 814        | 401        | 92             | S98          | 256        |     | 46       | 46          | 3 46         | LOW PIPE       |                |                | RIVER          | RIGHT       | 500        | Cloverdale            | 10:   |
| 267 (09)      |                  | 243667           | 010021         | 011        | 101        | 92             | 98           | 256        |     | 10       |             | , ,          | 2011 111 2     |                | FALSE          | RIVER          | RIGHT       | 000        | Cloverdale            | 104   |
| 268 (09)      |                  | 244163           |                |            |            | Mill Creek     | 00           |            | 44  |          |             |              |                |                | FALSE          |                |             |            | Mill Creek Ravine I   |       |
| 269 (13, n/m) |                  | 261579           |                |            |            | 78             | 111          |            | 203 |          |             |              | LOW PIPE       |                | FALSE          |                |             |            | River Valley Kinnai   |       |
| 273           |                  | 330340           |                |            |            | 122            | 39A          |            | 2   |          |             |              | DUAL           |                |                | Whitemud       | RIGHT       |            | Aspen Gardens         | 10    |
| 274           |                  | 258480           |                |            |            | 123            | 112          |            | 31  |          |             |              | LOW PIPE       |                | FALSE          |                |             |            | Inglewood             | 10    |
| 275           |                  | 282732           |                |            |            | 37             | 122          |            | 88  |          |             |              | LOW PIPE       |                | FALSE          |                |             |            | Beacon Heights/Be     |       |
| 276 (19)      |                  | 243786           | 9343602        |            |            | 96A            | 98           |            | 51  |          |             | -1           | TRANSVERSE     | WEIR           | FALSE          |                |             | -          | Cloverdale            | 110   |
| 277 (19)      |                  | 231393           |                |            |            | 111A           | 50           |            | 2   |          |             |              | Dual MH with W |                | FALSE          | Whitemud       | RIGHT       |            | Malmo Plains          | 111   |
| 278 (19)      |                  | 287019           |                |            |            | W71            | 130          |            | 74  |          |             |              | LOW PIPE       |                | FALSE          | RIVER          | LEFT        |            | Balwin                | 11:   |
| 279 (19)      |                  | 287020           |                |            |            | W70            | 130          |            | 74  |          |             |              | LOW PIPE       |                |                | RIVER          | LEFT        |            | Balwin                | 113   |
| 280 (19)      |                  | 287021           |                |            |            | W69            | 130          |            | 74  |          |             |              | LOW PIPE       |                | FALSE          | RIVER          | LEFT        |            | Balwin                | 114   |
| 281 (19)      |                  | 286503           |                |            |            | W70            | 129          |            | 74  |          |             |              | LOW PIPE       |                | FALSE          | RIVER          | LEFT        |            | Balwin                | 11    |
| 282 (19)      |                  | 286554           |                |            |            | W69            | 129          |            | 74  |          |             |              | LOW PIPE       |                |                | RIVER          | LEFT        |            | Balwin                | 110   |
| 283 (19)      |                  | 286508           |                |            |            | 70             | N127         |            | 74  |          |             |              | LOW PIPE       |                | FALSE          |                | LEFT        |            | Balwin                | 11    |

|         |        |           |                  |            |         | T            |             |           |          |          |      |                                | 1         |              |                | 1            | T    | П                                    |       |
|---------|--------|-----------|------------------|------------|---------|--------------|-------------|-----------|----------|----------|------|--------------------------------|-----------|--------------|----------------|--------------|------|--------------------------------------|-------|
|         |        |           |                  |            |         |              |             |           |          |          |      |                                |           |              |                |              |      |                                      |       |
|         |        |           |                  |            |         |              |             |           |          |          |      |                                |           |              |                |              |      |                                      |       |
|         |        |           | CADAS-           |            |         |              |             |           |          | SAN_     | STRM | _                              | Delete    | COR-         |                | OF_          | OF_  |                                      |       |
| C Site# | Plan   | IC MH#    | TRAL             | SAN_MH     | STRM_MH | STREET       | AVENU       | E OF_ NUM | IC_ AGE  | AGE      | AGE  | ICTYPE                         | date      | RECTED       | OF_LOC1        | LOC2         | DIA  | NHOOD                                | COUNT |
| CLOSED  | INTERC | ONNECTION | ONS              |            |         |              |             |           |          |          |      |                                |           |              |                |              |      |                                      | T     |
|         |        |           |                  | 809        |         | E34          | N102        | 71        | 66       | 66       | 6    | 66 COMMON                      |           | TRUE         | RIVER          | LEFT         | 1200 | Rundle Heights                       | 1     |
|         |        |           | 344416           | 808        |         | 35           | 102         | 71        | 66       | 66       | 6    | 66 COMMON                      |           | TRUE         | RIVER          | LEFT         |      | Rundle Heights                       |       |
|         |        |           | 344416           | 807        |         | 36           | 102         | 71        | 66       | 66       | 6    | 66 COMMON                      | ######    | TRUE         | RIVER          | LEFT         | 1200 | Rundle Heights                       |       |
|         |        |           | 344020           |            | 411     | 37           | 103         | 71        | 66       | 66       | 6    | 66 COMMON                      | ######    | TRUE         | RIVER          | LEFT         | 1200 | Rundle Heights                       |       |
|         |        |           | 344416           | 803        |         | E34          | 103         | 71        | 66       | 66       | 6    | 66 COMMON                      |           | TRUE         | RIVER          | LEFT         | 1200 | Rundle Heights                       |       |
|         |        |           | 374011           | 011        | 420     | W38          | 123         | 88        | 80       | 80       | 8    | BO HIGH PIPE                   | ######    |              | CREEK          | LEFT         |      | Bergman                              |       |
|         |        |           | 374414           | PW         |         | HOOKE RD     | HERMIT      |           | 64       | 64       |      | 64 PUMPWELL                    |           | TRUE         | RIVER          | LEFT         | _    | Canon Ridge                          |       |
|         |        |           |                  | 869        |         | 55           | S ADA I     | 3L'62     | 65       | 65       |      | 65 OVERFLOW                    | ######    | _            | RIVER          | LEFT         | 1200 | River Valley High                    | а     |
|         |        |           | 343621           |            | 417     | W81          | 114         |           | 56       | 56       |      | 13 OVERFLOW                    |           | TRUE         |                |              |      |                                      |       |
|         |        |           |                  | 832        |         | 94           | CAMER       |           | 51       | 51       |      | 51 DUAL                        | ######    |              | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           |                  | 831        |         | W94          | CAMER       |           | 51       | 51       |      | 51 DUAL                        | ######    |              | RIVER          | LEFT         | _    | Riverdale                            | •     |
|         |        |           |                  | 830        |         | E95          | CAMER       |           | 51       | 51       |      | 51 DUAL                        | ######    |              | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           | 343602           | 829        |         | E95          | CAMER       |           | 51       | 51       |      | 51 DUAL                        | ######    | TRUE         | RIVER          | LEFT         | _    | Riverdale                            |       |
|         |        |           |                  | 804        | 404     | 88           | 102         | 53        | 52       | 50       |      | 52 LOW PIPE                    | ######    | _            | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           |                  | 810        | 405     | 87           | 102         | 53        | 67       | 52       |      | 67 LOW PIPE                    | ######    |              | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           | 343609           | 868        | 411     | 89           | ROWLA       |           | 43       | 11       |      | 12 LOW PIPE                    | ######    |              | RIVER          | LEFT         | _    | Riverdale                            |       |
|         |        |           |                  | 874        |         | 88           | 104         | 155B      | 24       | 10       |      | 24 LOW PIPE                    | ######    |              | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           |                  | 873        |         | 88           | 104         | 155A      | 24       | 10       |      | 24 HIGH PIPE                   | ######    | _            | RIVER          | LEFT         |      | Riverdale                            |       |
|         |        |           |                  | 858        | 435     | 94           | ROWLA       |           | 42       | 11       |      | 12 LOW PIPE                    | ######    |              | RIVER          | LEFT         |      | River Valley Kinna                   |       |
|         |        |           | 373602           | 835        | 411     | 89           | 117         | 56        | 14       | 14       |      | 14 CHAMBER                     | ######    | TRUE         | RIVER          | LEFT         |      | Parkdale                             |       |
|         |        |           | 373601           |            | 429     | N RACE TRK   | NORTH       |           | 64       | 64       |      | 64 OVERFLOW                    | ######    | _            | RIVER          | LEFT         |      | Edmonton Northla                     |       |
|         |        |           | 373601           |            | 411     | E80          | S116        | 56        | 57       | 57       |      | OVERFLOW CH                    |           |              | RIVER          | LEFT         |      | Edmonton Northla                     |       |
|         |        |           |                  | 802        |         | 86           | 127         | 74        | 58       | 58       |      | DROP MANHOL                    |           | TRUE         | RIVER          | LEFT         | _    | Killarney                            |       |
|         |        |           |                  | 410        | 444     | 90           | 127         | 74        | 58       | 58       |      | 58 LOW PIPE TEE                |           |              | RIVER          | LEFT         | 7620 |                                      |       |
|         |        |           |                  | 870        | 411     | E80          | 116         | 56        | 57       | 57       |      | 57 CHAMBER                     | ######    |              | RIVER          | LEFT         |      | Parkdale                             | :     |
|         |        |           |                  | 835        | 110     | 105          | KINGSV      |           | 68       | 68       |      | 70 MEMBRANE LIO                | ######    | _            | RIVER          | LEFT         |      | Central McDouga                      |       |
|         |        |           | 343211           | 044        | 418     | 116          | 107         | 54        | 72       | 72       |      | 72 MEMBRANE HO                 |           |              | RIVER          | LEFT         |      | Queen Mary Park                      |       |
|         |        |           |                  | 811        | 111     | 113          | 102         | 46        | 50       | 30       |      | 0 OVERFLOW                     | ######    | TRUE         | RIVER          | LEFT         |      | Oliver                               | +     |
|         |        |           |                  | 874        | 441     | W115<br>114  | 102<br>N103 | 46        | 50       | 8        |      | 50 LOW PIPE<br>50 LOW PIPE TEE | ######    | TRUE<br>TRUE | RIVER<br>RIVER | LEFT<br>LEFT |      | Oliver                               |       |
|         |        |           |                  | 001<br>007 | T1      | E133         | S116        | 46<br>31  | 64<br>54 | 64<br>54 |      | 54 COMMON                      | ######    | TRUE         | RIVER          | LEFT         |      | Oliver                               |       |
|         |        |           |                  | 802        |         | 143          | N YELL      |           | 61       | 61       | 1    | 61 COMMON                      |           | TRUE         | RIVER          | LEFT         |      | Woodcroft Brown Industrial           |       |
|         |        |           |                  | 007        |         | ST ALBERT    | 130         | 31        |          | 66       |      |                                |           | TRUE         | RIVER          | LEFT         |      |                                      |       |
|         |        |           | 373224<br>373215 | 801        |         | 149          | SYELLO      |           | 66       | 63       |      | 66 COMMON<br>63 COMMON         | 1         | TRUE         | RIVER          | LEFT         | _    | Bonadventure Inc<br>Brown Industrial | du    |
|         |        |           | 373215           | 001        | 427     | W124         | 129         | 31        | 55       | 55       |      | 55 OVERFLOW                    | ######    |              | RIVER          | LEFT         |      | Calder                               |       |
|         |        |           | 373219           |            | 417     | W124<br>W126 | 129         | 31        | 55       | 55       |      | 55 OVERFLOW                    | ######    | TRUE         | RIVER          | LEFT         |      | Calder                               |       |
|         |        |           |                  | PW         | 417     | E DUNLUCE    | 161         | 75        | 78       | 78       |      | 78 PUMPWELL                    | ######    | TRUE         | RIVER          | LEFT         |      | Calder                               |       |
|         |        |           | 343603           | 854        | 417     | 100          | 101         | 48        | 26       | 5        |      | 26 LOW PIPE                    | ######    | TRUE         | RIVER          | LEFT         |      | Downtown                             | 3     |
|         |        |           |                  |            | 417     |              |             |           |          |          |      |                                |           | _            |                |              |      |                                      | 3     |
|         |        |           | 343602           | 049        |         | 96           | GRIERS      | 00 49     | 62       | 62       | (    | 62 OVERFLOW CH                 | / ####### | TRUE         | RIVER          | LEFT         | 1200 | Downtown                             |       |

|          |      |        |        |            |           |                   |               | T         | T        |         | 1   |                       | T      |        | T.             | T             |      | II                   |               |
|----------|------|--------|--------|------------|-----------|-------------------|---------------|-----------|----------|---------|-----|-----------------------|--------|--------|----------------|---------------|------|----------------------|---------------|
|          |      |        |        |            |           |                   |               |           |          |         |     |                       |        |        |                |               |      |                      |               |
|          |      |        |        |            |           |                   |               |           |          |         |     |                       |        |        |                |               |      |                      |               |
|          |      |        |        |            |           |                   |               |           |          |         |     |                       |        |        |                |               |      |                      |               |
|          |      |        | CADAS- |            |           |                   |               |           |          | SAN_    | STR | M_                    | Delete | COR-   |                | OF_           | OF_  |                      | l             |
| IC Site# | Plan | IC MH# | TRAL   | SAN_MH     | STRM_MH   | STREET            | <b>AVENUE</b> | OF_ NUM   | IC_ AGE  | AGE     | AGE | ICTYPE                | date   | RECTED | OF_LOC1        | LOC2          | DIA  | NHOOD                | COUNT         |
|          |      |        | 343603 | 862        |           | 100               | 101           | 48        | 70       | 66      | 6   | 50 OVERFLOW           | ###### | TRUE   | RIVER          | LEFT          | 1500 | Downtown             | 40            |
|          |      |        | 313613 | PW         |           | 101               | S94           | 145       | 52       | 11      |     | 52 PUMPWELL           | ###### | TRUE   | RIVER          | LEFT          | 300  | Rossdale             | 41            |
|          |      |        | 313618 | 821        | 443       | 101               | 94            | 145       | 52       | 11      |     | 52 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          | _    | Rossdale             | 42            |
|          |      |        |        | 836        | OF        | E100              | 95            | 241       | 57       | 57      |     | 57 OVERFLOW           |        | TRUE   | RIVER          | LEFT          | _    | Rossdale             | 43            |
|          |      |        | 313617 | 007        | 479       | 106               | 95            | 42        | 85       | 85      |     | 58 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Downtown             | 44            |
|          |      |        | +      | 504        |           | 103               | 96            | 47        | 52       | 33      | _   | 52 OVERFLOW           | ###### | TRUE   | RIVER          | LEFT          |      | Rossdale             | 45            |
|          |      |        | 313616 | 803        | 402       | 110               | 97            | 46        | 50       | 15      |     | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Oliver               | 46            |
|          |      |        |        | 805        | 414       | 106               | 97            | 46        | 50       | 5       |     | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Downtown             | 47            |
|          |      |        |        | 806        | 415       | 105               | 97            | 46        | 50       | 5       |     | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Downtown             | 48            |
|          |      |        | 313624 | 905        | 417       | BELLAMY H         | N97           | 46        | 50       | 50      |     | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Rossdale             | 49            |
|          |      |        |        | 838        | 419       | 102               | 97            | 46        | 50       | 5       |     | 50 LOW PIPE           |        | TRUE   | RIVER          | LEFT          |      | Rossdale             | 50            |
|          |      |        |        | 802        | 402       | 101               | 97            | 46        | 50       | 5       | _   | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Rossdale             | 51            |
|          |      |        |        | 805        | 405       | 100A              | 97            | 46        | 50       | 5       |     | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Rossdale             | 52            |
|          |      |        |        | 806        | OF        | 100               | 97            | 45        | 50       | 5       |     | 50 OVERFLOW/WE        |        | TRUE   | RIVER          | LEFT          |      | Rossdale             | 53            |
|          |      |        |        | 843        |           | 112               | 98            | 46        | 50       | 5       |     | 50 LOW PIPE TEE       | ###### | TRUE   | RIVER          | LEFT          |      | Downtown             | 54<br>55      |
|          |      |        |        | 827        | 544       | W100              | 99            | 109       | 7        | 5       |     | 7 LOW PIPE TEE        | ###### | TRUE   | RIVER          | RIGHT         |      | Rossdale             |               |
|          |      |        | 313623 | 828        | 511       | 100               | 99            | 109       |          | 5       |     | 7 LOW PIPE            | ###### | TRUE   | RIVER          | RIGHT         |      | Rossdale             | 56<br>57      |
|          |      |        |        | 828<br>831 | 511<br>OF | 100<br>SW LOW LVL | 99<br>BRIDGE  | 109<br>48 | 7        | 7       |     | 7 LOW PIPE<br>29 HOLE | ###### | TRUE   | RIVER<br>RIVER | RIGHT<br>LEFT |      | Rossdale             | 58            |
|          |      |        |        | 873        | 417       | BELLAMY RD        | 97            | 46        | 29<br>62 | 5<br>62 | _   | 50 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Rossdale<br>Rossdale | 59            |
|          |      |        |        | 819        | 497       | E100              | MCDONA        | -         | 57       | 10      |     | 29 LOW PIPE           | ###### | TRUE   | RIVER          | LEFT          |      | Downtown             | 60            |
|          |      |        |        | 801        | 497       | 137               | N108          | 31        | 53       | 53      | _   | 53 DUAL               |        | TRUE   | RIVER          | LEFT          |      | North Glenora        | 61            |
|          |      |        |        | 4          |           | 133               | N109A         | 31        | 52       | 52      |     | 52 HIGH PIPE          |        | TRUE   | KIVEK          | LEFI          | 2400 | Nottii Gleriora      | 62            |
|          |      |        |        | 819        |           | 133               | N1109A        | 31        | 52       | 52      |     | 52 LOW PIPE           |        | TRUE   |                |               |      |                      | 63            |
|          |      |        |        | 29         |           | 139               | N107A         | 31        | 52       | 52      |     | 52 LOW PIPE           |        | TRUE   |                |               |      |                      | 64            |
|          |      |        | 343214 |            |           | 135               | N107A         | 31        | 52       | 52      |     | 52 LOW PIPE           |        | TRUE   |                |               |      |                      | 65            |
|          |      |        |        | 18         |           | 133               | 107A          | 31        | 52       | 52      |     | 52 LOW PIPE           |        | TRUE   |                |               |      |                      | 66            |
|          |      |        |        | 826        |           | E132              | STONY F       |           | 48       | 48      | _   | 15                    |        | TRUE   |                |               |      |                      | 67            |
|          |      |        |        | 17         |           | 125               | SJASPER       |           | 34       |         |     | PUMPWELL              | ###### | TRUE   |                |               |      |                      | 68            |
|          |      |        |        | 811        |           | W139              | RAVINE I      |           | 61       | 55      | 5   | 61 OVERFLOW           |        | TRUE   | RIVER          | LEFT          | 1650 | River Valley Capit   |               |
|          |      |        |        | PW         |           | ST GEORGE         | VICTORIA      | A 123     | 64       | 29      |     | 55 PUMPWELL           | ###### | TRUE   | CREEK          | LEFT          |      | Glenora              | 70            |
|          |      |        | 343203 | SOF        |           | W132              | TWEEDS        | N 135     | 50       | 50      | )   | 50 OUTFALL            |        | TRUE   | CREEK          | LEFT          | 100  | Glenora              | 71            |
|          |      |        | 343203 | 839        |           | E132              | S103          | 125       | 54       | 54      | ļ.  | DUAL                  | ###### | TRUE   | CREEK          | LEFT          |      | Glenora              | 72            |
|          |      |        | 343204 | 841        |           | 139               | 101           |           | 65       | 65      |     | 51                    | ###### | TRUE   |                |               |      |                      | 73            |
|          |      |        | 342823 | PW         |           | 163               | 116           | 18        | 75       | 74      | l.  | 75 PUMPWELL           | ###### | TRUE   | RIVER          | LEFT          | 2400 | Norwester Industr    | ria <b>74</b> |
|          |      |        | 372810 | PW         |           | 154               | 123           | 18        | 80       | 80      | )   | 80 PUMPWELL           | ###### | TRUE   | RIVER          | LEFT          | 2400 | Mitchell Industrial  |               |
|          |      |        | 342807 | 014        |           | 170               | 105           | 18        | 75       | 75      | 5   | 75 OVERFLOW           | ###### | TRUE   | RIVER          | LEFT          | 2400 | McNamara Indust      |               |
|          |      |        | 312820 | PW         |           | 151               | N94           | 29        | 58       |         |     | PUMPWELL              | ###### | TRUE   | RIVER          | LEFT          | 1650 | Sherwood             | 77            |
|          |      |        | 282819 | PW         |           | WOLF WIL R        | WOLF W        | II 13     | 75       | 75      | 5   | 75 PUMPWELL           | ###### | TRUE   | RIVER          | LEFT          | 1950 | Westridge            | 78            |
|          |      |        | 252420 | PW         |           | E WEDGEWOO        | WEAVER        | 257       | 88       |         |     | PUMPWELL              | ###### | TRUE   | CREEK          | LEFT          | 900  | Wedgewood Heig       |               |
|          |      |        | 313204 | 075        |           | BV RD             | 81            | 21        | 59       | 57      | 7   | 58 LOW PIPE TEE       | ###### | TRUE   | RIVER          | LEFT          | 1350 | Laurier Heights      | 80            |
|          |      |        | 313204 | PW         |           | BV RD             | VAL VIEV      | V21       | 58       | 57      | 7   | 58 PUMPWELL           | ###### | TRUE   | RIVER          | LEFT          | 1350 | Parkview             | 81            |

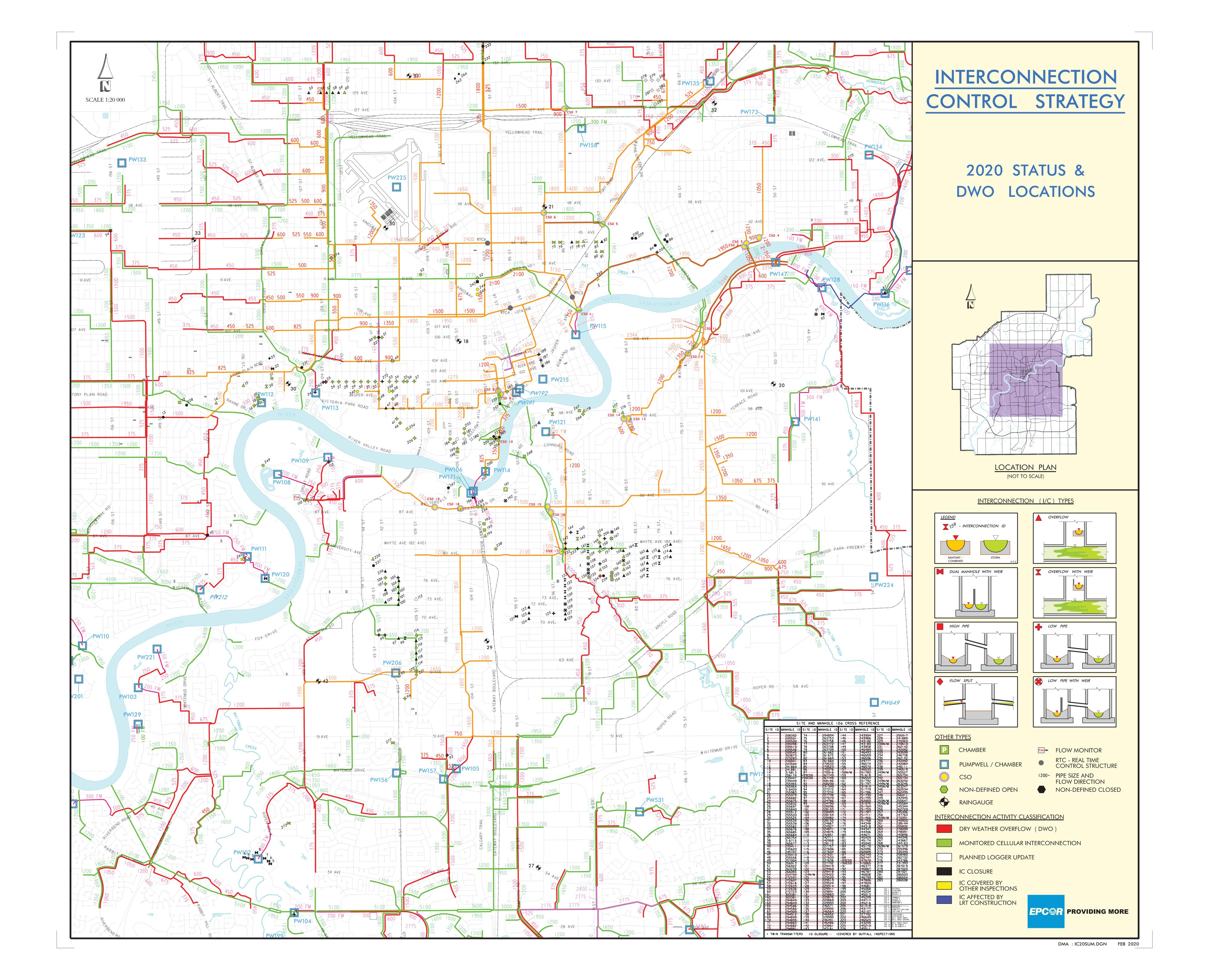
|          |      |         | T      | T      |         | 1          |          |         | 1  |     |      | 1             |        | Г      |        |       |      | П                  |       |
|----------|------|---------|--------|--------|---------|------------|----------|---------|----|-----|------|---------------|--------|--------|--------|-------|------|--------------------|-------|
|          |      |         |        |        |         |            |          |         |    |     |      |               |        |        |        |       |      |                    |       |
|          |      |         |        |        |         |            |          |         |    |     |      |               |        |        |        |       |      |                    |       |
|          |      |         |        |        |         |            |          |         |    |     |      |               |        |        |        |       |      |                    |       |
|          |      |         | CADAS- |        |         |            |          |         |    | SAN | STRM |               | Delete | COR-   |        | OF    | OF_  |                    |       |
| IC Site# | Plan | IC MH#  | TRAL   | SAN MH | STRM MH | STREET     | AVENUE   | OF_ NUM |    | AGE | AGE  | ICTYPE        | date   | RECTED | OF_LOC | _     | DIA  | NHOOD              | COUNT |
|          |      |         | 313204 | 803    | _       | N BV RD    | VAL VIEV | _       | 60 | 60  | 60   | COMMON        | ###### |        | RIVER  | LEFT  | 1350 | Parkview           | 82    |
|          |      |         | 313207 | 085    |         | VAL VIEW C | V/12 VI2 | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  |      | Parkview           | 83    |
|          |      |         |        | 511    |         | VAL VIEW C |          | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  |      | Parkview           | 84    |
|          |      |         | 313207 | 087    |         | VAL VIEW C |          | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  |      | Parkview           | 85    |
|          |      |         | 313208 | 003    |         | VAL VIEW C |          | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  |      | Parkview           | 86    |
|          |      |         | 313208 | 002    |         | VAL VIEW C |          | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  | _    | Parkview           | 87    |
|          |      |         | 313208 | 001    |         | VAL VIEW C |          | 21      | 60 | 60  |      | COMMON        |        | TRUE   | RIVER  | LEFT  |      | Parkview           | 88    |
|          |      |         | 313207 | 088    |         | E136       | VAL VIEV | W21     | 60 | 60  | 60   | COMMON        |        | TRUE   | RIVER  | LEFT  | 1350 | Parkview           | 89    |
|          |      |         | 313204 | 077    |         | VAL VIEW C | 86       | 21      | 60 | 60  | 60   | COMMON        |        | TRUE   | RIVER  | LEFT  | 1350 | Parkview           | 90    |
|          |      |         | 313204 | 076    |         | VAL VIEW C | 86       | 21      | 60 | 60  | 60   | COMMON        |        | TRUE   | RIVER  | LEFT  | 1350 | Parkview           | 91    |
|          |      |         | 344018 |        | 414     | W65A       | 109      | 65      | 57 | 56  | 57   | FLOW SPLIT    |        | TRUE   | RIVER  | RIGHT | 900  | Capilano           | 92    |
|          |      |         | 344007 | 850    |         | W FULTON D | 106      | 58      | 59 | 59  | 59   | DROP MANHOL   | ###### | TRUE   | RIVER  | RIGHT | 1350 | Fulton Place       | 93    |
|          |      |         | 344007 | 467    |         | E CAPILANO | 106      | 58      | 59 | 59  | 59   | CHAMBER       | ###### | TRUE   | RIVER  | RIGHT | 1350 | Capilano           | 94    |
|          |      |         | 313601 | 858    |         | 85         | 82       | 254     | 52 | 49  | 52   | 2             | ###### | TRUE   | CREEK  | RIGHT | 1050 | Bonnie Doon        | 95    |
|          |      |         | 313622 | 819    | 408     | 96A        | 98       | 51      | 60 | 26  | 60   | OVERFLOW/WE   | ###### | TRUE   | RIVER  | RIGHT | 600  | Cloverdale         | 96    |
|          |      |         | 313621 | 802    | 401     | 92         | 98       | 256     | 59 | 46  | 59   | LOW PIPE      | ###### | TRUE   | RIVER  | RIGHT | 500  | Cloverdale         | 97    |
|          |      |         | 313602 | 848    |         | W94        | S81      | 254     | 83 | 58  | 83   | B DROP MANHOL | ###### | TRUE   | CREEK  | RIGHT | 1050 | Mill Creek Ravine  | 98    |
|          |      |         | 283620 |        | 436     | 91         | 70       | 92B     | 54 |     | 61   | OUTFALL - NEV | ER WAS | TRUE   | CREEK  | RIGHT | 750  | Mill Creek Ravine  | 99    |
|          |      |         | 283620 |        | 457     | 90         | 70       | 192     | 54 |     |      | OUTFALL - NEV | ER WAS | TRUE   | CREEK  | RIGHT | 300  | Mill Creek Ravine  | 100   |
|          |      |         | 283621 |        | 415     | 91         | 72       | 191     | 54 |     |      | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      | 229761? | 283621 |        | 450     | W87        | 73       | 93      | 56 |     | _    | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 283620 |        | 420     | 91         | 66       | 91      | 54 | 54  |      | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 283611 |        | 419     | 92         | 63       | 194     | 54 | 54  |      | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 283611 |        | 423     | 91         | 63       | 193     | 61 |     |      | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      | 229112? | 283611 |        | 416     | 90         | 65       | 91B     | 54 | 54  |      | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      | 229130? | 283611 |        | 433     | 90         | 65       | 91A     | 54 | 54  | 54   | OUTFALL - NEV |        | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 283621 |        | 413     | W93        | 67       | 195     | 54 |     |      | OUTFALL - NEV | 1      | TRUE   | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 283610 | 004    | 403     | 92         | 60       | 90      | 68 | 68  |      | B LOW PIPE    | ###### |        | CREEK  | RIGHT |      | Coronet Industrial |       |
|          |      |         | 283610 |        | 403     | 92         | 60       | 90      | 68 | 68  |      | LOW PIPE      | ###### | TRUE   | CREEK  | RIGHT |      | Coronet Industrial |       |
|          |      |         | 313609 | 867    | TUN     | 92         | 84       | 116     | 55 | 30  |      | OUTFALL       | ###### |        | CREEK  | RIGHT |      | Mill Creek Ravine  |       |
|          |      |         | 313614 | 835    | 463     | N QE RD    | 11010:1  | 39      | 55 | 55  |      | LOW PIPE      | ###### | TRUE   | RIVER  | RIGHT |      | River Valley Walte |       |
|          |      |         | 313614 | PW     |         | E104       | N SASK   |         | 56 | 56  |      | PUMPWELL      | ###### | TRUE   | RIVER  | RIGHT |      | River Valley Walte |       |
|          |      |         | 313614 | PW     |         | E104       | N SASK   | _       | 56 | 56  |      | PUMPWELL      | ###### | TRUE   | RIVER  | RIGHT |      | River Valley Walte |       |
|          |      |         | 313614 | 003    |         | 102        | SASK RI  |         | 56 | 56  |      | CHECK VALVE   | ###### |        | RIVER  | RIGHT |      | River Valley Walte |       |
|          |      |         |        | 424    |         | LAVIGNE RD | 91       | 188     | 88 | 90  |      | DI IMPINITI   |        | TRUE   | RIVER  | RIGHT |      | River Valley Walte |       |
|          |      |         | 313219 | PW     | 110     | 118        | SASK DE  |         | 53 | 53  |      | PUMPWELL      | ###### |        | RIVER  | RIGHT |      | Windsor Park       | 117   |
|          |      |         | 313219 | 000    | 446     | 116        | N SASK   |         | 55 | 40  |      | LOW PIPE TEE  | ###### | TRUE   | RIVER  | RIGHT |      | Windsor Park       | 118   |
|          |      |         |        | 803    | 403     | 97         | S71      | 92B     | 60 | 50  |      | LOW PIPE      | ###### | TRUE   | CREEK  | RIGHT |      | Hazeldean          | 119   |
|          |      |         | 283625 | 840    | 428     | E111       | 73       | 22      | 54 | 48  |      | LOW PIPE/WEIF |        | TRUE   | RIVER  | RIGHT |      | McKernan           | 120   |
|          |      |         | 283221 | 818    |         | 112        | 74       | 22      | 54 | 49  |      | 1 OVERFLOW    | ###### | TRUE   | RIVER  | RIGHT |      | McKernan           | 12    |
|          |      |         | 283221 | 808    |         | 112        | N76      | 22      | 47 | 47  |      | OVERFLOW      | ###### | TRUE   | RIVER  | RIGHT |      | McKernan           | 12:   |
|          |      |         | 283219 | 801    |         | BELGRAVIA  | N68      | 22      | 59 | 59  | 59   | COMMON        | ###### | TRUE   | RIVER  | RIGHT | 1500 | Lendrum Place      | 12    |

|          |      |            | 04540          |        |         |            |           |       |    | 0.434       | OTDIA       |           | D. L. C.       | 000  |         | 0.5         | 0.5        |                  |               |
|----------|------|------------|----------------|--------|---------|------------|-----------|-------|----|-------------|-------------|-----------|----------------|------|---------|-------------|------------|------------------|---------------|
| IC Site# | Plan | IC MH#     | CADAS-<br>TRAL | SAN MH | STRM MH | STREET     | AVENUE O  | F NUM |    | SAN_<br>AGE | STRM<br>AGE | - ICTYPE  | Delete<br>date | COR- | OF_LOC1 | OF_<br>LOC2 | OF_<br>DIA | NHOOD            | COUNT         |
|          |      | 10 1111111 | 253221         | 038    |         | 113A       | 46 2      |       | 63 | 63          |             | 63 COMMON | ######         | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            | 253221         | 502    |         | 112        | 46 2      |       | 63 | 63          |             | 63 COMMON | """""          | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            | 253221         | 040    |         | 111A       | 46 2      |       | 63 | 63          |             | 63 COMMON |                | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            |                | 505    |         | 111A       | N46 2     |       | 63 | 63          |             | 63 COMMON |                | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            | 253221         | 022    |         | 111A       | S48 2     |       | 63 | 63          |             | 63 COMMON |                | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            | 253625         |        | 496     | 111A       | N48 2     |       | 63 | 63          |             | 63 COMMON |                | TRUE | CREEK   | RIGHT       |            | Malmo Plains     | 12            |
|          |      |            | 253221         | 806    |         | W111A      | 48 2      |       | 63 | 63          | 6           | 63 COMMON | ######         | TRUE | CREEK   | RIGHT       | 2100       | Malmo Plains     | 13            |
|          |      |            | 253221         | 807    |         | W111A      | 48 2      |       | 63 | 63          | 6           | 63 COMMON | ######         | TRUE | CREEK   | RIGHT       | 2100       | Malmo Plains     | 13            |
|          |      |            | 253221         | 808    |         | W111A      | 48 2      |       | 63 | 63          | 6           | 63 COMMON | ######         | TRUE | CREEK   | RIGHT       | 2100       | Malmo Plains     | 13:           |
|          |      |            | 253221         | 504    |         | 113A       | 46 2      |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Malmo Plains     | 133           |
|          |      |            | 253212         | 051    |         | E121       | FAIRWAY 2 |       | 66 | 66          | 6           | 66 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 134           |
|          |      |            | 253212         | 489    |         | E121       | FAIRWAY 2 |       | 66 | 66          | 6           | 66 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 13            |
|          |      |            | 253212         | 053    |         | E121       | FAIRWAY 2 |       | 66 | 66          | 6           | 66 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 130           |
|          |      |            | 253219         | 808    |         | ASPEN DR   | 40 2      |       | 63 | 63          | 6           | 63 COMMON | ######         | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 13            |
|          |      |            | 253219         | 055    |         | ASPEN DR   | N40 2     |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 13            |
|          |      |            | 253219         | 056    |         | ASPEN DR   | N40 2     |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 139           |
|          |      |            | 253219         | 054    |         | ASPEN DR   | S41A 2    |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 140           |
|          |      |            | 253219         | 053    |         | ASPEN DR   | S41A 2    |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 14            |
|          |      |            | 253219         |        | 480     | ASPEN DR   | 41A 2     |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 143           |
|          |      |            | 253219         | 052    |         | ASPEN DR   | N41A 2    |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 143           |
|          |      |            | 253219         | 057    |         | ASPEN DR   | N41A 2    |       | 63 | 63          | 6           | 63 COMMON |                | TRUE | CREEK   | RIGHT       | 2100       | Aspen Gardens    | 14            |
|          |      |            | 253202         |        | 466     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 14          |
|          |      |            | 253202         |        | 465     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 14          |
|          |      |            | 253202         |        | 468     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate |               |
|          |      |            | 253202         |        | 464     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e <b>14</b> 8 |
|          |      |            | 253202         |        | 467     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate |               |
|          |      |            | 253203         | 018    |         | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 150         |
|          |      |            | 253203         |        | 424     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 15°         |
|          |      |            | 253203         | 022    |         | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e <b>15</b> 2 |
|          |      |            | 253203         | 021    |         | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate |               |
|          |      |            | 253203         | 020    |         | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 154         |
|          |      |            | 253203         | 019    |         | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 15          |
|          |      |            | 253203         |        | 423     | WESTBRK DR | 1         |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 150         |
|          |      |            |                | 019    |         | WESTBRK DR | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       |            | Westbrook Estate |               |
|          |      |            | 253208         |        | 417     | WESTBRK DR | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       |            | Westbrook Estate |               |
|          |      |            | 253208         |        | 416     | WESTBRK DR | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate |               |
|          |      |            |                | 016    |         | WESTBRK DR | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       |            | Westbrook Estate |               |
|          |      |            |                | 015    |         | WESTBRK    | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       |            | Westbrook Estate |               |
|          |      |            | 253208         |        | 413     | WESTBRK DR | 1         |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate |               |
|          |      |            |                | 013    |         | WESTBRK    | FAIRWAY 1 |       | 62 | 62          |             | 62 COMMON |                | TRUE | CREEK   | RIGHT       |            | Westbrook Estate |               |
|          |      | 1          | 253208         | 012    |         | WESTBRK    | W FAIRW.1 |       | 62 | 62          | 6           | 62 COMMON |                | TRUE | CREEK   | RIGHT       | 900        | Westbrook Estate | e 164         |

| I <del>-</del> |        |          |                  |            |            |                        | T.         |          |          |          |       |                       |          | -            | -              |                |      |                                          |         |
|----------------|--------|----------|------------------|------------|------------|------------------------|------------|----------|----------|----------|-------|-----------------------|----------|--------------|----------------|----------------|------|------------------------------------------|---------|
|                |        |          |                  |            |            |                        |            |          |          |          |       |                       |          |              |                |                |      |                                          |         |
|                |        |          |                  |            |            |                        |            |          |          |          |       |                       |          |              |                |                |      |                                          |         |
|                |        |          |                  |            |            |                        |            |          |          |          |       |                       |          |              |                |                |      |                                          |         |
|                |        |          | 04040            |            |            |                        |            |          |          | 0.4.11   | OTDM  |                       | D. L. C. | 000          |                | 0.5            | 0.5  |                                          |         |
| 10.0%          | DI.    | 10 1411" | CADAS-           |            | OTDM MIL   | OTDEET                 | A)/E)!!!   | OF NUM   |          | _        | STRM_ | IOT//DE               | Delete   | COR-         | 05 1004        | OF_            | OF_  | NUCCE                                    | COLINIT |
| IC Site#       | Plan   | IC MH#   | TRAL             | SAN_MH     | STRM_MH    | STREET                 |            | OF_ NUM  |          | AGE      | AGE   | ICTYPE                | date     |              | OF_LOC1        |                | DIA  | NHOOD                                    | COUNT   |
|                |        |          | 253208           |            | 410        | WESTBRK                | W FAIRW    | 1        | 62       |          |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         |         |
|                |        |          | 253208           | 010        |            | WESTBRK DR             |            | 1        | 62       |          |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         |         |
|                |        |          | 253208           | 001        | 401        | WESTBRK                | MARLBOR    | 1        | 64       | 64       |       | HIGH PIPE             | ######   | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 167     |
|                |        |          | 253213           | 222        | 422        | MARLBORO R             |            | 1        | 66       | 66       |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 168     |
|                |        |          | 253214           | 006        |            | MARLBORO R             |            | 1        | 66       | 66       |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 169     |
|                |        |          | 253214           | 005        |            | MARLBORO R             |            | 1        | 66       | 66       |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 170     |
|                |        |          | 253214           | 004        |            | MARLBORO R             |            | 1        | 66       | 66       |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 171     |
|                |        |          | 253213           | 038        | 400        | MARLBORO R             | 50         | 1        | 66       | 66       |       | COMMON                |          | TRUE         | CREEK          | RIGHT          |      | Westbrook Estate                         | 172     |
|                |        |          | 282810<br>282811 | 002<br>011 | 403<br>405 | E WHITEMUD<br>FORT EDM | 58         | 12<br>14 | 74<br>70 | 71<br>70 |       | HIGH PIPE<br>PUMPWELL | ######   | TRUE<br>TRUE | RIVER<br>RIVER | RIGHT<br>RIGHT |      | River Valley White<br>River Valley White |         |
|                |        |          | 252819           | PW         | 400        | RODNEY CR              |            | 101      | 80       | 70       | 70    | PUMPWELL              | ######   | TRUE         | RIVER          | RIGHT          |      | River valley write                       | 174     |
|                |        |          | 253613           | 801        |            | 101                    | N39        | 9        | 75       | 75       | 66    | COMMON                | ######   | TRUE         | RIVER          | RIGHT          |      | Strathcona Industr                       |         |
|                |        |          | 253618           | 801        |            | 101                    |            | 9        | 66       | 66       |       | COMMON                | ######   | TRUE         | RIVER          | RIGHT          |      | Strathcona Industr                       | - 11    |
|                |        |          | 253602           | 012        |            | W97                    | _          | 9        | 75       |          |       | MEMBRANE HO           |          | TRUE         | RIVER          | RIGHT          |      | Parsons Industrial                       | 178     |
|                |        |          | 253602           | 012        |            | 97                     |            | 9        | 75       |          |       | MEMBRANE HO           |          | TRUE         | RIVER          | RIGHT          |      | Parsons Industrial                       | 179     |
|                |        |          | 253602           | 013        |            | E97                    |            | 9        | 75       |          |       | MEMBRANE HO           |          | TRUE         | RIVER          | RIGHT          |      | Parsons Industrial                       | 180     |
|                |        |          | 253603           | 014        | 445        | LST                    |            | 9        | 71       | 73       | 73    | MEMBRANE HO           |          | TRUE         | RIVER          | RIGHT          |      | Parsons Industrial                       | 181     |
|                |        |          | 253203           |            | 412        | E125                   |            | 9        | 78       | 78       | 78    |                       | ######   | TRUE         | RIVER          | RIGHT          |      | Blue Quill Estates                       | 182     |
|                |        |          | 200200           |            | 712        | E101                   | 96         | 3        | 57       | 70       | 70    |                       | ######   | TRUE         | KIVLIX         | KIOITI         | 3100 | Dide Quili Estates                       | 183     |
|                |        |          |                  |            |            | 100                    | 90         |          | 52       |          |       |                       |          | TRUE         |                |                |      |                                          | 184     |
|                |        |          |                  |            |            | 100                    | n. Borden  | Park     | 56       |          |       |                       |          | TRUE         |                |                |      |                                          | 185     |
| 146 (98)       | 97-207 | 243102   | 313610           | 856        | 438        | 87                     | S84        | 116      | 56       |          | 56    | LOW PIPE/WEIR         | }        | TRUE         | CREEK          | RIGHT          | 750  | Bonnie Doon                              | 186     |
| 160 (98)       | 96-054 |          | 313601           | 836        | 424        | 85                     | 79         | 44       | 55       | 49       |       | LOW PIPE/WEIF         |          | TRUE         | RIVER          | RIGHT          |      | King Edward Park                         |         |
| 152 (98)       | 96-048 | 246559   | 313601           | 842        | 447        | 89                     | S79        | 44       | 55       | 53       |       | LOW PIPE              |          | TRUE         | RIVER          | RIGHT          |      | King Edward Park                         | 188     |
| 222 (98)       |        | 246649   | 313602           | 876        |            | 94                     | 81         | 254      | 55       | 22       | 55    | OVERFLOW              |          | TRUE         | CREEK          | RIGHT          |      | Mill Creek Ravine                        | 189     |
| 137 (99)       | 96-056 | 246564   | 313601           | 850        | 457        | 91                     | S78        | 44       | 55       | 28       | 55    | LOW PIPE/WEIF         | }        | TRUE         | RIVER          | RIGHT          | 3800 | King Edward Park                         | 190     |
| 138 (99)       | 96-055 | 246552   | 313601           | 840        | 445        | 91                     | S79        | 44       | 55       | 53       | 55    | LOW PIPE/WEIF         | }        | TRUE         | RIVER          | RIGHT          |      | King Edward Park                         | 191     |
| 145 (99)       | 96-063 | 243986   | 313610           | 852        |            | 93                     | S84        | 116      | 55       | 30       | 50    | OVERFLOW/WE           | IR       | TRUE         | CREEK          | RIGHT          | 750  | Bonnie Doon                              | 192     |
| 231 (99)       |        | 255784   | 343209           |            |            | 127                    | Villa Ave  |          | 88       |          |       |                       |          | TRUE         |                |                |      |                                          | 193     |
| 232 (99)       |        | 278099   | 403604           |            |            | 101                    | 132        |          | 54       |          |       |                       |          | TRUE         |                |                |      |                                          | 194     |
| 233 (99)       |        | 293599   | 403604           |            |            | 101                    | 134        |          | 54       |          |       |                       |          | TRUE         |                |                |      |                                          | 195     |
| 127 (00)       | 96-022 | 229524   | 283619           | 809        |            | 95                     | S71        | 92B      | 60       | 50       | 60    | OVERFLOW              |          | TRUE         | CREEK          | RIGHT          | 750  | Hazeldean                                | 196     |
| 126 (00)       | 96-024 | 229513   | 283619           | 817        |            | 95                     | S70        | 92B      | 60       | 50       | 60    | OVERFLOW              |          | TRUE         | CREEK          | RIGHT          | 750  | Hazeldean                                | 197     |
| 142 (00)       | 96-061 | 243861   | 313602           | 883        | 431        | 94                     | 82         | 245      | 52       | 50       | 52    | LOW PIPE              |          | TRUE         | RIVER          | RIGHT          | 225  | Mill Creek Ravine                        | 198     |
| 23 (01)        | 96-089 |          | 343208           | 826        |            | 132                    | S. Stony F |          | 50       | 28       |       | FLOW SPLIT            |          | TRUE         | CREEK          | LEFT           |      | Glenora                                  | 199     |
| 115 (01)       | 96-017 |          | 283616           |            | 437        | 109                    | 66         | 22       | 54       | 49       |       | OVERFLOW              |          | TRUE         | RIVER          | RIGHT          |      | Parkallen                                | 200     |
| 123 (01)       | 96-020 |          |                  | 815        |            | 98                     |            | 92B      | 61       | 50       |       | OVERFLOW              |          | TRUE         | CREEK          | RIGHT          |      | Hazeldean                                | 201     |
| 129 (01)       | 96-031 |          | 283621           | 856        | 448        | 95                     | 72         | 191      | 54       | 50       | 54    | LOW PIPE/WEIR         | ₹        | TRUE         | CREEK          | RIGHT          | 525  | Hazeldean                                | 202     |
| 197 (01)       | 97-020 |          |                  | 820        | 504        | Walterdale Rd.         | Queen Eliz |          | 52       |          |       |                       |          | TRUE         |                |                |      | River Valley Walte                       |         |
| 112 (02)       | 97-024 |          | 313219           | 006        |            | 118                    | EDINBOR    | 32       | 53       | 53       | 53    | LOW PIPE              |          | TRUE         | RIVER          | RIGHT          | 1200 | Windsor Park                             | 204     |
| 237 (02)       |        | 242084   | 313201           |            |            | 113                    | N78        |          | 54       |          |       |                       |          | TRUE         |                |                |      |                                          | 205     |
| 2 (02)         | 97-051 | 209501   | 253208           | 801        |            | WESTBRK DR             |            | 1        | 88       | 62       | 62    | DUAL                  |          | TRUE         | CREEK          | RIGHT          | 900  | Westbrook Estate                         | 206     |

|                           |                  |                  |                  |            |             |                | T           |           | 1        |          | I            |                             | 1              | 1              | 1              | 1              | 1          | TI .                      |            |
|---------------------------|------------------|------------------|------------------|------------|-------------|----------------|-------------|-----------|----------|----------|--------------|-----------------------------|----------------|----------------|----------------|----------------|------------|---------------------------|------------|
|                           |                  |                  |                  |            |             |                |             |           |          |          |              |                             |                |                |                |                |            |                           |            |
|                           |                  |                  |                  |            |             |                |             |           |          |          |              |                             |                |                |                |                |            |                           |            |
|                           |                  |                  |                  |            |             |                |             |           |          |          |              |                             |                |                |                |                |            |                           |            |
| IC Site#                  | Plan             | IC MH#           | CADAS-<br>TRAL   | SAN MH     | STRM MH     | STREET         | AVENUE      | OF NUM    |          |          | STRM_<br>AGE | ICTYPE                      | Delete<br>date | COR-<br>RECTED | OF LOC         | OF_<br>1 LOC2  | OF_<br>DIA | NHOOD                     | COUNT      |
| 3 (02)                    | 97-052           | 209500           | 253207           | 802        | OTTAIN_INIT | WESTBRK DR     | AVEIVOL     | 1         | 88       | 62       |              | 2 DUAL                      | date           | TRUE           | CREEK          | RIGHT          |            | Westbrook Estate          |            |
| 4 (02)                    | 97-053           | 209498           | 253207           | 801        |             | WESTBRK DR     |             | 1         | 88       | 62       |              | 2 DUAL                      |                | TRUE           | CREEK          | RIGHT          |            | Westbrook Estate          |            |
| 5 (02)                    | 97-055           | 209510           | 253208           | 804        |             | MARLBORO R     |             | 1         | 88       | 66       |              | 6 DUAL                      |                | TRUE           | CREEK          | RIGHT          |            | Westbrook Estate          |            |
| 6 (02)                    | 97-056           | 209548           | 253208           | 803        |             | MARLBORO R     |             | 1         | 88       | 66       |              | 6 DUAL                      |                | TRUE           | CREEK          | RIGHT          |            | Westbrook Estate          |            |
| 7 (02)                    | 97-057           | 209545           | 253208           | 802        |             | MARLBORO R     |             | 1         | 88       | 66       |              | 6 DUAL                      |                | TRUE           | CREEK          | RIGHT          |            | Westbrook Estate          |            |
| 8 (02)                    | 97-058           | 303873           | 253213           | 801        |             | MARLBORO R     |             | 1         | 88       | 66       | 66           | 6 DUAL                      |                | TRUE           | CREEK          | RIGHT          | 900        | Westbrook Estate          | 212        |
| 133 (02)                  | 96-026           | 229869           | 283622           | 806        | 409         | 95             | 76          | 100       | 55       | 14       | 55           | 5 OVERFLOW/WE               | IR             | TRUE           | CREEK          | RIGHT          | 300        | Ritchie                   | 213        |
| 196 (02)                  | 97-224           | 247806           | 313614           | 006        |             | E104           | N SASK      | D 38      | 56       | 56       | 51           | 1 DUAL                      |                | TRUE           | RIVER          | RIGHT          | 750        | River Valley Walte        | er 214     |
| 10 (03)                   | 97-179           | 240041           | 313207           | 013        |             | 142            | BUENA \     | VI 24     | 58       | 57       | 58           | 8 HIGH PIPE                 |                | TRUE           | RIVER          | LEFT           | 1500       | Parkview                  | 215        |
| 22 (03)                   | 96-087           | 255979           | 343203           | 836        |             | E132           | N103        | 130       | 54       | 54       | 54           | 4 DUAL                      |                | TRUE           | CREEK          | LEFT           | 300        | Glenora                   | 216        |
| 24 (03)                   | 97-171           | 255675           | 343202           | 16         |             | 125            | SJASPE      | R 46      | 34       |          |              | LOW PIPE                    |                | TRUE           |                |                |            |                           | 217        |
| 55 (03)                   | 97-136           | 272597           | 373219           |            | 421         | W125           | 129         | 31        | 55       | 55       | 55           | 5 OVERFLOW                  |                | TRUE           | RIVER          | LEFT           | 2400       | Calder                    | 218        |
| 56 (03)                   | 97-133           | 272607           | 373219           |            | 433         | W123A          | 129         | 31        | 55       | 55       | 55           | 5 OVERFLOW                  |                | TRUE           | RIVER          | LEFT           | 2400       | Calder                    | 219        |
| 58 (03)                   | 97-131           | 272633           |                  |            | 449         | W122           | 129         | 31        | 55       | 55       |              | 5 OVERFLOW                  |                | TRUE           | RIVER          | LEFT           | 2400       | Calder                    | 220        |
| 77 (03)                   | 97-097           | 263772           | 343622           |            | 433         | W84            | 114         |           | 56       | 56       | 13           | 3 OVERFLOW                  |                | TRUE           |                |                |            |                           | 221        |
| 82 (03)                   | 97-079           | 261664           | 343621           |            | 429         | W79            | 114         |           | 56       | 56       | 13           | 3 OVERFLOW                  |                | TRUE           |                |                |            |                           | 222        |
| 91 (03)                   | 97-194           | 268186           | 344011           | 801        | 412         | 43             | 106B        | 105       | 58       | 58       | 58           | 8 LOW PIPE/WEIF             | ₹              | TRUE           | RIVER          | RIGHT          | 1500       | Gold Bar                  | 223        |
| 92 (03)                   | 97-193           | 268200           | 344011           | 802        |             | E42            | 106B        | 105       | 58       | 58       | 58           | 8 DUAL                      |                | TRUE           | RIVER          | RIGHT          | 1500       | Gold Bar                  | 224        |
| 93 (03)                   | 97-069           | 231340           | 253624           | 005        | 405         | 106            | N47         | 2         | 63       | 61       |              | 3 LOW PIPE                  |                | TRUE           | CREEK          | RIGHT          | _          | Empire Park               | 225        |
| 40 (03)                   | 97-143           | 239392           | 313625           | 816        | 402         | 114            | 100         | 46        | 50       | 7        | 50           | 0 LOW PIPE                  |                | TRUE           | RIVER          | LEFT           | 1275       | Oliver                    | 226        |
| 229 (03)                  |                  | 270363           | 344005           |            |             |                | n. Border   | -1        | 56       |          |              |                             |                | TRUE           |                |                |            |                           | 227        |
| 257 (03)                  |                  | 245306           |                  |            |             | 100            | McDonal     | d         | 57       |          |              |                             |                | TRUE           |                |                |            | Downtown                  | 228        |
| 260 (03)                  |                  | 240920           |                  |            |             | Buena Vista Rd | 81          |           | 58       |          |              |                             |                | TRUE           |                |                |            |                           | 229        |
| 84 (05)                   | 97-225           | 270533           |                  | 207533     |             | W72            | 113         |           | 57       |          |              |                             |                | TRUE           |                |                |            |                           | 230        |
| 96 (05)                   | 97-030           | 227748           |                  |            | 425         | 110            | N66         | 22        | 54       | 50       |              | 4 OVERFLOW/WE               | IR             | TRUE           | RIVER          | RIGHT          |            | Parkallen                 | 231        |
| 97 (05)                   | 96-015           | 227670           | 283616           |            | 415         | 111            | L. S. 67    | 22        | 54       | 50       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          | -          | Parkallen                 | 232        |
| 100 (05)                  | 96-034           | 228096           | 283625           |            | 415         | 111            | 72          | 22        | 54       | 47       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          |            | McKernan                  | 233        |
| 101 (05)                  | 96-036           | 228103           | 283625           |            | 421         | 111            | 73          | 22        | 54       | 48       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          |            | McKernan                  | 234        |
| 102 (05)                  | 97-033           | 228099           | 283625           |            | 420         | 111            | 74          | 22        | 54       | 48       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          |            | McKernan                  | 235        |
| 103 (05)                  | 97-034           | 228154           | 283625           |            | 407         | 111            | 75          | 22        | 54       | 48       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          | _          | McKernan                  | 236        |
| 104 (05)                  | 97-035           | 228082           | 283625           |            | 426         | 111            | 76          | 22        | 54       | 47       | 54           | 4 OVERFLOW                  | 1              | TRUE           | RIVER          | RIGHT          | 1500       | McKernan                  | 237        |
| 261 (05)                  | 06.020           | 238144           | 202022           | 000        | 470         | 151            | 95          | 100       | 58       | 47       |              | E OVEREL OWAY               | -ID            | TRUE           | CDEEK          | DICLIT         | 200        | Ditabia                   | 238<br>239 |
| 130 (07)                  | 96-029           | 229891<br>251790 | 283622           | 829        | 470         | 95             | 73          | 100       | 55<br>55 | 47       |              | 5 OVERFLOW/WE               |                | TRUE           | CREEK          | RIGHT          |            | Ritchie                   |            |
| 166 (07)                  | 97-199<br>96-038 | 251790           | 314005<br>283625 | 817<br>802 | 430<br>401  | 111            | S80<br>N76  | 22        | 55<br>54 | 49<br>47 |              | 5 OVERFLOW/WE<br>4 LOW PIPE | ir.            | TRUE           | RIVER<br>RIVER | RIGHT<br>RIGHT | _          | King Edward Park McKernan | 240<br>241 |
| 105 (07)<br>108 (07)      | 96-038           | 224871           | 283625           | OUZ        | 451         | 111            | N73         | 22        | 54       | 47       |              | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          |            | McKernan                  | 241        |
| 108 (07)                  | 96-004           | 224871           |                  |            | 451         | 112            | N73         | 22        | 54       | 47       | _            | 4 OVERFLOW                  |                | TRUE           | RIVER          | RIGHT          |            | McKernan                  | 242        |
| ц , ,                     | 30-003           | 242092           | 313201           |            | 404         | 112            | N72<br>S78  | 22        | 54<br>86 | 49       | 54           | OVERFLOW                    |                | TRUE           | KIVEK          | KIGHI          | 1500       |                           | 243        |
| 236 (07)<br>263 (07)      |                  | 278090           | 313201           |            |             | 105            | 130         |           | 59       |          |              | OVERFLOW                    |                | TRUE           |                |                | +          | Parkallen<br>Lauderdale   | 244        |
| 121 (07)                  | 96-019           | 229419           | 283618           | 816        |             | 99             | 70          | 92B       | 61       | 50       | 6.           | 1 DUAL                      |                | TRUE           | CREEK          | RIGHT          | 750        | Hazeldean                 | 245        |
| 54 (07)                   | 97-180           | 254704           | 342821           | 025        | 410         | 156            | 116         | 92B<br>18 | 75       | 50<br>58 |              | 5 LOW PIPE/WEIF             | <u> </u>       | TRUE           | RIVER          | LEFT           |            | Alberta Park Indus        |            |
| ` '                       | 31-100           | 278091           | 342021           | 020        | 410         | 105            | 130         | 10        | 75<br>59 | 38       | /:           | J LOVY FIFE/VVEIP           | `              | TRUE           | VIVEK          | LEFI           | 2400       |                           | 247        |
| 264 (05, n/m)<br>206 (09) | 97-213           | 243177           | 212610           | 966        |             | W87            | S83         |           | 49       |          |              | LOW PIPE                    |                | TRUE           |                |                | +          | Lauderdale<br>Bonnie Doon | 248        |
| ∠∪0 (U9 <i>)</i>          | 91-213           | 2431//           | 313610           | 000        |             | VV 0 /         | <b>3</b> 03 |           | 49       |          |              | LOW FIFE                    |                | IKUE           |                |                |            | Double Doop               | 249        |

Page 9


|                     |                  |                  |                  |        | 1        |            |             | <u> </u> |      |          |          |       |                          |      | 1       |       |      | II                      |            |
|---------------------|------------------|------------------|------------------|--------|----------|------------|-------------|----------|------|----------|----------|-------|--------------------------|------|---------|-------|------|-------------------------|------------|
|                     |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          |      |         |       |      |                         |            |
|                     |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          |      |         |       |      |                         |            |
|                     |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          |      |         |       |      |                         |            |
| 10.0% #             | DI .             | 10 1411"         | CADAS-           |        | OTDM MIL | OTDEET     | A./E.III.E  | 0F N     |      |          |          | STRM_ | _                        |      | 05 100  | OF_   | OF_  | NULCOR                  | COLINIT    |
| IC Site#            |                  | IC MH#           | TRAL             | SAN_MH | STRM_MH  | STREET     | AVENUE      |          | UIVI |          |          | AGE   | ICTYPE date              |      | OF_ LOC |       | DIA  | NHOOD                   | COUNT      |
| 168 (03)            | 97-197           | 252003           |                  | 828    | 438      | 81         | S78         | 44       |      | 55       | 49       |       | 5 OVERFLOW/WEIR          | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 174 (03)            | 97-203<br>97-212 | 251466<br>251782 |                  | 816    | 412      | 77         | S81         | 44       |      | 56       | 50       |       | 6 OVERFLOW               | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        | 251<br>252 |
| 158 (10)            | 97-212           | 239410           | 314005<br>313221 | 815    | 416      | 85<br>115  | S81         | 46       |      | 55<br>54 | 55<br>30 |       | 9 OVERFLOW<br>4 OVERFLOW | TRUE | RIVER   | LEFT  | 1075 | Oliver                  | 252        |
| 47 (10)<br>122 (10) | 97-144           | 229960           | 283623           | 833    |          | 98         | 100<br>S72  | 92B      |      | 61       | 49       |       | 1 OVERFLOW               | TRUE | CREEK   | RIGHT |      | Hazeldean               | 253        |
| 125 (10)            | 96-023           | 229520           | 283619           | 806    | 402      | 96         | S71         | 92B      |      | 60       | 50       |       | 0 LOW PIPE               | TRUE | CREEK   | RIGHT |      | Hazeldean               | 255        |
| 131 (10)            | 96-028           | 229883           | 283622           | 821    | 426      | 95         | 74          | 100      |      | 55       | 14       |       | 5 OVERFLOW/WEIR          | TRUE | CREEK   | RIGHT |      | Ritchie                 | 256        |
| 132 (10)            | 96-027           | 229875           |                  | 812    | 420      | 95         | 75          | 100      |      | 55       | 14       |       | 5 OVERFLOW/WEIR          | TRUE | CREEK   | RIGHT |      | Ritchie                 | 257        |
| 124 (n/m) (10)      | 97-028           | 229422           | 283618           | 819    | .20      | 98         | S70         | 92B      |      | 61       | 50       |       | 1 OVERFLOW               | TRUE | CREEK   | RIGHT |      | Hazeldean               | 258        |
| 165 (11)            | 97-200           | 251786           |                  | 813    | 459      | 81         | S81         | 44       |      | 55       | 50       |       | 55 OVERFLOW              | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 171 (11)            | 96-075           | 251791           | 314005           | 818    | 431      | 79         | S80         | 44       |      | 56       | 50       |       | 6 OVERFLOW/WEIR          | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 172 (11)            | 97-201           | 251787           | 314005           | 813    | 422      | 79         | S81         | 44       |      | 56       | 50       |       | 6 OVERFLOW               | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 230 (n/m) (12)      |                  | 270510           |                  |        |          |            | n. Border   |          |      | 56       |          |       |                          | TRUE |         |       |      | Edmonton Northla        |            |
| 243 (n/m) (12)      |                  | 263242           |                  |        |          | 102        | 111         |          |      | 68       |          |       |                          | TRUE |         |       |      | Central McDougall       |            |
| 167 (12)            | 97-198           | 251795           | 314005           | 824    | 435      | 81         | S79         | 44       |      | 55       | 49       | 5     | 5 OVERFLOW               | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        |            |
| 169 (12)            | 97-196           | 231975           |                  | 832    | 443      | 81         | S77         | 44       |      | 55       | 52       | 5     | 5 OVERFLOW/WEIR          | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 170 (12)            | 96-078           | 251796           | 314005           | 826    | 436      | 79         | S79         | 44       |      | 56       | 49       | 5     | 6 OVERFLOW/WEIR          | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        | 266        |
| 173 (12)            | 97-204           | 251711           | 314004           | 808    | 404      | 77         | S82         | 44       |      | 56       | 50       | 5     | 6 OVERFLOW               | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        |            |
| 175 (12)            | 97-202           | 251758           | 314004           | 826    | 415      | 77         | S80         | 44       |      | 56       | 50       | 5     | 6 OVERFLOW               | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        | 268        |
| 128 (13) OF 2010-   |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          |      |         |       |      |                         |            |
| 103                 | 96-030           | 229914           | 283622           | 855    | 457      | 95         | 71          | 92B      |      | 60       | 50       | 6     | 60 LOW PIPE/WEIR         | TRUE | CREEK   | RIGHT | 750  | Hazeldean               | 269        |
|                     |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          |      |         |       |      |                         |            |
| 272 (50) RPN 0016   |                  | 255496           |                  |        | 1        | W115       | 102         | 1        |      |          |          |       |                          | TRUE |         |       | T    | Oliver                  | 270        |
| 157                 | 96-045           | 246533           | 313601           | 815    | 421      | 87         | 81          | 44       |      | 55       | 49       | 5     | 55 LOW PIPE              | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        | 271        |
| 140 (16) OF 2011-   | 00.040           | 0.40.40.4        |                  |        |          |            |             |          |      |          |          | _     |                          |      |         |       |      |                         |            |
| 23                  | 96-046           | 246491           | 313601           | 818    | 425      | 91         | S81         | 44       |      | 55       | 22       | 5     | 55 OVERFLOW/WEIR         | TRUE | RIVER   | RIGHT | 3800 | King Edward Park        | 272        |
| 262 (05, closed     |                  | 055000           |                  |        |          | 14/400     | 400         |          | 40   | 47       |          |       |                          | TOUE |         |       |      | O.I.                    | 070        |
| '16)                | 2)               | 255832           |                  |        |          | W123       | 102         |          | 46   | 47       |          |       |                          | TRUE |         |       |      | Oliver                  | 273<br>274 |
| 259 (03, closed '16 | 97-132           | 270391<br>272618 | 373219           |        | 440      | 73<br>W123 | N112<br>129 | 24       | 56   | 56       |          | -     | 5 OVERFLOW               | TRUE | RIVER   | LEFT  | 2400 | Virginia Park<br>Calder | 274        |
| 57 (18)<br>59 (18)  | 97-132           | 272636           |                  |        | 452      | W123       | 129         | 31       |      | 55<br>55 | 55<br>55 |       | 5 OVERFLOW               | TRUE | RIVER   | LEFT  |      | Calder                  | 275        |
| 136 (18)            | 96-057           | 272636           | 313601           | 856    | 464      | 91         | 77          | 44       |      | 55       | 28       |       | 5 LOW PIPE/WEIR          | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 141 (18)            | 97-005           | 246486           |                  | 806    | 415      | 91         | S82         | 44       |      | 55       | 31       |       | 5 OVERFLOW/WEIR          | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 150 (18)            | 96-044           | 246489           |                  | 809    | 410      | 89         | S82         | 44       |      | 55       | 46       |       | 5 LOW PIPE               | TRUE | RIVER   | RIGHT |      | King Edward Park        |            |
| 98 (19)             | 96-002           | 224786           | 283220           | 807    | 418      | 112A       | 67          | 22       |      | 54       | 54       |       | 4 LOW PIPE               | TRUE | RIVER   | RIGHT |      | Parkallen               | 280        |
| 99 (19)             | 96-001           | 224790           | 283220           | 811    | 421      | 112        | 67          | 22       |      | 51       | 51       |       | 1 LOW PIPE               | TRUE | RIVER   | RIGHT |      | Parkallen               | 281        |
| 117 (19)            | 96-011           | 227631           | 283615           | 0.1    | 428      | 109        | 64          | 22       |      | 54       | 50       |       | 4 OVERFLOW               | TRUE | RIVER   | RIGHT |      | Parkallen               | 282        |
| 118 (19)            | 96-012           | 227633           |                  |        | 429      | 109        | 63          | 22       |      | 54       | 49       |       | 4 OVERFLOW               | TRUE | RIVER   | RIGHT |      | Parkallen               | 283        |
| 144 (19)            | 96-062           | 243904           | 313609           | 869    | 870      | W93        | L. S. 84    | 116      |      | 55       | 30       |       | 55 LOW PIPE              | TRUE | CREEK   | RIGHT |      | Bonnie Doon             | 284        |
| 163 (19)            | 97-208           | 231913           |                  | 7      | 442      | 85         | S77         | 1        | 44   | 55       | 55       |       | 9 OVERFLOW               | TRUE |         |       | . 50 | King Edward Park        |            |
| 223                 |                  | 246523           |                  | 814    |          | 93         | 81          |          | 22   | 55       |          |       | LOW PIPE                 | TRUE |         |       |      | Bonnie Doon             | 286        |
|                     | 1                |                  |                  |        | -1       | 1          | 1           | -1       |      | 1        |          | 1     | 1                        |      |         | -1    | 1    | II.                     | -          |
|                     |                  |                  |                  |        |          |            |             |          |      |          |          |       |                          | 1    | - 1     |       |      |                         |            |

|                  |             |                |             | 1          |         |            | 1      |         |         |     |      |               |             |        |       |      | I                  |        |
|------------------|-------------|----------------|-------------|------------|---------|------------|--------|---------|---------|-----|------|---------------|-------------|--------|-------|------|--------------------|--------|
|                  |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
|                  |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
|                  |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
|                  |             |                | CADAS-      |            |         |            |        |         |         | SAN | STRM |               | Delete COR- |        | OF    | OF_  |                    |        |
| IC Site#         | Plan        | IC MH#         |             | SAN_MH     | STRM_MH | STREET     | AVENUE | OF_ NUM | IC_ AGE | _   | AGE  | ICTYPE        |             | OF_LOC | _     |      | NHOOD              | COUNT  |
| Removed from     | database (e | mergency pur   | np overflov | v)         |         |            |        |         |         |     |      |               |             |        |       |      |                    | T      |
| 1 (02)           | 97-070      | 208392         |             |            | 412     | 125        | 29A    | 1       | 76      |     |      | LOW PIPE      |             | CREEK  | RIGHT | 900  | Blue Quill Estates |        |
| 9 (02)           | 97-059      | 223283         |             | PW         | 403     | E WHITEMUD | 58     | 12      | 72      | 70  | 72   | PUMPWELL      |             | RIVER  | RIGHT |      | River Valley White |        |
| 11 (02)          | 97-187      | 223504         | 283223      | 006        |         | S133       | BV RD  | 21      | 58      | 59  |      | BDUAL         |             | RIVER  | LEFT  |      | Laurier Heights    |        |
| 87 (02)          | 97-072      | 270916         |             | 053        | 469     | 29         | 102    | 71      | 66      | 66  |      | OVERFLOW      |             | RIVER  | LEFT  |      | Rundle Heights     |        |
| ` ′              |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
| Removed from     | database (d | oes not exist) |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    | 1      |
| 227 (03)         |             | 256917         | 343211      |            | 407     | 116        | 106    | 54      | 72      | 72  | 72   | DROP MANHOL   | E STRUCTURE | RIVER  | LEFT  | 3000 | Queen Mary Park    |        |
| 228 (03)         |             | 241889         | 343205      |            | 436     | 145        | SUMMIT | 30      | 50      |     |      |               |             | RIVER  | LEFT  |      | Crestwood          |        |
| 239 (03)         |             | 246519         |             |            |         | 89         | S77    |         |         |     |      |               |             |        |       |      |                    |        |
| 241 (03)         |             | 265734         |             |            |         | 113        | 102    |         |         |     |      |               |             |        |       |      |                    |        |
| 242 (03)         |             | 265734         |             |            |         | 113        | 102    |         |         |     |      |               |             |        |       |      |                    |        |
| 85 (04)          | 97-226      | 270523         |             | 270523     |         | E71        | 113    |         | 51      |     |      |               |             |        |       |      |                    |        |
| 86 (04)          | 97-227      | 270376         |             | 270376     |         | E71        | 113    |         | 51      |     |      |               |             |        |       |      |                    |        |
| 203 (04)         | 97-170      | 244717         | 313618      | 806        | 407     | 100        | 97     | 45      | 50      | 5   | 50   | LOW PIPE      |             | RIVER  | LEFT  | 600  | Rossdale           |        |
| 205 (04)         | 97-220      | 321318         |             |            |         | E101       | 96     |         | 85      |     |      |               |             |        |       |      |                    |        |
| 225 (n/m) (04)   |             | 245210         | 313623      |            |         | 100        | 97     |         | 50      |     |      |               |             |        |       |      |                    |        |
| 248 (n/m) (04)   |             | 266011         |             |            |         | W109       | 111    |         | 68      |     |      |               |             |        |       |      |                    |        |
| 256 (03,n/m) (04 | 4)          | 262720         |             |            |         | 96         | 103    |         | 49      |     |      |               |             |        |       |      |                    |        |
|                  |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
| Removed from     |             | ischarge back  | to combin   | ed system) |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |
| 186 (04)         | 97-082      | 262009         | 343609      | 815        | 814     | 95         | 101    | 152     | 49      | 7   | 49   | LOW PIPE      |             | RIVER  | LEFT  | 450  | Boyle Street       |        |
| 187 (04)         | 97-083      | 262749         | 343609      | 810        | 402     | 95         | 102A   | 152     | 49      | 7   | 49   | LOW PIPE      |             | RIVER  | LEFT  | 450  | Boyle Street       |        |
| 188 (04)         | 97-084      | 262747         | 343609      | 809        | 401     | 95         | 103    | 152     | 49      | 7   | 49   | LOW PIPE      |             | RIVER  | LEFT  | 450  | Boyle Street       |        |
| 246 (n/m) (04)   |             | 262534         |             |            |         | W105       | 106    |         | 69      |     |      |               |             |        |       |      |                    |        |
| 247 (n/m) (04)   |             | 262495         |             |            |         | W106       | 106    |         | 69      |     |      |               |             |        |       |      |                    |        |
| 192 (n/m) (10)   | 97-015      | 246867         | 313613      | 843        | 412     | 100        | 89     | 188     | 53      | 53  | 53   | LOW PIPE/WEIF | 3           | RIVER  | RIGHT | 1200 | River Valley Walte | erdale |
| 270 (13)         |             | 270548         |             |            |         | 60E        | 112    |         |         |     |      |               |             |        |       |      | Highlands          |        |
| 271 (13)         |             | 284287         |             |            |         | 57E        | 112    |         |         |     |      |               |             |        |       |      | Highlands          |        |
|                  |             |                |             |            |         |            |        |         |         |     |      |               |             |        |       |      |                    |        |

Notes:

(n/m) = not monitored

(xx) indicates the year of discovery or closure of the I/C (if known)



### Storm and CSO Volumes and Loadings

This section is submitted in compliance with Section 4.4.10 and 6.3.3 of the Approval No. 639-03-06 for the one year period ending December 31, 2020.

The monthly volumes discharged to the North Saskatchewan River (NSR) are indicated on the attached plot (Figure 1 and 2) for the following locations:

- 30 Avenue Storm Outfall
- Groat Road Storm Outfall
- Quesnell Storm Outfall
- Kennedale Storm Outfall
- Rat Creek CSO
- Highlands CSO
- Capilano CSO
- Cromdale CSO
- Strathearn CSO

Estimated and measured storms volumes are indicated on Figure 3. Total monitored CSO volumes are indicated on Figure 4. A tabular summary of the flow volumes and estimations of total monthly volumes discharged is also attached (Table 2). Of the sites reported, the storm and combined system contribute 99.7% and 0.3% of the volume, respectively.

The total (measured and estimated) flow volume discharged from the storm sewer system to the NSR in 2020 was 180.6 million m³ - a 15.6% increase compared to the 2019 volume of 156.3 million m³. The 2020 flow volumes from the 30th Avenue, Groat Road, Quesnell, and Kennedale storm outfalls were 8.8, 3.4, 17.9, and 20.7 million m³, respectively. The volume of flows from Mill Creek originating inside the City limits was 32.1 million m³.

For the combined sewer system, the total CSO flow volume discharged to the NSR in 2020 was 530,677 m<sup>3</sup> - a 42.7% increase compared to the 2019 volume of 373,497 m<sup>3</sup>. The 2019 flow volumes from the Rat Creek, Highlands, Capilano, Cromdale, and Strathearn CSOs, were 420,110; 98,472; 5,896; 5,289; and 910 m<sup>3</sup>, respectively.

Water quality samples were obtained for the majority of the significant discharge events during the year. As well, a total of 75 dry-weather (baseflow) water quality samples were obtained from the storm sewer system. Table 3 provides a tabular summary of calculated flow-weighted mean monthly and annual concentrations for different constituents and the number of events sampled for water quality analysis.

In accordance with our Approval requirements, total monthly loadings to the North Saskatchewan River have been calculated for the above sites. Summaries of measured loads and estimated total loads for the City of Edmonton's storm and combined sewer system are included in Table 4. The reported loads were calculated using daily constituent concentrations, including storm sewer baseflow data, and the measured or estimated flow volumes. The combined storm and CSO total loading to the NSR consists of about 17,805 tonnes of total suspended solids (TSS), 1,326 tonnes of biochemical oxygen demand (BOD), 54 tonnes of total phosphorous (TP), 226 tonnes of nitrite and nitrate (NO<sub>2</sub> + NO<sub>3</sub>), 54 tonnes of ammonia (NH<sub>3</sub>), and 315 tonnes of total Kjeldahl nitrogen (TKN). Summaries of the Rat Creek CSO concentration statistics are shown in Table 5.

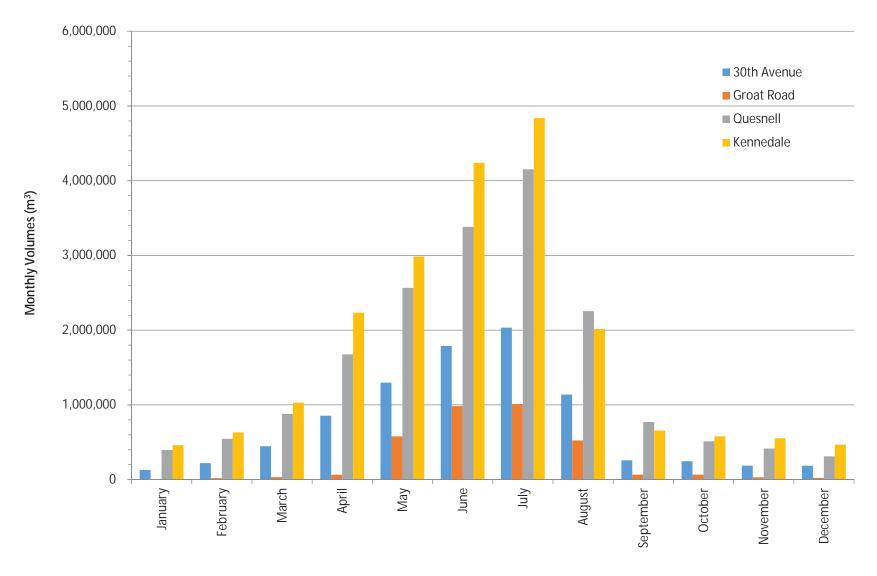



Figure 1: Total (Measured + Estimated) Storm Volume in 2020

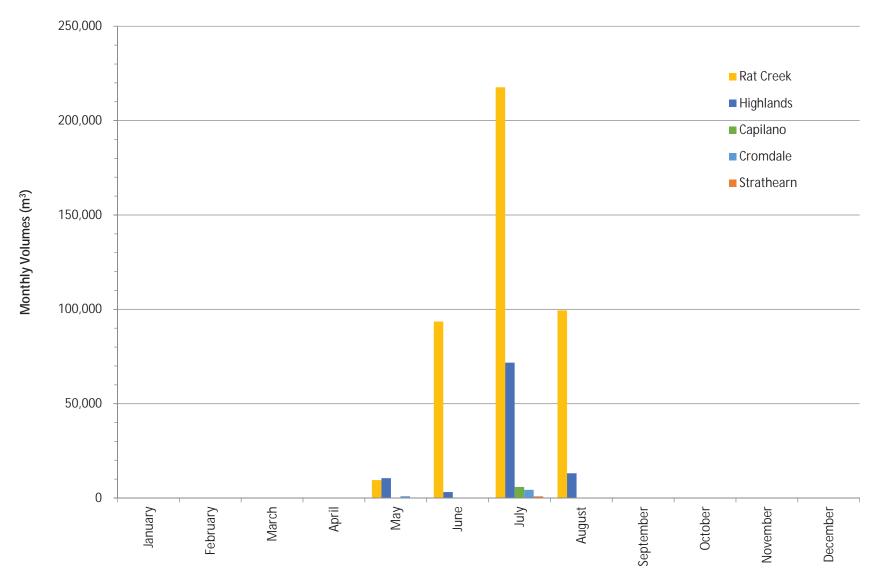



Figure 2: Total (Measured + Estimated) CSO Volumes in 2020

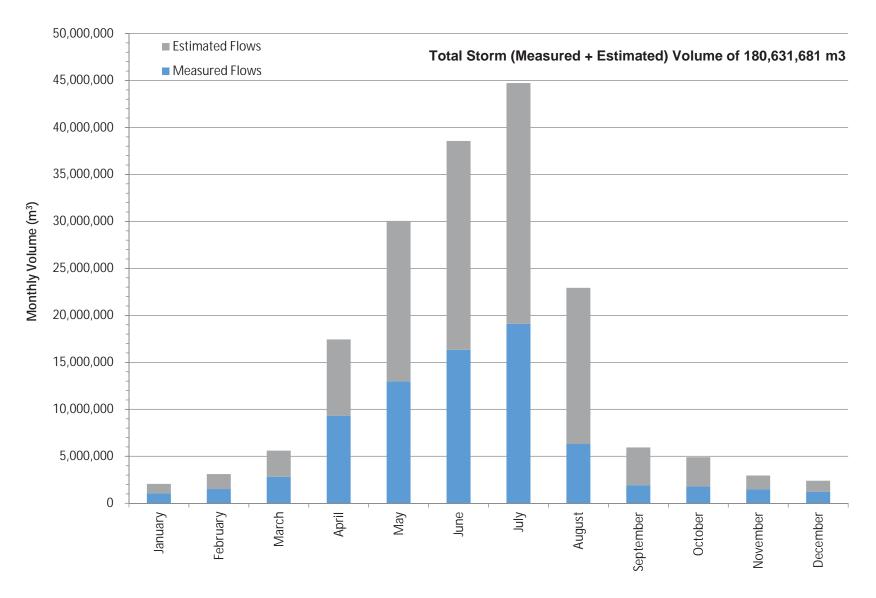



Figure 3: Total Storm (Measured + Unmonitored) Volumes in 2020 (All Storm Outfalls and Creeks)

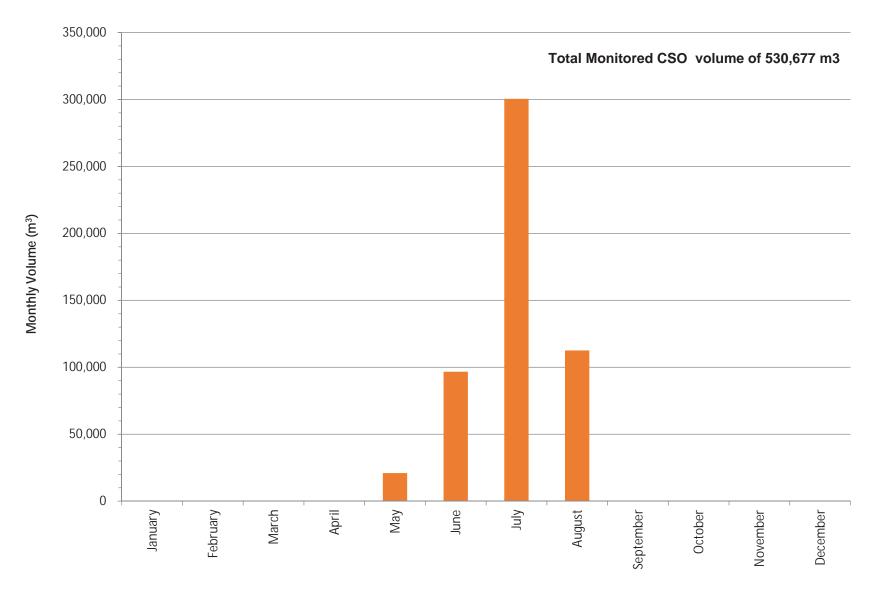



Figure 4: Total Monitored CSO Volume in 2020

**Table 2: 2020 Annual Discharge Volumes (in Cubic Meters)** 

|           |             | Storm Ou   | tfalls     |            |           | C         | SO Outfalls |          |            |
|-----------|-------------|------------|------------|------------|-----------|-----------|-------------|----------|------------|
| Month     | 30th Avenue | Groat Road | Quesnell   | Kennedale  | Rat Creek | Highlands | Capilano    | Cromdale | Strathearn |
| January   | 129,001     | 29         | 396,229    | 460,563    | 0         | 0         | 0           | 0        | 0          |
| February  | 220,104     | 18,409     | 544,919    | 630,927    | 0         | 0         | 0           | 0        | 0          |
| March     | 446,052     | 32,019     | 879,029    | 1,028,683  | 0         | 0         | 0           | 0        | 0          |
| April     | 854,908     | 64,158     | 1,676,169  | 2,233,204  | 0         | 0         | 0           | 0        | 0          |
| May       | 1,296,927   | 578,616    | 2,565,003  | 2,984,092  | 9,513     | 10,518    | 0           | 951      | 0          |
| June      | 1,787,922   | 983,017    | 3,382,395  | 4,239,550  | 93,526    | 3,132     | 0           | 0        | 0          |
| July      | 2,033,287   | 1,010,903  | 4,151,847  | 4,837,567  | 217,650   | 71,727    | 5,875       | 4,338    | 900        |
| August    | 1,136,982   | 524,258    | 2,253,355  | 2,014,595  | 99,422    | 13,094    | 21          | 0        | 10         |
| September | 258,759     | 66,243     | 770,055    | 656,878    | 0         | 0         | 0           | 0        | 0          |
| October   | 245,221     | 66,062     | 512,179    | 579,300    | 0         | 0         | 0           | 0        | 0          |
| November  | 186,319     | 31,124     | 415,849    | 552,710    | 0         | 0         | 0           | 0        | 0          |
| December  | 185,012     | 22,915     | 310,461    | 465,527    | 0         | 0         | 0           | 0        | 0          |
| Total     | 8,780,494   | 3,397,753  | 17,857,491 | 20,683,597 | 420,110   | 98,472    | 5,896       | 5,289    | 910        |

|           | Measured                    | Flows                     | <sup>3</sup> Unmonitored | Flows      | Total Flo        | ow          |
|-----------|-----------------------------|---------------------------|--------------------------|------------|------------------|-------------|
| Month     | <sup>1</sup> Storm Outfalls | <sup>2</sup> CSO Outfalls | Storm Outfalls CS        | O Outfalls | Storm Outfalls C | SO Outfalls |
| January   | 1,051,007                   | 0                         | 1,006,819                | 0          | 2,057,826        | 0           |
| February  | 1,510,690                   | 0                         | 1,596,357                | 0          | 3,107,047        | 0           |
| March     | 2,810,235                   | 0                         | 2,786,570                | 0          | 5,596,805        | 0           |
| April     | 9,320,225                   | 0                         | 8,117,354                | 0          | 17,437,579       | 0           |
| May       | 12,968,782                  | 20,982                    | 17,084,244               | 0          | 30,053,025       | 20,982      |
| June      | 16,334,035                  | 96,658                    | 22,220,754               | 0          | 38,554,788       | 96,658      |
| July      | 19,099,450                  | 300,490                   | 25,619,373               | 0          | 44,718,823       | 300,490     |
| August    | 6,308,620                   | 112,547                   | 16,612,612               | 0          | 22,921,232       | 112,547     |
| September | 1,923,598                   | 0                         | 4,018,180                | 0          | 5,941,778        | 0           |
| October   | 1,771,713                   | 0                         | 3,131,019                | 0          | 4,902,731        | 0           |
| November  | 1,497,521                   | 0                         | 1,449,151                | 0          | 2,946,672        | 0           |
| December  | 1,204,287                   | 0                         | 1,189,087                | 0          | 2,393,374        | 0           |
| Total     | 75,800,161                  | 530,677                   | 104,831,519              | 0          | 180,631,681      | 530,677     |

Note: 1Measured Storm flow s are actual flow volumes measured from Storm outfalls: 30th Ave, Quesnell, Groat Road, Kennedale Storm/STS/Wetland, Belgravia, Mill Creek (factored).

<sup>&</sup>lt;sup>2</sup>Measured CSO flows are actual flow volumes measured from CSOs: Rat Creek, Capilano, Highlands, Cromdale, and Strathearn.

<sup>&</sup>lt;sup>3</sup>Unmonitored flow volumes include estimates from monitored sites when measurements not available in addition to other remaining sites.

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2020

#### Total Suspended Solids (mg/L)

| _                 |             | Storm Outfa | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|-------------|-------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Avenue | Groat Road  | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | cso  |
| January           | 27          | 8           | 4        | 6         | -         | -            | -        | 8          | 0    |
| February          | 145         | 216         | 138      | 13        | -         | -            | -        | 13         | 0    |
| March             | 128         | 201         | 131      | 18        | -         | -            | -        | 20         | 0    |
| April             | 51          | 102         | 60       | 27        | -         | -            | -        | 57         | 0    |
| May               | 84          | 154         | 93       | 67        | 312       | 353          | -        | 37         | 1    |
| June              | 85          | 560         | 74       | 57        | 338       | 334          | -        | 50         | 2    |
| July              | 66          | 199         | 58       | 40        | 557       | 591          | 491      | 70         | 5    |
| August            | 54          | 138         | 72       | 60        | 565       | 564          | 0        | 43         | 2    |
| September         | 49          | 153         | 9        | 15        | -         | -            | -        | 8          | 0    |
| October           | 125         | 255         | 11       | 49        | -         | -            | -        | 15         | 0    |
| November          | 159         | 353         | 8        | 32        | -         | -            | -        | 10         | 0    |
| December          | 30          | 19          | 12       | 8         | -         | -            | -        | 8          | 0    |
| Mean Annual FWC = | 76          | 285         | 67       | 44        | 505       | 554          | 0        | 339        | 10   |

Mean Annual FWC for all Storm = 74

Mean Annual FWC for all CSO = 514

#### **Biochemical Oxygen Demand (mg/L)**

| _                 |             | Storm Outfa       | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|-------------|-------------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Avenue | <b>Groat Road</b> | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | CSO  |
| January           | 4           | 13                | 1        | 3         | -         | -            | -        | 6          | 0    |
| February          | 12          | 13                | 8        | 7         | -         | -            | -        | 12         | 0    |
| March             | 13          | 17                | 10       | 12        | -         | -            | -        | 19         | 0    |
| April             | 9           | 14                | 8        | 11        | -         | -            | -        | 51         | 0    |
| May               | 7           | 9                 | 9        | 9         | 99        | 104          | -        | 33         | 1    |
| June              | 9           | 16                | 4        | 7         | 113       | 112          | -        | 43         | 2    |
| July              | 5           | 9                 | 3        | 4         | 88        | 88           | 89       | 57         | 5    |
| August            | 6           | 14                | 6        | 10        | 161       | 156          | 0        | 40         | 2    |
| September         | 5           | 14                | 9        | 8         | -         | -            | -        | 8          | 0    |
| October           | 10          | 30                | 7        | 13        | -         | -            | -        | 15         | 0    |
| November          | 10          | 33                | 3        | 10        | -         | -            | -        | 10         | 0    |
| December          | 9           | 8                 | 2        | 6         | -         | -            | -        | 5          | 0    |
| Mean Annual FWC = | 7           | 13                | 6        | 8         | 111       | 100          | 0        | 299        | 10   |

Mean Annual FWC for all Storm = 7

Mean Annual FWC for all CSO = 109

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2020 (Cont.)

#### Total Phosphorus (mg/L)

|                   |          | Storm Outf        | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|----------|-------------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Ave | <b>Groat Road</b> | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | CSO  |
| January           | 0.9      | 0.1               | 0.1      | 0.2       | -         | -            | -        | 8          | 0    |
| February          | 1.1      | 0.4               | 0.4      | 0.5       | -         | -            | -        | 13         | 0    |
| March             | 1.1      | 0.6               | 0.5      | 0.5       | -         | -            | -        | 22         | 0    |
| April             | 0.4      | 1.1               | 0.5      | 0.7       | -         | -            | -        | 61         | 0    |
| May               | 0.3      | 0.4               | 0.3      | 0.3       | 2.0       | 2.1          | -        | 37         | 1    |
| June              | 0.2      | 0.6               | 0.2      | 0.2       | 4.6       | 4.5          | -        | 52         | 3    |
| July              | 0.1      | 0.4               | 0.2      | 0.2       | 2.2       | 2.2          | 2.2      | 74         | 5    |
| August            | 0.2      | 0.3               | 0.2      | 0.2       | 3.8       | 3.8          | 0.0      | 44         | 3    |
| September         | 0.5      | 0.3               | 0.1      | 0.2       | -         | -            | -        | 8          | 0    |
| October           | 0.3      | 0.9               | 0.1      | 0.3       | -         | -            | -        | 15         | 0    |
| November          | 0.3      | 0.9               | 0.1      | 0.2       | -         | -            | -        | 10         | 0    |
| December          | 14.9     | 0.4               | 0.1      | 0.3       | -         | -            | -        | 8          | 0    |
| Mean Annual FWC = | 0.3      | 0.5               | 0.2      | 0.3       | 3.1       | 2.4          | 0.0      | 352        | 12   |

Mean Annual FWC for all Storm = 0.3

Mean Annual FWC for all CSO = 3.0

#### Nitrite + Nitrate (mg/L)

|                   |          | Storm Outf | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|----------|------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Ave | Groat Road | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | CSO  |
| January           | 3.0      | 1.6        | 1.5      | 2.9       | -         | -            | -        | 8          | 0    |
| February          | 1.8      | 0.8        | 1.0      | 1.9       | -         | -            | -        | 13         | 0    |
| March             | 1.5      | 0.8        | 0.8      | 1.0       | -         | -            | -        | 22         | 0    |
| April             | 1.3      | 0.7        | 0.7      | 0.8       | -         | -            | -        | 61         | 0    |
| May               | 2.0      | 1.1        | 1.1      | 1.0       | 0.8       | 0.8          | -        | 37         | 1    |
| June              | 2.1      | 0.9        | 0.7      | 1.1       | 1.6       | 1.6          | -        | 52         | 3    |
| July              | 2.1      | 0.7        | 0.8      | 1.3       | 0.6       | 0.6          | 0.7      | 74         | 5    |
| August            | 1.9      | 0.5        | 0.7      | 1.1       | 0.4       | 0.4          | 0.0      | 44         | 3    |
| September         | 4.0      | 0.8        | 1.4      | 1.5       | -         | -            | -        | 8          | 0    |
| October           | 2.9      | 0.7        | 1.2      | 1.5       | -         | -            | -        | 15         | 0    |
| November          | 3.5      | 1.2        | 1.3      | 2.0       | -         | -            | -        | 10         | 0    |
| December          | 4.1      | 1.9        | 1.0      | 2.3       | -         | -            | -        | 8          | 0    |
| Mean Annual FWC = | 2.1      | 0.8        | 0.9      | 1.2       | 0.8       | 0.6          | 0.0      | 352        | 12   |

Mean Annual FWC for all Storm = 1.2

Mean Annual FWC for all CSO = 0.8

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2020 (Cont.)

#### Ammonia Nitrogen (mg/L)

|                   |          | Storm Outfa       | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|----------|-------------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Ave | <b>Groat Road</b> | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | CSO  |
| January           | 0.7      | 0.7               | 0.2      | 0.8       | -         | -            | -        | 8          | 0    |
| February          | 1.0      | 1.1               | 0.6      | 1.3       | -         | -            | -        | 13         | 0    |
| March             | 0.8      | 0.8               | 0.8      | 1.4       | -         | -            | -        | 22         | 0    |
| April             | 0.7      | 1.2               | 0.7      | 1.1       | -         | -            | -        | 61         | 0    |
| May               | 0.3      | 0.2               | 0.2      | 0.2       | 4.5       | 4.6          | -        | 37         | 1    |
| June              | 0.2      | 0.1               | 0.1      | 0.1       | 6.5       | 6.4          | -        | 52         | 3    |
| July              | 0.1      | 0.1               | 0.1      | 0.1       | 4.3       | 4.5          | 4.1      | 72         | 5    |
| August            | 0.2      | 0.1               | 0.2      | 0.2       | 5.1       | 5.0          | 0.0      | 43         | 3    |
| September         | 0.2      | 0.3               | 0.2      | 0.3       | -         | -            | -        | 8          | 0    |
| October           | 0.4      | 0.3               | 0.4      | 0.5       | -         | -            | -        | 15         | 0    |
| November          | 0.7      | 0.2               | 0.4      | 0.7       | -         | -            | -        | 10         | 0    |
| December          | 0.5      | 0.7               | 0.4      | 0.9       | -         | -            | -        | 8          | 0    |
| Mean Annual FWC = | 0.3      | 0.2               | 0.3      | 0.4       | 5.0       | 4.6          | 0.0      | 349        | 12   |

Mean Annual FWC for all Storm = 0.3

Mean Annual FWC for all CSO = 4.9

#### Total Kjeldahl Nitrogen (mg/L)

|                   |          | Storm Outf        | alls     |           |           | CSO Outfalls |          | No. of Sam | ples |
|-------------------|----------|-------------------|----------|-----------|-----------|--------------|----------|------------|------|
| Month             | 30th Ave | <b>Groat Road</b> | Quesnell | Kennedale | Rat Creek | Highlands    | Capilano | Storm      | CSO  |
| January           | 1.9      | 1.5               | 0.9      | 1.7       | -         | -            | -        | 8          | 0    |
| February          | 3.2      | 3.3               | 2.1      | 2.9       | -         | -            | -        | 13         | 0    |
| March             | 3.3      | 3.3               | 2.9      | 3.3       | -         | -            | -        | 22         | 0    |
| April             | 2.6      | 3.7               | 2.6      | 3.1       | -         | -            | -        | 61         | 0    |
| May               | 1.8      | 1.9               | 1.7      | 1.9       | 11.5      | 11.7         | -        | 37         | 1    |
| June              | 1.7      | 2.4               | 1.0      | 1.4       | 25.2      | 24.5         | -        | 52         | 3    |
| July              | 1.3      | 1.8               | 1.1      | 1.2       | 11.6      | 11.4         | 11.9     | 74         | 5    |
| August            | 1.1      | 1.2               | 1.3      | 1.5       | 17.6      | 17.4         | 0.0      | 44         | 3    |
| September         | 5.5      | 3.2               | 0.9      | 1.9       | -         | -            | -        | 8          | 0    |
| October           | 2.5      | 3.2               | 1.2      | 2.6       | -         | -            | -        | 15         | 0    |
| November          | 2.3      | 3.8               | 1.3      | 2.1       | -         | -            | -        | 10         | 0    |
| December          | 1.6      | 2.2               | 1.0      | 2.0       | -         | -            | -        | 8          | 0    |
| Mean Annual FWC = | 1.9      | 2.0               | 1.4      | 1.9       | 16.0      | 12.7         | 0.0      | 352        | 12   |

Mean Annual FWC for all Storm = 1.7

Mean Annual FWC for all CSO = 15.3

Water quality monitoring sites include: 30th Ave, Quesnell, Groat Road and Kennedale Storm outfalls; and Rat Creek and Capilano CSOs.

FWC (mg/L) = Flow weighted concentration = 1000 x Constituent load (kg) / Volume (m3) per site for a monthly or annual period Concentrations for unsampled flows were estimated or interpolated

No. of samples includes wet-weather and baseflow sampling. QA/QC samples not included in totals.

<sup>&#</sup>x27;-' - Concentration could not be calculated due to no flow present.

**Table 4: Constituent Loads for 2020** 

### Total Suspended Solids (kg)

|           |          |           |           | Storm Outf | alls            |           |            |           |           | Creeks     |           |           |           |           | CSO O    | utfalls   |           |         |
|-----------|----------|-----------|-----------|------------|-----------------|-----------|------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|---------|
| _         | 30th Ave | Groat Rd. | Quesnell  | Kennedale  | Monitored Storm | Remaining | Total      | Mill      | Whitemud  | Horsehills | Wedgewood | Total     | Rat Creek | Highlands | Capilano | AEP CSO   | Remaining | Total   |
| Month     | Storm    | Storm     | Storm     | Storm      | Sub-Total       | Storm     | Storm      | Creek     | Creek     | Creek      | Creek     | Creek     | CSO       | CSO       | CSO      | Sub-Total | CSO       | CSO     |
| January   | 3,491    | 0         | 1,644     | 2,856      | 7,991           | 5,536     | 18,499     | 926       | 2,718     | 945        | 613       | 4,972     | 0         | 0         | 0        | 0         | 0         | 0       |
| February  | 31,809   | 3,978     | 75,120    | 8,030      | 118,937         | 102,350   | 335,148    | 34,563    | 55,853    | 19,421     | 12,597    | 113,862   | 0         | 0         | 0        | 0         | 0         | 0       |
| March     | 56,924   | 6,447     | 114,734   | 18,219     | 196,323         | 171,761   | 568,203    | 65,195    | 96,038    | 33,394     | 21,660    | 200,119   | 0         | 0         | 0        | 0         | 0         | 0       |
| April     | 43,898   | 6,564     | 100,009   | 59,877     | 210,348         | 167,996   | 883,571    | 309,652   | 173,125   | 60,197     | 39,046    | 505,226   | 0         | 0         | 0        | 0         | 0         | 0       |
| May       | 108,498  | 88,977    | 238,575   | 200,132    | 636,182         | 913,463   | 3,099,749  | 1,089,607 | 477,489   | 148,640    | 104,590   | 1,550,104 | 2,967     | 3,717     | 0        | 6,684     | 201       | 6,885   |
| June      | 151,439  | 550,885   | 251,260   | 240,971    | 1,194,554       | 1,422,083 | 4,891,728  | 1,473,318 | 735,451   | 246,213    | 185,491   | 2,275,091 | 31,607    | 1,047     | 0        | 32,654    | 980       | 33,633  |
| July      | 134,257  | 201,502   | 238,980   | 193,111    | 767,849         | 942,011   | 5,504,007  | 4,073,389 | 461,272   | 161,963    | 107,723   | 3,794,146 | 121,258   | 42,401    | 2,885    | 166,544   | 4,988     | 171,532 |
| August    | 61,052   | 72,272    | 163,332   | 120,407    | 417,063         | 557,004   | 1,689,531  | 397,566   | 253,296   | 80,249     | 82,950    | 715,463   | 56,193    | 7,385     | 0        | 63,578    | 1,908     | 65,486  |
| September | 12,627   | 10,146    | 7,191     | 10,033     | 39,996          | 34,502    | 125,787    | 11,578    | 27,874    | 8,355      | 6,353     | 51,289    | 0         | 0         | 0        | 0         | 0         | 0       |
| October   | 30,668   | 16,860    | 5,536     | 28,585     | 81,648          | 39,614    | 184,434    | 25,634    | 25,910    | 13,511     | 4,474     | 63,171    | 0         | 0         | 0        | 0         | 0         | 0       |
| November  | 29,640   | 10,981    | 3,173     | 17,686     | 61,480          | 56,927    | 186,692    | 23,092    | 32,367    | 11,254     | 7,300     | 68,286    | 0         | 0         | 0        | 0         | 0         | 0       |
| December  | 5,599    | 445       | 3,877     | 3,804      | 13,724          | 11,228    | 39,756     | 5,614     | 6,727     | 2,339      | 1,517     | 14,805    | 0         | 0         | 0        | 0         | 0         | 0       |
| Total     | 669,901  | 969,057   | 1,203,430 | 903,709    | 3,746,097       | 4,424,474 | 17,527,105 | 7,510,135 | 2,348,120 | 786,480    | 574,314   | 9,356,534 | 212,026   | 54,550    | 2,885    | 269,460   | 8,076     | 277,535 |

### **Biochemical Oxygen Demand (kg)**

|           | , ,      | `         | <b>J</b> , |              |                 |           |           |         |          |            |           |         |           |           |          |           |           |        |
|-----------|----------|-----------|------------|--------------|-----------------|-----------|-----------|---------|----------|------------|-----------|---------|-----------|-----------|----------|-----------|-----------|--------|
|           |          |           |            | Storm Outfal | ls              |           |           |         |          | Creeks     |           |         |           |           | CSO O    | utfalls   |           |        |
| _         | 30th Ave | Groat Rd. | Quesnell   | Kennedale N  | Ionitored Storm | Remaining | Total     | Mill    | Whitemud | Horsehills | Wedgewood | Total   | Rat Creek | Highlands | Capilano | AEP CSO   | Remaining | Total  |
| Month     | Storm    | Storm     | Storm      | Storm        | Sub-Total       | Storm     | Storm     | Creek   | Creek    | Creek      | Creek     | Creek   | CSO       | CSO       | CSO      | Sub-Total | CSO       | cso    |
| January   | 519      | 0         | 396        | 1,355        | 2,271           | 1,008     | 4,189     | 172     | 496      | 173        | 112       | 910     | 0         | 0         | 0        | 0         | 0         | 0      |
| February  | 2,644    | 239       | 4,390      | 4,509        | 11,782          | 7,514     | 27,389    | 2,326   | 4,032    | 1,402      | 909       | 8,093   | 0         | 0         | 0        | 0         | 0         | 0      |
| March     | 5,596    | 533       | 9,039      | 12,273       | 27,441          | 16,854    | 63,890    | 6,365   | 9,413    | 3,273      | 2,123     | 19,595  | 0         | 0         | 0        | 0         | 0         | 0      |
| April     | 8,026    | 893       | 12,730     | 24,319       | 45,967          | 28,108    | 139,371   | 36,539  | 24,039   | 8,358      | 5,422     | 65,296  | 0         | 0         | 0        | 0         | 0         | 0      |
| May       | 8,540    | 5,447     | 22,348     | 27,042       | 63,377          | 80,566    | 259,214   | 67,653  | 41,816   | 13,235     | 9,346     | 115,271 | 945       | 1,089     | 0        | 2,034     | 61        | 2,095  |
| June      | 15,395   | 15,526    | 13,770     | 27,985       | 72,676          | 84,398    | 275,749   | 69,927  | 41,038   | 14,711     | 10,340    | 118,674 | 10,568    | 351       | 0        | 10,919    | 328       | 11,246 |
| July      | 9,772    | 8,959     | 13,011     | 17,950       | 49,692          | 57,661    | 206,571   | 72,763  | 27,973   | 9,774      | 6,752     | 99,218  | 19,231    | 6,333     | 523      | 26,088    | 780       | 26,867 |
| August    | 6,344    | 7,305     | 14,552     | 20,650       | 48,850          | 55,721    | 166,568   | 21,086  | 28,122   | 8,893      | 9,124     | 61,997  | 15,988    | 2,043     | 0        | 18,031    | 541       | 18,572 |
| September | 1,322    | 903       | 7,136      | 5,467        | 14,828          | 14,850    | 47,400    | 4,666   | 9,066    | 3,073      | 2,075     | 17,723  | 0         | 0         | 0        | 0         | 0         | 0      |
| October   | 2,344    | 1,997     | 3,470      | 7,644        | 15,454          | 12,546    | 42,005    | 4,676   | 6,474    | 2,719      | 1,295     | 14,005  | 0         | 0         | 0        | 0         | 0         | 0      |
| November  | 1,809    | 1,012     | 1,406      | 5,544        | 9,772           | 5,698     | 22,505    | 2,470   | 3,291    | 1,144      | 742       | 7,035   | 0         | 0         | 0        | 0         | 0         | 0      |
| December  | 1,590    | 177       | 707        | 2,818        | 5,292           | 2,908     | 11,977    | 1,408   | 1,728    | 601        | 390       | 3,777   | 0         | 0         | 0        | 0         | 0         | 0      |
| Total     | 63,901   | 42,989    | 102,957    | 157,555      | 367,403         | 367,831   | 1,266,827 | 290,051 | 197,488  | 67,356     | 48,631    | 531,593 | 46,732    | 9,816     | 523      | 57,071    | 1,709     | 58,781 |

# Total Phophorus (kg)

|           | ` `      | •         |          |            |                 |           |        |        |          |            |           |        |           |           |          |           |           |       |
|-----------|----------|-----------|----------|------------|-----------------|-----------|--------|--------|----------|------------|-----------|--------|-----------|-----------|----------|-----------|-----------|-------|
|           |          |           | ;        | Storm Outf | alls            |           |        |        |          | Creeks     |           |        |           |           | CSO O    | utfalls   |           |       |
| _         | 30th Ave | Groat Rd. | Quesnell | Kennedale  | Monitored Storm | Remaining | Total  | Mill   | Whitemud | Horsehills | Wedgewood | Total  | Rat Creek | Highlands | Capilano | AEP CSO   | Remaining | Total |
| Month     | Storm    | Storm     | Storm    | Storm      | Sub-Total       | Storm     | Storm  | Creek  | Creek    | Creek      | Creek     | Creek  | CSO       | CSO       | CSO      | Sub-Total | CSO       | cso   |
| January   | 39       | 0         | 59       | 110        | 209             | 107       | 412    | 18     | 53       | 18         | 12        | 96     | 0         | 0         | 0        | 0         | 0         | 0     |
| February  | 118      | 8         | 197      | 290        | 613             | 346       | 1,326  | 102    | 184      | 64         | 42        | 367    | 0         | 0         | 0        | 0         | 0         | 0     |
| March     | 234      | 20        | 428      | 534        | 1,216           | 751       | 2,854  | 295    | 423      | 147        | 95        | 887    | 0         | 0         | 0        | 0         | 0         | 0     |
| April     | 513      | 68        | 828      | 1,504      | 2,912           | 1,790     | 9,010  | 2,445  | 1,569    | 546        | 354       | 4,307  | 0         | 0         | 0        | 0         | 0         | 0     |
| May       | 362      | 240       | 689      | 889        | 2,181           | 2,765     | 9,168  | 2,710  | 1,419    | 447        | 317       | 4,222  | 19        | 22        | 0        | 41        | 1         | 42    |
| June      | 444      | 603       | 529      | 819        | 2,394           | 2,700     | 9,378  | 2,803  | 1,367    | 467        | 341       | 4,283  | 430       | 14        | 0        | 444       | 13        | 457   |
| July      | 423      | 411       | 704      | 869        | 2,408           | 2,721     | 10,711 | 4,648  | 1,314    | 460        | 313       | 5,582  | 471       | 155       | 13       | 639       | 19        | 658   |
| August    | 194      | 153       | 550      | 459        | 1,356           | 1,908     | 5,476  | 1,149  | 820      | 261        | 267       | 2,212  | 378       | 50        | 0        | 427       | 13        | 440   |
| September | 178      | 22        | 104      | 152        | 457             | 378       | 1,357  | 124    | 280      | 86         | 63        | 522    | 0         | 0         | 0        | 0         | 0         | 0     |
| October   | 124      | 62        | 63       | 189        | 439             | 330       | 1,171  | 141    | 180      | 81         | 35        | 402    | 0         | 0         | 0        | 0         | 0         | 0     |
| November  | 74       | 27        | 55       | 122        | 277             | 191       | 713    | 90     | 113      | 39         | 25        | 245    | 0         | 0         | 0        | 0         | 0         | 0     |
| December  | 54       | 8         | 35       | 121        | 219             | 117       | 486    | 56     | 69       | 24         | 16        | 151    | 0         | 0         | 0        | 0         | 0         | 0     |
| Total     | 2,757    | 1,625     | 4,242    | 6,057      | 14,681          | 14,104    | 52,062 | 14,581 | 7,791    | 2,641      | 1,880     | 23,277 | 1,298     | 240       | 13       | 1,551     | 46        | 1,598 |

Page **39** of **66** 

Total Load From Storm and CSO = 53,659

Total Load From Storm and CSO = 1,325,608

Total Load From Storm and CSO = 17,804,640

Table 4: Constituent Loads for 2020 (Cont.)

# Nitrite + Nitrate (kg)

|           |          |           |          | Storm Ou  | ıtfalls         |           |         |        |          | Creeks     | 3         |        |           |           | CSO (    | Outfalls  |           |       |
|-----------|----------|-----------|----------|-----------|-----------------|-----------|---------|--------|----------|------------|-----------|--------|-----------|-----------|----------|-----------|-----------|-------|
| _         | 30th Ave | Groat Rd. | Quesnell | Kennedale | Monitored Storm | Remaining | Total   | Mill   | Whitemud | Horsehills | Vedgewood | Total  | Rat Creek | Highlands | Capilano | AEP CSO   | Remaining | Total |
| Month     | Storm    | Storm     | Storm    | Storm     | Sub-Total       | Storm     | Storm   | Creek  | Creek    | Creek      | Creek     | Creek  | CSO       | CSO       | CSO      | Sub-Total | CSO       | cso   |
| January   | 388      | 0         | 586      | 1,324     | 2,298           | 1,065     | 4,325   | 182    | 524      | 182        | 118       | 962    | 0         | 0         | 0        | 0         | 0         | 0     |
| February  | 406      | 14        | 550      | 1,206     | 2,177           | 1,123     | 4,370   | 237    | 567      | 197        | 128       | 1,070  | 0         | 0         | 0        | 0         | 0         | 0     |
| March     | 684      | 24        | 746      | 978       | 2,431           | 1,610     | 5,883   | 584    | 892      | 310        | 201       | 1,842  | 0         | 0         | 0        | 0         | 0         | 0     |
| April     | 1,106    | 48        | 1,203    | 1,863     | 4,219           | 2,682     | 17,950  | 7,312  | 3,528    | 1,227      | 796       | 11,049 | 0         | 0         | 0        | 0         | 0         | 0     |
| May       | 2,616    | 651       | 2,796    | 2,873     | 8,936           | 11,567    | 38,358  | 11,558 | 5,904    | 1,900      | 1,358     | 17,855 | 7         | 8         | 0        | 15        | 0         | 16    |
| June      | 3,751    | 884       | 2,201    | 4,714     | 11,550          | 12,465    | 42,051  | 11,064 | 5,979    | 2,245      | 1,493     | 18,037 | 151       | 5         | 0        | 156       | 5         | 161   |
| July      | 4,266    | 667       | 3,363    | 6,239     | 14,535          | 16,051    | 52,688  | 12,889 | 7,776    | 2,693      | 1,940     | 22,101 | 141       | 44        | 4        | 190       | 6         | 195   |
| August    | 2,203    | 281       | 1,563    | 2,218     | 6,265           | 11,613    | 27,985  | 3,948  | 4,294    | 1,539      | 1,307     | 10,108 | 38        | 5         | 0        | 43        | 1         | 44    |
| September | 1,043    | 50        | 1,107    | 997       | 3,197           | 4,434     | 12,056  | 1,200  | 2,229    | 771        | 521       | 4,425  | 0         | 0         | 0        | 0         | 0         | 0     |
| October   | 704      | 49        | 614      | 893       | 2,262           | 3,338     | 8,806   | 925    | 1,565    | 612        | 334       | 3,206  | 0         | 0         | 0        | 0         | 0         | 0     |
| November  | 646      | 37        | 537      | 1,116     | 2,336           | 1,390     | 5,683   | 793    | 864      | 301        | 195       | 1,956  | 0         | 0         | 0        | 0         | 0         | 0     |
| December  | 759      | 43        | 297      | 1,081     | 2,180           | 1,327     | 5,190   | 611    | 778      | 271        | 175       | 1,683  | 0         | 0         | 0        | 0         | 0         | 0     |
| Total     | 18,573   | 2,748     | 15,563   | 25,503    | 62,387          | 68,663    | 225,344 | 51,303 | 34,900   | 12,247     | 8,567     | 94,294 | 338       | 63        | 4        | 404       | 12        | 417   |

# Ammonia Nitrogen (kg)

|           |          |           |          | Storm Outf | alls            |           |        |        |          | Creeks     |           |        |           |           | CSO O      | utfalls    |              |       |
|-----------|----------|-----------|----------|------------|-----------------|-----------|--------|--------|----------|------------|-----------|--------|-----------|-----------|------------|------------|--------------|-------|
|           | 30th Ave | Groat Rd. | Quesnell | Kennedale  | Monitored Storm | Remaining | Total  | Mill   | Whitemud | Horsehills | Wedgewood | Total  | Rat Creek | Highlands | Capilano   | AEP CSO    | Remaining    | Total |
| Month     | Storm    | Storm     | Storm    | Storm      | Sub-Total       | Storm     | Storm  | Creek  | Creek    | Creek      | Creek     | Creek  | CSO       | CSO       | CSO        | Sub-Total  | CSO          | cso   |
| January   | 92       | 0         | 99       | 347        | 537             | 212       | 941    | 36     | 104      | 36         | 24        | 192    | 0         | 0         | 0          | 0          | 0            | 0     |
| February  | 220      | 21        | 302      | 851        | 1,395           | 645       | 2,684  | 160    | 333      | 116        | 75        | 644    | 0         | 0         | 0          | 0          | 0            | 0     |
| March     | 372      | 26        | 669      | 1,400      | 2,466           | 1,266     | 5,216  | 487    | 710      | 247        | 160       | 1,483  | 0         | 0         | 0          | 0          | 0            | 0     |
| April     | 556      | 75        | 1,214    | 2,446      | 4,292           | 2,499     | 13,457 | 3,932  | 2,358    | 820        | 532       | 6,666  | 0         | 0         | 0          | 0          | 0            | 0     |
| May       | 400      | 108       | 571      | 633        | 1,712           | 2,314     | 7,611  | 2,290  | 1,208    | 383        | 273       | 3,585  | 43        | 49        | 0          | 92         | 3            | 94    |
| June      | 428      | 113       | 360      | 522        | 1,422           | 1,633     | 5,459  | 1,475  | 802      | 289        | 203       | 2,403  | 606       | 20        | 0          | 626        | 19           | 645   |
| July      | 241      | 84        | 470      | 611        | 1,406           | 1,520     | 5,842  | 2,300  | 746      | 261        | 179       | 2,916  | 944       | 320       | 24         | 1,288      | 38           | 1,327 |
| August    | 171      | 35        | 451      | 395        | 1,053           | 1,715     | 4,363  | 711    | 639      | 218        | 204       | 1,596  | 507       | 65        | 0          | 571        | 17           | 589   |
| September | 54       | 17        | 164      | 166        | 400             | 444       | 1,308  | 124    | 235      | 81         | 55        | 463    | 0         | 0         | 0          | 0          | 0            | 0     |
| October   | 87       | 21        | 183      | 285        | 576             | 659       | 1,905  | 203    | 321      | 128        | 67        | 669    | 0         | 0         | 0          | 0          | 0            | 0     |
| November  | 129      | 7         | 186      | 364        | 684             | 366       | 1,574  | 216    | 230      | 80         | 52        | 524    | 0         | 0         | 0          | 0          | 0            | 0     |
| December  | 90       | 16        | 117      | 398        | 621             | 273       | 1,243  | 128    | 161      | 56         | 36        | 350    | 0         | 0         | 0          | 0          | 0            | 0     |
| Total     | 2,841    | 524       | 4,784    | 8,417      | 16,566          | 13,546    | 51,603 | 12,062 | 7,846    | 2,715      | 1,860     | 21,492 | 2,099     | 454       | 24         | 2,577      | 77           | 2,654 |
|           |          |           |          |            |                 |           |        |        |          |            |           |        |           |           | Total Load | From Storm | and CSO = 54 | 1,257 |

# Total Kjeldahl Nitrogen (kg)

|           |          |           |          | Storm Outf | alls            |           |         |        |          | Creeks       |           |         |           |           | CSO O    | utfalls   |           |       |
|-----------|----------|-----------|----------|------------|-----------------|-----------|---------|--------|----------|--------------|-----------|---------|-----------|-----------|----------|-----------|-----------|-------|
| _         | 30th Ave | Groat Rd. | Quesnell | Kennedale  | Monitored Storm | Remaining | Total   | Mill   | Whitemud | Horsehills \ | Vedgewood | Total   | Rat Creek | Highlands | Capilano | AEP CSO   | Remaining | Total |
| Month     | Storm    | Storm     | Storm    | Storm      | Sub-Total       | Storm     | Storm   | Creek  | Creek    | Creek        | Creek     | Creek   | CSO       | CSO       | CSO      | Sub-Total | CSO       | CSO   |
| January   | 243      | 0         | 363      | 802        | 1,408           | 661       | 2,667   | 114    | 326      | 113          | 73        | 598     | 0         | 0         | 0        | 0         | 0         | 0     |
| February  | 700      | 61        | 1,155    | 1,833      | 3,750           | 2,093     | 7,992   | 565    | 1,096    | 381          | 247       | 2,149   | 0         | 0         | 0        | 0         | 0         | 0     |
| March     | 1,455    | 104       | 2,540    | 3,381      | 7,480           | 4,508     | 17,252  | 1,720  | 2,524    | 877          | 569       | 5,263   | 0         | 0         | 0        | 0         | 0         | 0     |
| April     | 2,244    | 239       | 4,320    | 6,877      | 13,680          | 8,445     | 46,494  | 14,750 | 8,439    | 2,934        | 1,903     | 24,369  | 0         | 0         | 0        | 0         | 0         | 0     |
| May       | 2,309    | 1,103     | 4,479    | 5,798      | 13,689          | 16,582    | 56,101  | 16,767 | 8,577    | 2,723        | 1,921     | 25,830  | 109       | 123       | 0        | 233       | 7         | 240   |
| June      | 3,114    | 2,348     | 3,341    | 6,080      | 14,882          | 16,276    | 56,092  | 15,950 | 8,047    | 2,865        | 2,026     | 24,933  | 2,356     | 77        | 0        | 2,433     | 73        | 2,506 |
| July      | 2,643    | 1,783     | 4,398    | 5,784      | 14,607          | 16,275    | 60,639  | 22,842 | 7,914    | 2,759        | 1,906     | 29,756  | 2,514     | 819       | 70       | 3,403     | 102       | 3,505 |
| August    | 1,209    | 648       | 3,016    | 2,928      | 7,801           | 11,313    | 31,731  | 6,655  | 4,613    | 1,528        | 1,472     | 12,618  | 1,750     | 228       | 0        | 1,978     | 59        | 2,037 |
| September | 1,422    | 209       | 731      | 1,254      | 3,616           | 2,987     | 10,639  | 953    | 2,167    | 661          | 491       | 4,036   | 0         | 0         | 0        | 0         | 0         | 0     |
| October   | 624      | 215       | 627      | 1,480      | 2,945           | 2,553     | 8,292   | 906    | 1,299    | 549          | 264       | 2,794   | 0         | 0         | 0        | 0         | 0         | 0     |
| November  | 434      | 119       | 527      | 1,140      | 2,220           | 1,293     | 5,242   | 665    | 781      | 271          | 176       | 1,728   | 0         | 0         | 0        | 0         | 0         | 0     |
| December  | 300      | 50        | 323      | 943        | 1,616           | 809       | 3,467   | 385    | 478      | 166          | 108       | 1,042   | 0         | 0         | 0        | 0         | 0         | 0     |
| Total     | 16,696   | 6,879     | 25,820   | 38,299     | 87,694          | 83,796    | 306,607 | 82,273 | 46,262   | 15,829       | 11,157    | 135,117 | 6,730     | 1,247     | 70       | 8,046     | 241       | 8,287 |

Total Load From Storm and CSO = 314,895

Total Load From Storm and CSO = 225,761

**Table 5: 2020 Rat Creek CSO Concentration Statistics** 

|           |            |                | TSS               |                   |                | BOD               |                   | TP             |                   |                   | E Coli.                        |  |
|-----------|------------|----------------|-------------------|-------------------|----------------|-------------------|-------------------|----------------|-------------------|-------------------|--------------------------------|--|
| Month     | CSO Events | Mean<br>(mg/L) | Maximum<br>(mg/L) | Minimum<br>(mg/L) | Mean<br>(mg/L) | Maximum<br>(mg/L) | Minimum<br>(mg/L) | Mean<br>(mg/L) | Maximum<br>(mg/L) | Minimum<br>(mg/L) | Geometric Mean<br>(MPN/100 mL) |  |
| January   | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| February  | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| March     | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| April     | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| May       | 2          | 759.0          | 1260.0            | 258.0             | 144.0          | 194.0             | 94.0              | 2.5            | 2.9               | 2.0               | 949,437                        |  |
| June      | 4          | 290.5          | 338.0             | 228.0             | 109.0          | 116.0             | 94.0              | 3.7            | 4.6               | 2.0               | 1,666,301                      |  |
| July      | 8          | 694.1          | 1000.0            | 491.0             | 145.5          | 270.0             | 82.0              | 3.1            | 5.6               | 2.0               | 2,306,899                      |  |
| August    | 6          | 606.5          | 615.0             | 564.0             | 326.8          | 361.0             | 156.0             | 5.5            | 7.3               | 3.8               | 5,767,813                      |  |
| September | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| October   | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| November  | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |
| December  | 0          | -              | -                 | -                 | -              | -                 | -                 | -              | -                 | -                 | -                              |  |

|           |                   |        | $NH^3$  |         |        | $NO^3+NO^2$ |         |        | TKN     |         |
|-----------|-------------------|--------|---------|---------|--------|-------------|---------|--------|---------|---------|
|           | _                 | Mean   | Maximum | Minimum | Mean   | Maximum     | Minimum | Mean   | Maximum | Minimum |
| Month     | <b>CSO Events</b> | (mg/L) | (mg/L)  | (mg/L)  | (mg/L) | (mg/L)      | (mg/L)  | (mg/L) | (mg/L)  | (mg/L)  |
| January   | 0                 | -      | -       | -       | -      | _           | -       | -      | -       | -       |
| February  | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| March     | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| April     | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| May       | 2                 | 5.9    | 7.4     | 4.3     | 0.8    | 0.8         | 0.8     | 14.0   | 16.8    | 11.2    |
| June      | 4                 | 8.3    | 15.9    | 4.3     | 1.4    | 1.6         | 0.8     | 21.4   | 25.2    | 11.2    |
| July      | 8                 | 9.8    | 19.5    | 4.1     | 0.4    | 0.7         | 0.2     | 19.7   | 38.2    | 8.9     |
| August    | 6                 | 13.7   | 18.8    | 5.0     | 0.2    | 0.4         | 0.1     | 32.7   | 43.2    | 17.4    |
| September | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| October   | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| November  | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |
| December  | 0                 | -      | -       | -       | -      | -           | -       | -      | -       | -       |

Note: Number of samples might not equal to number of CSO events due to sampler malfunction and extended sampling event.

# **TABLE 6: List of Certified Collection System Operators**

Certified collection system Operators per Level of WWC Certification:

- (1) Operators Level IV WWC Certified
- (2) Operators Level III WWC Certified
- (44) Operators Level II WWC Certified
- (47) Operators Level I WWC Certified

| Name                       | Title                                    | WWC Certification<br>Level |
|----------------------------|------------------------------------------|----------------------------|
| Fechner, Frank             | Senior Manager, Operational Strategies   | IV                         |
| Gunderson, John            | Engineering Technologist                 | III                        |
| L'Heureux, Robin           | Engineering Technologist                 | III                        |
| Acker, Timothy             | Drainage System MTV Operator             | II                         |
| Bertin, Wendy              | Engineering Technologist                 | II                         |
| Bishop, Shawn              | Drainage System Combo Operator           |                            |
| Blinn, Bill                | Tradesman (Millwright 2 / Welder)        | II                         |
| Branicki, Roman            | Labour Foreman 1                         | II                         |
| Bronca, Robert             | Labour Foreman 3                         | II                         |
| Brownoff, Nicholas         | Tradesman (Millwright)                   | II                         |
| Charrupi, Carlos           | Maintenance Repairman I                  | II                         |
| Cuglietta, Carmine         | Labour Foreman 1                         | II                         |
| Dennis, Clarence           | Labour Foreman 3                         | II                         |
| Ewing, Nicole              | Engineering Technologist                 |                            |
| Ferenac, Nikola            | Labour Foreman 3                         | II                         |
| Forrest, Scott             | Water System Technical Support / Special | II                         |
| Fraser, Gordon             | Labourer 2                               | II                         |
| Gawreletz, Kevin           | Labour Foreman 1                         | II                         |
| Gilker, Michael            | Sewer Substructure Inspector             | II                         |
| Guidoccio, Natalino        | Drainage System Serviceman               | II                         |
| Hajar, Norm                | Millwright Foreman                       | II                         |
| Hillier, Denis             | Foreman (Dual Trade)                     | II                         |
| Horrocks, Curtis           | Drainage System MTV Operator             | II                         |
| Khakh, Surjit              | Engineering Technologist                 | II                         |
| Lawson, Linsey             | Drainage Network Specialist              | II                         |
| Littlechilds, Stan         | Drainage Network Specialist              | II                         |
| Lukenbill, Durward (Dylan) | Tradesman (Millwright 2)                 |                            |
| Macrury, Robert            | Labour Foreman 1                         |                            |
| Manao, Manuel              | Sewer Substructure Inspector             | II                         |
| McConnell, Peter           | Drainage System MTV Operator             | II                         |

| Name                   | Title                                    | WWT Certification<br>Level |
|------------------------|------------------------------------------|----------------------------|
| Miller, Wade           | Tradesman (Millwright 2)                 | II                         |
| Montague, Thomas (lan) | Labour Foreman 3                         | II                         |
| Murphy, Steven         | Drainage System Combo Operator           | II                         |
| Naicken, Wade          | Water System Technical Support / Special | II                         |
| Nelson, Tim            | Environmental Specialist                 | II                         |
| Pearce, Craig          | Drainage Network Specialist              | II                         |
| Perron, Clayton        | Tradesman (Millwright 2)                 | II                         |
| Powell, Ryan           | Tradesman (Millwright)                   | II                         |
| Rivard, Shaune         | Drainage Network Specialist              | II                         |
| Russell, Randy         | Team Lead Inspection Assessment          | II                         |
| Samarasinghe, Kalutota | Labourer 2                               | II                         |
| Sigstad, Lane          | Tradesman (Millwright 2)                 | II                         |
| Soni, Rohit            | Planner (FCF Maintenance)                | II                         |
| Sorenson, Melvin       | Labour Foreman 1                         | II                         |
| Sorenson, Tim          | Labour Foreman 3                         | II                         |
| Swanepoel, Christiaan  | Drainage System MTV Operator             | II                         |
| Ursuliak, Wes          | Labour Foreman 3                         | II                         |
| Ambrosio, Jeffrey      | Sewer Substructure Inspector             | 1                          |
| Aniskou, Evgeni        | Engineering Technologist                 | 1                          |
| Bellerose, Richard     | Tradesman (Millwright 2)                 | 1                          |
| Braunig, Alex          | Drainage System MTV Operator             | 1                          |
| Campbell, Brent        | Sewer Substructure Inspector             | 1                          |
| Casella, Carmen        | Labourer 3                               | 1                          |
| Clark, Daniel          | Drainage Network Specialist              | 1                          |
| Dilts, Scott           | Drainage System Combo Operator           | 1                          |
| Divino, Patrick        | Drainage System Serviceman               | I                          |
| Dowds, Alexander       | Labourer 3                               | 1                          |
| Draghici, Courtney     | Drainage System Combo Operator           | 1                          |
| Dzenkiw, Michelle      | Manager, Service Maintenance             | 1                          |
| Fehr, Brittany         | Engineering Technologist                 | 1                          |
| Fola, Miressa          | Manager, Drainage Environment Services   | 1                          |
| Girhiny, Leah          | Engineering Technologist                 | 1                          |
| Goodine, John          | Tradesman (Millwright 2)                 | I                          |
| Goonewardane, Anton    | Equipment Operator 3                     | I                          |

# 2020 Annual Wastewater Collection System Report

| Name                       | Title                                     | WWT Certification<br>Level |  |
|----------------------------|-------------------------------------------|----------------------------|--|
| Guidoccio, Nicholas        | Labourer 3                                | I                          |  |
| Hammond, Richard           | Labourer 3                                | I                          |  |
| Handfield, Terrence        | Drainage System Combo Operator            | I                          |  |
| Hill, James                | Electrician 1                             | I                          |  |
| Hao, Yufu (Owen)           | Industrial Wastewater Inspector           | I                          |  |
| Hoffman, Edward            | Drainage System Combo Operator            | I                          |  |
| Ledl, Ryan                 | Industrial Wastewater Investigator        | I                          |  |
| Ledrew, Travis             | Labour Foreman 1                          | Ι                          |  |
| Liao, Hongyu (Tony)        | Project Manager, Elec Engineering Process | I                          |  |
| Lirazan, Warren            | Drainage System Combo Operator            | I                          |  |
| MacPherson, Blayne         | Drainage System Combo Operator            | I                          |  |
| Marcoux-Mansbridge, Nikita | Tradesman (Millwright )                   | I                          |  |
| Maughan, Tim               | Labour Foreman 1                          | I                          |  |
| McHale, Ken                | Drainage System Combo Operator            | I                          |  |
| McKay, Brandy              | Engineering Technologist                  | I                          |  |
| McLellan, Christine        | Water System Technical Support / Special  | I                          |  |
| O'Neill, John              | Maintenance Repairman 1                   | I                          |  |
| Persaud, Shawna            | Equipment Operator 3                      | I                          |  |
| Rahal, Osman               | Engineering Technologist                  | I                          |  |
| Runco, Frank               | Drainage System Combo Operator            | Ι                          |  |
| Schlacht, Shawn            | Labour Foreman 3                          | I                          |  |
| Sedurante, Benjamin        | Sewer Substructure Inspector              | I                          |  |
| Slonetzky, Tyler           | Sewer Substructure Inspector              | I                          |  |
| Spila, Leanne              | Drainage Network Specialist               | I                          |  |
| Swanson, Amy               | Labour Foreman 1                          | I                          |  |
| Trahan, Tessa              | Industrial Wastewater Investigator        | Ι                          |  |
| Underhay, Dominic          | Drainage System Combo Operator            | I                          |  |
| Valentini, Marco           | Maintenance Repairman 1                   | I                          |  |
| Webster, Kenneth           | Labour Foreman 3                          | I                          |  |
| Yang, Guang                | Drainage System Combo Operator            | I                          |  |

# **TABLE 7: 2020 Annual Product Usage at Pump Stations**

The Biomaxx Canada OXYN8 solution is used for odor control at sanitary pump stations. The Biomaxx Canada ELIMIN8 solution is used to enhance grease removal.

| Pump Station  | Product                | Total Addition<br>(Litres) |
|---------------|------------------------|----------------------------|
| 203 Ambleside | Biomaxx Canada OXYN8   | 14,760                     |
| 213 Big Lake  | Biomaxx Canada OXYN8   | 3120                       |
|               | Total Usage (OXYN8):   | 17,880                     |
| 166 Pembina   | Biomaxx Canada ELIMIN8 | 4,546                      |
| 193 SECS      | Biomaxx Canada ELIMIN8 | 5,411                      |
|               | Total Usage (ELIMIN8): | 9,957                      |

| TABLE 8: 2020 Annual Usage of Reward® Herbicide |                                     |                      |  |  |
|-------------------------------------------------|-------------------------------------|----------------------|--|--|
| Date of Application                             | Stormwater Management Facility      | Quantity<br>Used (L) |  |  |
| 09-Jul-20                                       | Ellerslie (6 Avenue & 85 Street SW) | 26                   |  |  |
| 10-Jul-20                                       | Oxford #1 (13102 - 158 Avenue NW)   | 15                   |  |  |
| 04-Aug-20                                       | Elsinore (17503 - 103 Street NW)    | 15                   |  |  |
|                                                 | Total Usage (L):                    | 56                   |  |  |
|                                                 | Total Number of Applications:       | 3                    |  |  |

## Table 9a: 2020 Usage of Potassium Permanganate

The use of Potassium Permanganate in the **Monitoring and Compliance** section is related to the identification of cross-connections in the collection system and supports enforcement activities associated with Drainage Bylaw 18100 (EPCOR) and Drainage Bylaw 18093 (City of Edmonton) and investigations of industrial and commercial customers.

| Date Tested | Location of Test           | Location of Test Department / Section |   | Potassium<br>Permanganate<br>(g) |
|-------------|----------------------------|---------------------------------------|---|----------------------------------|
| 08-Jan-20   | 9405 - 58 Avenue NW        | Monitoring and Compliance             | 1 | 10                               |
| 05-Feb-20   | 10550 - 116 Street NW      | Monitoring and Compliance             | 1 | 5                                |
| 05-Feb-20   | 106 Avenue & 116 Street NW | Monitoring and Compliance             | 1 | 5                                |
| 06-Feb-20   | 106 Avenue & 116 Street NW | Monitoring and Compliance             | 1 | 5                                |
| 24-Feb-20   | 4030 - 78 Avenue NW        | Monitoring and Compliance             | 1 | 10                               |
|             | 35                         |                                       |   |                                  |
|             | 5                          |                                       |   |                                  |

## Table 9b: 2020 Usage of Bright Dye

The use of Bright Dye in the **Environmental Services** section is related to the identification of cross-connections in the collection system. The **Monitoring & Compliance** usage supports enforcement activities associated with Drainage Bylaw 18100 (EPCOR) and Drainage Bylaw 18093 (City of Edmonton) and investigations of industrial and commercial customers.

| Date Tested            | Location of Test              | Department / Section                    | Tests per<br>Location | Bright Dye<br>(ml) |
|------------------------|-------------------------------|-----------------------------------------|-----------------------|--------------------|
| 02-Jan-20              | 2318 - Ware Crescent NW       | Environmental Services                  | 1                     | 10                 |
| 28-Jan-20              | 8505 - Argyll Road NW         | Environmental Services                  | 4                     | 330                |
| 28-Jan-20              | 8531 - Coronet Road NW        | Environmental Services                  | 7                     | 600                |
| 29-Jan-20              | 11029 - 135 Street NW         | Environmental Services                  | 1                     | 30                 |
| 29-Jan-20              | 11033 - 135 Street NW         | Environmental Services                  | 1                     | 30                 |
| 07-Feb-20              | 10753 - Jasper Avenue NW      | Environmental Services                  | 11                    | 330                |
| 10-Jul-20              | 10711 – Saskatchewan Dr NW    | Field Operations                        | 1                     | 25                 |
| 12-Aug-20              | 7803 -100 Ave (Capilano Park) | Field Operations                        | 1                     | 50                 |
| 6-Aug-20               | 10715 – 53 Ave                | Field Operations                        | 1                     | 50                 |
| 18-Sep-20              | 14319 - Stony Plain Road NW   | ny Plain Road NW Environmental Services |                       | 330                |
| 18-Sep-20              | 14319 - Stony Plain Road NW   | Environmental Services                  | 1                     | 300                |
| 21-Sep-20              | 31A Ave – 67A St              | Field Operations                        | 1                     | 50                 |
| 02-Oct-20              | 9330 - 80 Avenue NW           | Monitoring & Compliance                 | 1                     | 50                 |
| 05-Oct-20              | 7225 - 50 Street NW           | Monitoring & Compliance                 | 2                     | 100                |
| 07-Oct-20              | 7225 - 50 Street NW           | Monitoring & Compliance                 | 1                     | 50                 |
| Total Usage (mL):      |                               |                                         |                       |                    |
| Total Number of Tests: |                               |                                         |                       |                    |

# **Table 10: 2020 Usage of De-Icing Product (Arctic Blast)**

| Date      | Outfall<br>Number | Directly Affected<br>Watercourse | Number of Applications | Total Amount of De-Icing<br>Product Applied (Kg) |
|-----------|-------------------|----------------------------------|------------------------|--------------------------------------------------|
| 06-Jan-20 | 108               | North Sask. River                | Applications           | 40                                               |
| 06-Jan-20 | 47                | North Sask. River                | i                      | 50                                               |
| 06-Jan-20 | 4                 | Whitemud Creek                   | i                      | 60                                               |
| 06-Jan-20 | 274               | Blackmud Creek                   | 1                      | 40                                               |
| 07-Jan-20 | 265               | Whitemud Creek                   | i                      | 70                                               |
| 07-Jan-20 | 207               | Blackmud Creek                   | 1                      | 40                                               |
| 07-Jan-20 | 277               | Blackmud Creek                   | 1                      | 80                                               |
| 09-Jan-20 | 101               | North Sask. River                | 1                      | 60                                               |
| 09-Jan-20 | 298               | North Sask. River                | 1                      | 80                                               |
| 09-Jan-20 | 257               | Wedgewood Creek                  | I                      | 30                                               |
| 09-Jan-20 | 121               | North Sask. River                | ı                      | 40                                               |
| 10-Jan-20 | 268               | North Sask. River                | ı                      | 40                                               |
| 10-Jan-20 | 195               | Mill Creek                       | 1                      | 40                                               |
| 10-Jan-20 | 139               | North Sask. River                | 1                      | 50                                               |
| 10-Jan-20 | 29                | North Sask. River                | 1                      | 96                                               |
| 10-Jan-20 | 25                | North Sask. River                | 1                      | 48                                               |
| 10-Jan-20 | 31                | North Sask. River                | 1                      | 16                                               |
| 10-Jan-20 | 65                | North Sask. River                | 1                      | 64                                               |
| 10-Jan-20 | 88                | North Sask. River                | I                      | 48                                               |
| 10-Jan-20 | 119               | Westridge Ravine                 | 1                      | 80                                               |
| 10-Jan-20 | 30                | North Sask. River                | 1                      | 80                                               |
| 10-Jan-20 | 109               | North Sask. River                | 1                      | 20                                               |
| 10-Jan-20 | 71                | North Sask. River                | 1                      | 40                                               |
| 13-Jan-20 | 87                | North Sask. River                | I                      | 70                                               |
| 13-Jan-20 | 109               | North Sask. River                | I                      | 20                                               |
| 14-Jan-20 | 191               | Mill Creek                       | I                      | 50                                               |
| 14-Jan-20 | 92B               | Mill Creek                       | I                      | 40                                               |
| 14-Jan-20 | 91                | Mill Creek                       | I                      | 50                                               |
| 17-Jan-20 | 257               | Wedgewood Creek                  | I                      | 90                                               |
| 17-Jan-20 | 15                | North Sask. River                | I                      | 80                                               |
| 20-Jan-20 | 71                | North Sask. River                | I                      | 20                                               |
| 20-Jan-20 | 87                | Kennedale Ravine                 | I                      | 40                                               |
| 20-Jan-20 | 88                | Kennedale Ravine                 | I                      | 60                                               |
| 20-Jan-20 | 21                | North Sask. River                | I                      | 40                                               |
| 20-Jan-20 | 125               | Ramsay Ravine                    | I                      | 20                                               |

| Date      | Outfall<br>Number | Directly Affected Watercourse | Number of Applications | Total Amount of De-Icing Product Applied (Kg) |
|-----------|-------------------|-------------------------------|------------------------|-----------------------------------------------|
| 20-Jan-20 | 126               | Ramsay Ravine                 | 1                      | 20                                            |
| 20-Jan-20 | 52                | North Sask. River             | I                      | 70                                            |
| 20-Jan-20 | 78                | Goldbar Creek                 | I                      | 60                                            |
| 20-Jan-20 | 57                | North Sask. River             | I                      | 100                                           |
| 20-Jan-20 | 58                | North Sask. River             | I                      | 100                                           |
| 20-Jan-20 | N/A               | Shallow Storm Main            | I                      | 50                                            |
| 21-Jan-20 | 139               | Ramsay Ravine                 | 1                      | 20                                            |
| 21-Jan-20 | 24                | North Sask. River             | I                      | 100                                           |
| 21-Jan-20 | 123               | Ramsay Ravine                 | I                      | 30                                            |
| 21-Jan-20 | 124               | Ramsay Ravine                 | I                      | 40                                            |
| 21-Jan-20 | 132               | Ramsay Ravine                 | 1                      | 20                                            |
| 21-Jan-20 | 136               | Ramsay Ravine                 | 1                      | 30                                            |
| 21-Jan-20 | 65                | North Sask. River             | I                      | 40                                            |
| 21-Jan-20 | 156               | Fulton Ravine                 | 1                      | 40                                            |
| 21-Jan-20 | 77                | Goldbar Creek                 | 1                      | 100                                           |
| 23-Jan-20 | 191               | Mill Creek                    | 1                      | 80                                            |
| 23-Jan-20 | 195               | Mill Creek                    | 1                      | 90                                            |
| 23-Jan-20 | 92B               | Mill Creek                    | 1                      | 60                                            |
| 23-Jan-20 | 91                | Mill Creek                    | 1                      | 60                                            |
| 23-Jan-20 | 192               | Mill Creek                    | 1                      | 40                                            |
| 23-Jan-20 | 153               | North Sask. River             | 1                      | 60                                            |
| 23-Jan-20 | 47                | North Sask. River             | 1                      | 80                                            |
| 23-Jan-20 | 108               | North Sask. River             | I                      | 50                                            |
| 31-Jan-20 | 298               | North Sask. River             | I                      | 120                                           |
| 31-Jan-20 | 257               | Wedgewood Creek               | 1                      | 50                                            |
| 31-Jan-20 | 257               | Wedgewood Creek               | I                      | 50                                            |
| 31-Jan-20 | 101               | North Sask. River             | 1                      | 120                                           |
| 31-Jan-20 | 277               | Blackmud Creek                | I                      | 100                                           |
| 31-Jan-20 | 265               | Whitemud Creek                | 1                      | 90                                            |
| 03-Feb-20 | 120               | North Sask. River             | 1                      | 80                                            |
| 03-Feb-20 | 5                 | Whitemud Creek                | 1                      | 80                                            |
| 03-Feb-20 | 4                 | Whitemud Creek                | 1                      | 100                                           |
| 04-Feb-20 | 3                 | Whitemud Creek                | I                      | 30                                            |
| 04-Feb-20 | 121               | North Sask. River             | I                      | 50                                            |
| 04-Feb-20 | 78                | Goldbar Creek                 | 1                      | 80                                            |
| 04-Feb-20 | 52                | North Sask. River             | 1                      | 80                                            |
| 05-Feb-20 | 119               | Westridge Ravine              | 1                      | 100                                           |
| 05-Feb-20 | 21                | North Sask. River             | I                      | 100                                           |

| Date      | Outfall<br>Number | Directly Affected Watercourse | Number of Applications | Total Amount of De-Icing Product Applied (Kg) |
|-----------|-------------------|-------------------------------|------------------------|-----------------------------------------------|
| 05-Feb-20 | 30                | North Sask. River             | 1                      | 100                                           |
| 05-Feb-20 | 29                | North Sask. River             | I                      | 80                                            |
| 06-Feb-20 | 257               | Wedgewood Creek               | I                      | 20                                            |
| 06-Feb-20 | 298               | North Sask. River             | I                      | 20                                            |
| 06-Feb-20 | 59                | North Sask. River             | I                      | 30                                            |
| 20-Feb-20 | 1                 | Whitemud Creek                | I                      | 20                                            |
| 20-Feb-20 | 277               | Whitemud Creek                | 1                      | 20                                            |
| 21-Feb-20 | 264               | Blackmud Creek                | I                      | 20                                            |
| 21-Feb-20 | 274               | Blackmud Creek                | I                      | 20                                            |
| 21-Feb-20 | 25                | North Sask. River             | I                      | 20                                            |
| 21-Feb-20 | 264               | North Sask. River             | 1                      | 20                                            |
| 21-Feb-20 | 274               | North Sask. River             | 1                      | 20                                            |
| 21-Feb-20 | 25                | North Sask. River             | I                      | 20                                            |
| 26-Feb-20 | 4                 | Whitemud Creek                | 1                      | 80                                            |
| 26-Feb-20 | 5                 | Whitemud Creek                | 1                      | 60                                            |
| 27-Feb-20 | 257               | Wedgewood Creek               | 1                      | 40                                            |
| 27-Feb-20 | 78                | Goldbar Creek                 | 1                      | 30                                            |
| 03-Mar-20 | 192               | Mill Creek                    | 1                      | 40                                            |
| 03-Mar-20 | 156               | Fulton Ravine                 | 1                      | 40                                            |
| 03-Mar-20 | 191               | Mill Creek                    | 1                      | 30                                            |
| 03-Mar-20 | 195               | Mill Creek                    | 1                      | 20                                            |
| 03-Mar-20 | 92B               | Mill Creek                    | 1                      | 40                                            |
| 04-Mar-20 | 52                | North Sask. River             | I                      | 80                                            |
| 05-Mar-20 | 1                 | Whitemud Creek                | I                      | 20                                            |
| 05-Mar-20 | 3                 | Whitemud Creek                | I                      | 60                                            |
| 05-Mar-20 | 274               | Blackmud Creek                | I                      | 60                                            |
| 05-Mar-20 | 120               | North Sask. River             | I                      | 40                                            |
| 06-Mar-20 | 4                 | Whitemud Creek                | I                      | 40                                            |
| 06-Mar-20 | 101               | North Sask. River             | I                      | 30                                            |
| 06-Mar-20 | 265               | Whitemud Creek                | 1                      | 40                                            |
| 09-Mar-20 | 25                | North Sask. River             | 1                      | 20                                            |
| 09-Mar-20 | 23D               | North Sask. River             | 1                      | 40                                            |
| 09-Mar-20 | 207               | Blackmud Creek                | I                      | 40                                            |
| 09-Mar-20 | 277               | Blackmud Creek                | - 1                    | 40                                            |
| 10-Mar-20 | 5                 | Whitemud Creek                | 1                      | 30                                            |
| 10-Mar-20 | 264               | Blackmud Creek                | 1                      | 30                                            |
| 11-Mar-20 | 71                | North Sask. River             | 1                      | 20                                            |
| 11-Mar-20 | 87                | Kennedale Ravine              | I                      | 20                                            |

| Date      | Outfall<br>Number | Directly Affected Watercourse | Number of Applications | Total Amount of De-Icing Product Applied (Kg) |
|-----------|-------------------|-------------------------------|------------------------|-----------------------------------------------|
| 11-Mar-20 | 88                | Kennedale Ravine              | I                      | 20                                            |
| 17-Mar-20 | 257               | Wedgewood Creek               | I                      | 60                                            |
| 01-Apr-20 | 153               | North Sask. River             | I                      | 20                                            |
| 02-Apr-20 | 1                 | Whitemud Creek                | I                      | 20                                            |
| 02-Apr-20 | 3                 | Whitemud Creek                | I                      | 20                                            |
| 02-Apr-20 | 5                 | Whitemud Creek                | I                      | 40                                            |
| 02-Apr-20 | 264               | Blackmud Creek                | I                      | 20                                            |
| 02-Apr-20 | 274               | Blackmud Creek                | I                      | 20                                            |
| 02-Apr-20 | N/A               | Shallow Storm Main            | I                      | 20                                            |
| 03-Apr-20 | 207               | Blackmud Creek                | I                      | 20                                            |
| 03-Apr-20 | 277               | Blackmud Creek                | I                      | 40                                            |
| 03-Apr-20 | 25                | North Sask. River             | I                      | 20                                            |
| 03-Apr-20 | 120               | North Sask. River             | I                      | 40                                            |
| 03-Apr-20 | 265               | Whitemud Creek                | I                      | 20                                            |
| 06-Apr-20 | 23D               | North Sask. River             | I                      | 40                                            |
| 06-Apr-20 | 101               | North Sask. River             | I                      | 40                                            |
| 07-Apr-20 | 47                | North Sask. River             | I                      | 40                                            |
| 07-Apr-20 | 108               | North Sask. River             | I                      | 50                                            |
| 07-Apr-20 | 195               | North Sask. River             | I                      | 100                                           |
| 07-Apr-20 | 101               | North Sask. River             | I                      | 20                                            |
| 09-Apr-20 | 195               | North Sask. River             | I                      | 50                                            |
| 09-Apr-20 | 47                | North Sask. River             | I                      | 50                                            |
| 27-Nov-20 | 126               | Ramsay Ravine                 | I                      | 50                                            |
| 27-Nov-20 | 124               | Ramsay Ravine                 | I                      | 50                                            |
| 27-Nov-20 | 123               | Ramsay Ravine                 | I                      | 30                                            |
| 27-Nov-20 | 123A              | Ramsay Ravine                 | I                      | 50                                            |
| 27-Nov-20 | 191               | Mill Creek                    | I                      | 60                                            |
| 27-Nov-20 | 195               | Mill Creek                    | I                      | 60                                            |
| 27-Nov-20 | 192               | Mill Creek                    | I                      | 50                                            |
| 07-Dec-20 | 29                | North Sask. River             | I                      | 100                                           |
| 09-Dec-20 | 268               | North Sask. River             | I                      | 40                                            |
| 09-Dec-20 | 148               | North Sask. River             | I                      | 40                                            |
| 09-Dec-20 | 108               | North Sask. River             | I                      | 50                                            |
| 09-Dec-20 | 47                | North Sask. River             | I                      | 70                                            |
| 09-Dec-20 | 109               | North Sask. River             | I                      | 30                                            |
| 09-Dec-20 | 119               | Westridge Ravine              | I                      | 40                                            |
| 10-Dec-20 | 183               | North Sask. River             | I                      | 40                                            |
| 10-Dec-20 | 131               | Ramsay Ravine                 | I                      | 30                                            |

# 2020 Annual Wastewater Collection System Report

| Date      | Outfall<br>Number | Directly Affected Watercourse | Number of Applications | Total Amount of De-Icing Product Applied (Kg) |
|-----------|-------------------|-------------------------------|------------------------|-----------------------------------------------|
| 10-Dec-20 | 125               | Ramsay Ravine                 | I                      | 70                                            |
| 10-Dec-20 | 15                | North Sask. River             | I                      | 50                                            |
| 11-Dec-20 | 78                | Goldbar Creek                 | I                      | 80                                            |
| 14-Dec-20 | 90                | Mill Creek                    | I                      | 20                                            |
| 14-Dec-20 | 274               | Blackmud Creek                | I                      | 70                                            |
| 14-Dec-20 | 275               | Blackmud Creek                | I                      | 70                                            |
| 14-Dec-20 | 265               | Whitemud Creek                | I                      | 100                                           |
| 15-Dec-20 | 25                | North Sask. River             | I                      | 60                                            |
| 15-Dec-20 | 23D               | North Sask. River             | I                      | 60                                            |
| 15-Dec-20 | 101               | North Sask. River             | I                      | 110                                           |
| 18-Dec-20 | 195               | Mill Creek                    | I                      | 80                                            |
| 18-Dec-20 | 192               | Mill Creek                    | I                      | 40                                            |
| 18-Dec-20 | 191               | Mill Creek                    | I                      | 40                                            |
| 18-Dec-20 | 92B               | Mill Creek                    | I                      | 40                                            |
| 22-Dec-20 | 47                | North Sask. River             | I                      | 60                                            |
| 23-Dec-20 | 268               | North Sask. River             | I                      | 40                                            |
| 23-Dec-20 | 148               | North Sask. River             | I                      | 40                                            |
| 23-Dec-20 | 183               | North Sask. River             | I                      | 20                                            |
| 23-Dec-20 | 182               | North Sask. River             | I                      | 30                                            |
| 24-Dec-20 | 30                | North Sask. River             | I                      | 100                                           |
| 24-Dec-20 | 125               | Ramsay Ravine                 | I                      | 20                                            |
| 24-Dec-20 | 132               | Ramsay Ravine                 | I                      | 20                                            |
| 31-Dec-20 | 24                | North Sask. River             | I                      | 100                                           |
|           |                   |                               | Гotal Usage (Kg):      | 8642                                          |
|           |                   | Total Number                  | of Applications:       | 172                                           |

# **TABLE 11: 2020 Operational Issues - Drainage Services**

| Date of Occurrence | Location                                | Incident Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Туре                                            | AEP<br>Reference<br>Number |
|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|
| 04-Jan-20          | 3403-Chickadee Drive<br>NW              | A broken riser in a sanitary force main released approximately 38m³ of untreated wastewater to the ground and adjacent storm water management facility. Pumps at the upstream pump station were shutoff stopping the release of untreated wastewater. EPCOR equipment attended the site and completed cleanup of impacted ground. Emergency repairs to the sanitary line were completed on January 4, 2020. In response to this release, EPCOR will be completing a high priority permanent repair to remove the riser pipe and flange. Additional sampling of the storm water management facility is scheduled for the spring. This release was originally reported to AEP on January 04, 2020. A written report was issued to AEP on January 10, 2020. | Reportable-<br>Drainage<br>Operations           | 362459                     |
| 07-Jan-20          | 4344-99 Street NW                       | Approximately 5m <sup>3</sup> of caustic process water (pH = 12.9) was released into the sanitary collection system by Labatt's Brewery. Labatt's Brewery has been issued a Notice to Comply to discontinue the release of hazardous waste into the sewerage system. This release was reported to AEP on January 07, 2020 by Labatt's Brewery. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 362540                     |
| 08-Jan-20          | Beverly Bridge &<br>Yellowhead Trail NW | Sample results of a discharge into the storm sewer manhole MH287805 near Outfall #73 were reviewed by EPCOR Drainage investigators. The stormwater sample result had elevated levels of <i>E.coli</i> (25,000 CFU/100ml). Drainage investigators have initiated an investigation to confirm the source of untreated wastewater in the storm collection system. The release was reported to AEP on January 08, 2020. A written report was issued to AEP on January 15, 2020.                                                                                                                                                                                                                                                                              | Reportable-<br>Drainage<br>Operations           | 362551                     |
| 08-Jan-20          | 9405-58 Avenue NW                       | An unknown volume of contaminated wastewater was released from a shop sump into the storm collection system at Wynn Machine & Manufacturing Ltd. Wynn Machine & Manufacturing has been issued a Notice to Comply to discontinue the release of restricted waste (2,540 mg/L COD, 0.260 mg/L Copper, pH 4.49) and hazardous waste (91.8 mg/L Nickel, 652 mg/L Zinc, 317 mg/L Phosphorus) into the storm sewerage system. This release was reported to AEP on January 08, 2020 by Wynn Machine & Manufacturing Ltd. A written report was issued to AEP on January 30, 2020.                                                                                                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 362560                     |
| 11-Jan-20          | 1338-99 Street NW                       | Untreated wastewater (approx. 5-10L) was released into the storm collection system from a surcharging private sanitary manhole at the South Edmonton Common Shopping Centre. Cameron Corporation was issued a Notice to Comply to discontinue the release of untreated wastewater into the storm sewerage system. Notices have also been issued to three nearby businesses to reduce their fats, oils and grease releases into the sanitary collection system. This release was reported to AEP on January 11, 2020. A written report was issued to AEP on January 16, 2020.                                                                                                                                                                             | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 362655                     |
| 20-Jan-20          | 145-Avenue & 16-<br>Street NW           | EPCOR responded to a report of water pooling in the bottom of Fraser Ravine above a suspended sanitary main. On January 21st, staff were able to confirm that a recent increase in temperature had caused melt water to flow into the ravine, melting snow and exposing ground and vegetation. There was no release of untreated wastewater to the environment. This release was reported to AEP on January 20, 2020 as a precaution while the source of the water was investigated. A written report was issued to AEP on January 23, 2020.                                                                                                                                                                                                             | Reportable-<br>Drainage<br>Operations           | 362902                     |
| 24-Jan-20          | 8505-Argyll Road NW                     | EPCOR identified a cross connection discharging untreated wastewater into the storm collection system. This cross connection is on the EPCOR portion of the sanitary service and were assigned for priority repairs. This release was reported to AEP on January 24, 2020. A written report was issued to AEP on January 30, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                       | Reportable-<br>Drainage<br>Operations           | 363081                     |
| 124 Ian 20         | 8531-Coronet Road<br>NW                 | EPCOR identified a cross connection discharging untreated wastewater into the storm collection system. This cross connection is on the EPCOR portion of the sanitary service and were assigned for priority repairs. This release was reported to AEP on January 24, 2020. A written report was issued to AEP on January 31, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                       | Reportable-<br>Drainage<br>Operations           | 363082                     |
| 30-Jan-20          | 108-Avenue & 116-<br>Street NW          | During the technical review of documents associated with ongoing condition assessments EPCOR Drainage Services identified a compromised membrane in a double barrel pipe which separated the storm and sanitary mains at this location. The compromised membrane would have allowed for the release of untreated wastewater (unknown volume) from the sanitary collection system to the storm collection system during high flow / wet weather conditions. Engineering and constructability assessments of repair options have been                                                                                                                                                                                                                      | Reportable-<br>Drainage<br>Operations           | 363288                     |

### 2020 Annual Wastewater Collection System Report

|           | T                              | Annual standard the solve belong a California of the source of the solve of the AFD and the solve of the solv |                                                 | 1      |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
|           |                                | completed and the scheduling of the repair is in progress. The release was reported to AEP on January 30, 2020. A written report was issued to AEP on February 6, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |        |
| 03-Feb-20 |                                | A calcium chloride solution (approx. 2000L) was released into a bermed area at the City of Edmonton – SW District Yard and an unknown volume leaked out of the bermed area and into private storm catch basins located at the yard. The storm lines from this property drain into the combined sewer system. A 3 <sup>rd</sup> party contractor was called in to clean up the site and pump out the impacted storm catch basins. The release was reported to AEP on February 03, 2020 by the City of Edmonton. A written report was issued to AEP on February 7, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 363342 |
| 04-Feb-20 | NW                             | EPCOR Drainage Services received laboratory results from a sample that was collected on January 30 <sup>th</sup> from a storm sewer manhole (MH256913). The results of the sample (260,000 CFU/100ml) indicated the presence of untreated wastewater in the storm collection system. During dry weather, storm flow at this location is directed for treatment at the Gold Bar WWTP through the Rat Creek diversion structure. During storm events and snowmelt, this would increase the CSO discharge to the North Saskatchewan River. This location is being analyzed in order to divert the sanitary wastewater flows away from the storm sewer as part of the opportunistic sewer separation project. This release was reported to AEP on February 04, 2020. A written report was issued to AEP on February 11, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reportable-<br>Drainage<br>Operations           | 363418 |
| 06-Feb-20 | 3643-99 Street NW              | EPCOR Drainage investigators responded to an Edmonton Police Service report of illegal dumping into a storm catch basin at a commercial complex. EPCOR attended the site and noted that oil / grease waste was present inside the catch basin. The property management company (McCOR Management Inc.) dispatched a 3 <sup>rd</sup> party hydrovac company to clean out the impacted catch basin / storm lines. A Notice to Comply was issued to the property management company to discontinue the release of non-permitted waste into the storm sewerage system. This release was reported to AEP on February 6, 2020 by the property management company. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 363490 |
| 07-Feb-20 | Multiple Legations             | During a technical review of documents associated with ongoing condition assessments for the drill drop manhole rehabilitation program 5 drill drop manholes where structural deficiencies would have resulted in untreated wastewater being released to soil were identified. EPCOR is currently evaluating rehabilitation and construction options for each of the 5 drill drop manholes. The rehabilitation of these structures will stop the release of untreated wastewater to the soil. Delineation, removal, remediation and restoration of impacted material (including soil) will be incorporated into future planning for the five locations. EPCOR will continue to monitor the condition of the drill drop manholes. This release was reported to AEP on February 7, 2020. A written report was issued to AEP on February 14, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reportable-<br>Drainage<br>Operations           | 363518 |
| 12-Feb-20 | Highway 19 & 135-<br>Street NW | Potable water (unknown volume) was released into storm sewer lines from flushing activities by a public contractor (Sureway Construction). The contractor was using dechlorination pucks during their flushing activities, however, EPCOR determined that the Total Chlorine levels of the potable water entering the storm lines was above the Bylaw 18100 limit (0.02 mg/L). Sureway Construction added additional dechlorination pucks at their flushing sites to lower the chlorine levels of the water being released into the storm lines. This release was reported to AEP on February 12, 2020 by Sureway Construction. A written report was issued to AEP on February 19, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 363655 |
| 16-Feb-20 | 2804-Calgary Trail NW          | Drainage bylaws. This release was reported to AEP on February 16, 2020. A written report was issued to AEP on February 19, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>Drainage<br>Operations           | 363771 |
| 17-Feb-20 | Street NW                      | Untreated wastewater (approx. 200L) was released from a private sanitary manhole at a commercial complex. The release was isolated to the roadway and nearby storm catch basin sump. There was no release of untreated wastewater into the storm collection system. EPCOR will inspect nearby businesses to assess compliance with Drainage bylaws. This release was reported to AEP on February 17, 2020. A written report was issued to AEP on February 19, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 363786 |
| 18-Feb-20 | 153-Avenue & 76                | During decommissioning of the Mayliewan Pump Station (#174) a large volume of untreated wastewater and fats oils and grease (FOG) was released into the downstream sanitary collection system. The release of concentrated untreated wastewater and FOG caused performance concerns at the Alberta Capital Region Wastewater Commission (ACRWC) plant. EPCOR stopped cleaning activity, put additional controls in place and completed the cleaning and decommissioning of the pump station. EPCOR continues to work with ACRWC to ensure there is no further performance issues at the ACRWC plant related to large trunk cleaning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reportable-<br>EPCOR<br>Contractor              | N/A    |
| 28-Feb-20 | 12262-109 Street NW            | During a review of the results of a Multi-Sensor-Inspection (MSI) a void in a 1200mm combined sewer line within the Blatchford Airport redevelopment area was discovered. The void is situated near the crown of the pipe, which would have limited the release of untreated wastewater into the surrounding soil during periods of high flow (ie. spring melt or precipitation events). There was no above ground release of untreated wastewater or release to the storm collection system. This event was reported to AEP on February 28, 2020. A written report was issued to AEP on March 5, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reportable-<br>Drainage<br>Construction         | 364130 |

### 2020 Annual Wastewater Collection System Report

| 02-Mar-20 | Rhatigan Road West<br>NW       | During a response to a potential plugged main on February 28, 2020 a collapsed sanitary line was discovered. A bypass was established at this location to isolate the impacted infrastructure and Drainage Construction crews were mobilized to complete open cut repairs of impacted infrastructure. Further evaluation of engineering and design work on March 2, 2020 determined that untreated wastewater may have been released into the surrounding soil (unknown volume). The event was reported to AEP as EPCOR continued restorative activities related to the collapsed line. Due to the location of the sanitary line, the release of untreated wastewater would have been limited to the immediate area surrounding the pipe. There was no release of untreated wastewater to the surface or to the storm collection system. This release were reported to AEP on March 2, 2020. A written report was issued to AEP on March 6, 2020. | Reportable-<br>Drainage<br>Operations           | 364243 |
|-----------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 02-Mar-20 | Groat Road & 108-<br>Avenue NW | An EPCOR contractor (CKB Construction) was completing excavation work as part of the Groat Road Storm Trunk Rehabilitation Project. During the excavation hydrocarbon contamination was discovered. Further testing of soil and groundwater were conducted by the contractor to determine the extent of contamination in the area. The contractor developed a safe work and disposal plan for this site, contaminated soil was removed and remediation completed. This release was reported to AEP on March 2, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                    | Reportable-<br>EPCOR<br>Contractor              | 364265 |
| 03-Mar-20 | Rainbow Valley Road<br>NW      | A hydrocarbon sheen (unknown volume) was observed along Whitemud Creek. The hydrocarbon residue was traced back to Outfall #2. There was no hydrocarbons present in the lines upstream of the outfall so the source could not be determined. An absorbent boom was placed by the bridge to collect any hydrocarbon residue. The release was reported to AEP on March 3, 2020. A written report was issued to AEP on March 10, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364282 |
| 04-Mar-20 | 16707-14 Street NE             | During a site walkthrough, an EPCOR contractor (Insituform Technologies Ltd) identified evidence of a release of untreated wastewater (unknown volume) at the station entrance of PW901. EPCOR staff confirmed that there was no active flow of untreated wastewater from the station and that the release had occurred prior to March 4, 2020. An EPCOR maintenance crew completed clean-up of the spill site on March 5th. A monthly preventative maintenance task has been created to clean debris from the inlet chamber of the pump station. This release was reported to AEP on March 4, 2020. A written report was issued to AEP on March 11, 2020.                                                                                                                                                                                                                                                                                        | Reportable-<br>EPCOR<br>Contractor              | 364311 |
| 04-Mar-20 | 3516-79 Street NW              | Analytical results from a storm collection system sample collected by EPCOR Drainage investigators on February 27, 2020 indicated high <i>E. coli</i> concentrations (170,000 CFU/100ml). The sample was collected from a storm manhole (MH216124) as part of an investigation into a sewer odour at a residential property. The storm line at this location discharges to the North Saskatchewan River through Outfall #9 which is located 10 km downstream of the release. The residential property has been written a Notice Comply to repair the cross connection at this location. This release was reported to AEP on March 4, 2020. A written report was issued to AEP on March 11, 2020.                                                                                                                                                                                                                                                  | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364330 |
| 04-Mar-20 | 9507-141 Street NW             | Analytical results from a storm collection system sample collected by EPCOR Drainage investigators on February 27, 2020 indicated high <i>E. coli</i> concentrations (110,000 CFU/100ml). The sample was collected from a storm manhole (MH241731) as part of an investigation into a sewer odour at a residential property. The storm line at this location discharges to the North Saskatchewan River through Outfall #29 which is located 800 m downstream of the release. The residential property has been written a Notice Comply to repair the cross connection at this location. This release was reported to AEP on March 4, 2020. A written report was issued to AEP on March 11, 2020.                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364334 |
| 04-Mar-20 | 14511-123 Avenue<br>NW         | A release of hydrocarbons (unknown volume) was observed from a commercial establishment (A1 Delivery & Moving). An oily sheen was coming off the property and into a nearby storm manhole. A 3 <sup>rd</sup> party vacuum truck was called in to clean up the various hydrocarbon contaminants at this site. A Notice to Comply was issued to the company to discontinue the release of other than permitted matter into the storm collection system. This release was reported to AEP on March 4, 2020 by A1 Delivery & Moving. A written report was issued to AEP on March 5, 2020                                                                                                                                                                                                                                                                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364328 |
| 17-Mar-20 | 12403-Fort Road NW             | Approximately 200L of an industrial cleaner (E5 – Guardian Chemical) was added into the potable water system at the City of Edmonton - Kathleen Andrews Transit Facility. The potable water lines at this facility were then flushed into the sanitary sewer system. A review of the SDS for this product was conducted by EPCOR and it was determined to have had no impact to the underground infrastructure or downstream wastewater treatment process. This release was reported to AEP on March 17, 2020 by the City of Edmonton. A written report was issued to AEP on March 24, 2020.                                                                                                                                                                                                                                                                                                                                                      | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364656 |
| 18-Mar-20 | 13707-14 Street NW             | An EPCOR crew identified a leak of an unknown volume of untreated wastewater in the North sanitary line inside the regional tunnel (PW902). This pipe provides redundancy in case of failure of the South sanitary line and is currently out of use. The leak would have released untreated wastewater (unknown volume) into a sump that collects infiltrated water from the tunnel. The sump then discharges the infiltrated water to the North Saskatchewan River. EPCOR is evaluating options to affect repairs and stop the leak from the North line. Work to conduct the repair will commence following the evaluation of the repair options. This release was reported to AEP on March 24, 2020. A written report was issued to AEP on March 30, 2020.                                                                                                                                                                                      | Reportable-<br>Drainage<br>Operations           | 364890 |

| 19-Mar-20 | 8750-Stadium Road /<br>116-Avenue & 85-<br>Street NW | During a technical review of documents associated with ongoing assessments of the Large Trunk Rehabilitation capital planning project structural deficiencies were identified in two combined trunk lines. The structural deficiencies of these pipes would have allowed for the release of untreated wastewater (unknown volume) to the surrounding soil. Any release of untreated wastewater would have been contained underground in the vicinity of the pipe. There was no release of untreated wastewater to the storm collection system or the surface at these locations. This release was reported to AEP on March 25, 2020. A written report was issued to AEP on March 31, 2020.                                                                                                                                                                                                                         | Reportable-<br>Drainage<br>Planning             | 364829 |
|-----------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 19-Mar-20 | Groat Road & River<br>Valley Road NW                 | Hydraulic oil (<1L) was released from a sky jack lifting boom by a 3 <sup>rd</sup> party working at the Groat Road Bridge rehabilitation construction site. The release was contained on the surface (ice) and was cleaned up by Graham Construction workers. No hydraulic oil entered into the river itself. This release was reported to AEP on March 19, 2020 by Graham Construction. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364681 |
| 23-Mar-20 | 4225-92 Avenue NW                                    | A private sanitary line blockage released untreated wastewater (approx. 20 cubic meters) into the storm collection system at the IPEX facility. The blockage to the sanitary line was released by a 3 <sup>rd</sup> party vacuum truck. A Notice to Comply was issued to IPEX to discontinue the release of other than permitted matter into the storm collection system. This release was reported to AEP on March 23, 2020 by IPEX. A written report was issued to AEP on March 24, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364774 |
| 24-Mar-20 | 10510-45 Avenue NW                                   | A missing section of pipe was identified in a sanitary trunk line. The missing section of pipe would have allowed for the release of untreated wastewater (unknown volume) to the surrounding soil. There was no release of untreated wastewater to the storm collection system or the surface at this location. The impacted pipe is scheduled for abandonment in 2025 and the pipe will be replaced by a new sanitary trunkline. EPCOR will continue to monitor the condition of this sanitary trunk. A written report was issued to AEP on March 25, 2020. A written report was issued to AEP on March 30, 2020.                                                                                                                                                                                                                                                                                                | Reportable-<br>Drainage<br>Operations           | 364826 |
| 25-Mar-20 | 2064-49 Street NW                                    | Diesel fuel (<100L) was released from a suspected fuel theft at a private residence. The spill was contained on the roadway (mixed with snow / ice) and was cleaned up by EPCOR staff. There was no release of diesel fuel into the storm collection system. This release was reported to AEP on March 25, 2020 by the City of Edmonton – Fire Services. A written report was issued to AEP on March 31, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364812 |
| 26-Mar-20 | 10126-156 Street NW                                  | Hydrocarbons contaminants (<1L) were released into the storm collection system from a small area of fresh asphalt located in the alleyway at Sunlight Landscaping Ltd. A hydrocarbon sheen was observed flowing from the asphalt and down the alley into a sanitary manhole and storm catch basin. Absorbent booms and spill pads were placed near the storm catch basin to prevent any further contaminants from going into the storm collection system. The fresh asphalt was removed from the alley by the landscaping company. A Notice to Comply was issued to Sunlight Landscaping to discontinue the release of other than permitted matter into the storm collection system. This release was reported to AEP on March 26, 2020 by Sunlight Landscaping Ltd. A written report was issued to AEP on March 30, 2020.                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 364892 |
| 03-Apr-20 | 22130-Stony Plain<br>Road NW                         | Analytical results from a sample collected on March 30, 2020 by EPCOR Drainage investigators indicated high <i>E. coli</i> concentrations (1,200,000 CFU/100ml). The sample was collected from a pool of water (possibly an overflowing sewage tank) at an apartment complex. The release was on private property and the nearby drainage ditches were not impacted. A Notice to Comply was issued to the property owner to discontinue the release of restricted / prohibited waste into the storm sewerage system. Alberta Health Services and the City of Edmonton were also contacted about this release. This release was reported to AEP on April 03, 2020. A written report was not required by AEP.                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 365041 |
| 10-Apr-20 | 6311-144 Avenue NW                                   | Hydraulic oil (approx. 100L) was released from a private garbage truck (Collective Waste Solutions). Approximately 10L of hydraulic oil was released into a nearby storm catch basin (DR #298757) and storm line. Absorbent pads and booms were placed at the site to contain the spill. A 3 <sup>rd</sup> party vacuum truck was called in to remove the hydraulic oil from the catch basin, storm collection system and impacted area. This release was reported to AEP on April 10, 2020 by Collective Waste Solutions. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 365183 |
| 21-Apr-20 | 10370-Queen<br>Elizabeth Park Road<br>NW             | Untreated wastewater (unknown volume) was released into the North Saskatchewan River (NSR) from the Walterdale Pump Station #171. On April 21st the level of the NSR rapidly increased (estimated 4m) due to the release of a large upstream ice dam and heavy spring melt flow. In response to the sudden elevation change a number of outfall river gates were closed as per high river level protocols. It was determined that a buildup of ice / debris at Gate #2 did not allow the gate to fully close. This allowed water to enter the combined collection system and rapidly fill the storage tunnel at PW #171. There is a possibility as the storm water filled the storage tunnel at PW #171 that an unknown volume of river water mixed with untreated wastewater was released into the NSR. This release was reported to AEP on April 21, 2020. A written report was issued to AEP on April 29, 2020. | Reportable-<br>Drainage<br>Operations           | 365564 |
| 21-Apr-20 |                                                      | Sodium hydroxide solution (approx. 80L) was released into the private storm sewer system at Clear Tech Industries. EPCOR was informed of the release by Alberta Environment and Parks on April 22 <sup>nd</sup> . On April 22 <sup>nd</sup> the catch basins on site were inspected and traces of a release to the storm collection system was observed. A Notice to Comply was issued to Clear Tech to discontinue the release of prohibited matter                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 365580 |

|           | _                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                               | ,      |
|-----------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
|           |                                   | into the storm collection system. This release was reported to AEP on April 21, 2020 by Clear Tech Industries. A written report was issued to AEP on April 28, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |        |
| 30-Apr-20 | 12151-160 Street NW               | A yeast mixture (approx. 10,000Kg) was released into the sanitary collection system from Canada Bread Company. The Gold Bar WWTP was notified that a large volume of biologically active material had entered the sanitary collection system. A Notice to Comply was issued to Canada Bread Company to discontinue the release of non-permitted matter into the sewerage system. This release was reported to AEP on April 30, 2020 by Canada Bread Company. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                   | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 365938 |
| 01-May-20 | 5320-104A Street NW               | Hydraulic oil (1L) was released onto a roadway from a private company vehicle (Waste Management Inc.). The oil was contained in the sump of a nearby storm catch basin (CB228209) and was not released into the storm collection system. EPCOR used absorbent pads to remove the hydraulic oil from the impacted catch basin. This release was reported to AEP on May 1, 2020 by Waste Management Inc. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 365992 |
| 05-May-20 | 14402-114 Avenue<br>NW            | Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard (14402-114 Avenue NW) were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 781 mg/L, Phosphorous at 2.93 mg/L, Cadmium at 0.00148 mg/L, Copper at 0.174 mg/L, Lead at 0.173 mg/L, Nickel at 0.085 mg/L, Zinc at 1.30 mg/L, Oil & Grease at 160 mg/L and Phenols at 0.006 mg/L. The original sample from the NW district yard was collected on April 24, 2020 by COE Environmental Technologists. This release was reported to AEP on May 5, 2020 by the City of Edmonton. A written report was issued to AEP on May 12, 2020. | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366150 |
| 06-May-20 | 170 Street &<br>Whitemud Drive NW | EPCOR Drainage Services responded to a report of a subsidence at a sanitary sewer manhole (MH220917). Following further investigation on May 7 <sup>th</sup> a release of untreated wastewater (unknown volume) to the ground was identified due to the physical deficiencies in the sanitary pipe. The release was contained to the immediate vicinity of the subsidence and did not enter the storm collection system. An emergency project was completed to rehabilitate the manhole stopping the release. This release was reported to AEP on May 7, 2020. A written report was not required by AEP.                                                                                                                                                                                                                 | Reportable-<br>Drainage<br>Construction         | 366241 |
| 07-May-20 | 16503-134 Street NW               | Antifreeze (approx. 15L) was released from a City of Edmonton Waste Management truck onto a roadway. Antifreeze had entered a nearby storm catch basin (CB465211) but was contained within the catch basin sump and did not enter the storm collection system. EPCOR staff cleaned up the antifreeze from inside the catch basin with absorbent pads. The release was reported to AEP by the City of Edmonton. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366498 |
| 07-May-20 | 441E E1 Avonus NIM                | Hydraulic oil (120L) was released from a street sweeper (TransEd LRT Design Build) onto a roadway. Hydraulic oil had entered nearby storm catch basins, but was contained within the catch basin sumps and did not enter the storm collection system. A 3 <sup>rd</sup> party flusher unit was called in to clean up the oil spill from the road and storm catch basins. This release was reported to AEP on May 7, 2020 by TransEd LRT Design. A written report was issued to AEP on May 11, 2020.                                                                                                                                                                                                                                                                                                                      | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366242 |
| 08-May-20 |                                   | Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 211 mg/L, Ammonia at 2.14 mg/L, Cadmium at 0.00102 mg/L, Selenium at 0.0231 mg/L and Phenols at 0.006 mg/L. The original sample from the NE district yard was collected on April 30, 2020 by COE Environmental Technologists. This release was reported to AEP on May 8, 2020 by the City of Edmonton. A written report was issued to AEP on May 12, 2020.                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366272 |
| 08-May-20 | 5404-59 Avenue NW                 | Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 239 mg/L, Phosphorous at 1.18 mg/L, Cadmium at 0.00372 mg/L, Selenium at 0.0234 mg/L, Lead at 0.0341 mg/L, Zinc at 0.71 mg/L and Oil & Grease at 31.4 mg/L. The original sample from the SE district yard was collected on April 30, 2020 by COE Environmental Technologists. This release was reported to AEP on May 8, 2020 by the City of Edmonton. A written report was issued to AEP on May 12, 2020.                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366270 |
| 18-May-20 | 5208-162 Avenue NW                | Motor oil (2L) was released from a private vehicle onto a roadway. EPCOR responded to site and observed that oil residue was present in a nearby storm catch basin (CB399446) and downstream storm manhole (MH395598). Absorbent pads were used to remove the oil from the catch basin sump and storm manhole. Motor oil residue on the road was cleaned-up by the homeowner. This release was reported to AEP on May 18, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366579 |

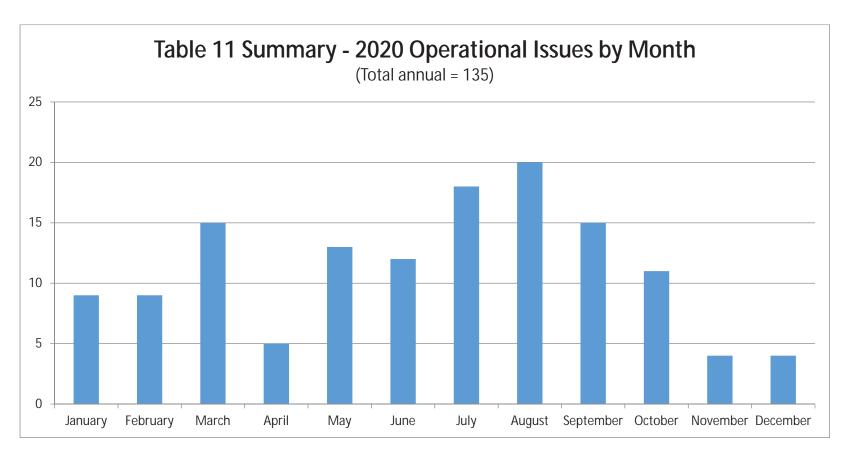
| 18-May-20 | 7912-18 Avenue SW      | Grout and tiling wastewater (approx. 50L) was released into the storm collection system from a private residence. EPCOR equipment was called in to clean out the impacted storm collection system. A Notice to Comply was issued to the homeowner to discontinue the release of prohibited waste into the storm sewerage system. This release was reported to AEP on May 18, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366620 |
|-----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 19-May-20 | 4620-26 Avenue NW      | During the investigation of an odour complaint EPCOR identified a plugged sanitary main (MH203607) that was allowing untreated wastewater (unknown volume) to infiltrate into an adjacent storm line. EPCOR equipment removed the obstruction stopping the release of untreated wastewater into the storm collection system. Condition assessments of the sanitary and storm lines were completed to ensure there were no physical deficiencies present that would allow a regular flow of untreated wastewater to enter the storm collection system. This release was reported to AEP on May 19, 2020. A written report was issued to AEP on May 26, 2020.                                                                                                                                  | Reportable-<br>Drainage<br>Operations           | 366616 |
| 22-May-20 | 10054-167 Street NW    | Transmission fluid (1L) was released from a City of Edmonton – ETS bus into the storm collection system. Rain had washed the transmission fluid into a nearby storm catch basin (CB253450) and storm line. EPCOR used absorbent booms / pads to clean up any transmission fluid residue left in the catch basin. This release was reported to AEP on May 22, 2020 by the City of Edmonton.                                                                                                                                                                                                                                                                                                                                                                                                   | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366741 |
| 25-May-20 | 9304-64 Avenue NW      | Paint waste (<5L) was released into a storm catch basin (CB229228) by an unknown 3 <sup>rd</sup> party contractor. GFL Environmental Inc. was called in to clean the impacted storm collection system. EPCOR completed follow up investigation but were unable to identify the contractor that released the paint into the storm catch basin. This release was reported to AEP on May 25, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                    | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366817 |
| 27-May-20 | 10231-157 Street NW    | Cement wash water (15-20L) was released into a storm catch basin (CB320344) by Rolling Mix Concrete. The wash water was contained in the sump of the catch basin and was not released into the storm collection system. A Notice to Comply was issued to Rolling Mix Concrete to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEP on May 27, 2020 by Tech View Homes. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 366874 |
| 05-Jun-20 |                        | Used oil (1-3L) was released into a storm catch basin from an oil filter storage barrel at the BC Auto Center. Oil had entered a nearby storm catch basin (CB265134) but was contained within the catch basin sump and did not enter the storm collection system. A Notice to Comply was issued to BC Auto Center to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEP on June 5, 2020 by the City of Edmonton – Fire Services.                                                                                                                                                                                                                                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367261 |
| 10-Jun-20 | 13003-56 Street NW     | Sample results of the stormwater discharge from the City of Edmonton (COE) NE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 111 mg/L, Ammonia at 1.57 mg/L, Cadmium at 0.000983 mg/L, Lead at 0.0217 mg/L, Selenium at 0.0114 mg/L and Phenols at 0.009 mg/L. The original sample from the NE district yard was collected on June 2, 2020 by COE Environmental Technologists. This release was reported to AEP on June 10, 2020 by the City of Edmonton. A written report was issued to AEP on June 11, 2020.                                                            | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367492 |
| 10-Jun-20 | 14402-114 Avenue<br>NW | Sample results of the stormwater discharge from the City of Edmonton (COE) NW district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Phenols at 0.007 mg/L. The original sample from the NW district yard was collected on June 2, 2020 by COE Environmental Technologists. This release was reported to AEP on June 10, 2020 by the City of Edmonton. A written report was issued to AEP on June 11, 2020.                                                                                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367493 |
| 10-Jun-20 | 5404-59 Avenue NW      | Sample results of the stormwater discharge from the City of Edmonton (COE) SE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 539 mg/L, BOD at 200 mg/L Phosphorous at 1.31 mg/L, Ammonia at 15.0 mg/L, Cadmium at 0.00638 mg/L, Lead at 0.0272 mg/L, Silver at 0.00160 mg/L, Zinc at 0.71 mg/L and Phenols at 0.009 mg/L. The original sample from the SE district yard was collected on June 2, 2020 by COE Environmental Technologists. This release was reported to AEP on June 10, 2020 by the City of Edmonton. A written report was issued to AEP on June 11, 2020. | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367491 |
| 13-Jun-20 | 17010-90 Avenue NW     | Untreated wastewater (approx. 20 cubic meters) was released into the storm collection system from a blocked sanitary line located at the Westgate Shopping Center. EPCOR equipment released the blockage stopping the flow of untreated wastewater into the storm collection system. EPCOR completed additional inspections of the adjacent businesses in the area to ensure compliance with Drainage Services bylaws. This release was reported to AEP on June 14, 2020. A written report was issued to AEP on June 19, 2020.                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367664 |
| 14-Jun-20 |                        | A mixture of storm water and untreated wastewater (93,740 cubic meters) was released from Outfall #54. Heavy rainfall exceeded the storage capacity of the downtown sewer network. The program logic controller at Real Time Control (RTC) #3 was not controlling the CSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reportable-<br>Drainage                         | 367659 |

|           | 86 Street & Jasper<br>Avenue NW | gates based on its programmed set points. RTC#3 was not able to maximize storage which resulted in an increased combined sewer overflow volume into the North Saskatchewan River. The programming issue has been corrected and RTC#3 has been returned to service. This release was reported to AEP on June 14, 2020. A written report was issued to AEP on June 19, 2020.                                                                                                                                                                                                                                                                                                                         | Operations                                      |        |
|-----------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 15-Jun-20 | 12690-161 Avenue<br>NW          | Untreated wastewater (unknown volume) was released from EPCOR Drainage - Pump Station #159. During a scheduled inspection of the bypass at this location EPCOR staff observed water seeping up from the ground down stream of the station. After further investigation the crew determined that the forcemain on the discharge end of pump had collapsed. The pump was taken out of service until emergency repairs could be made and the bypass discharge was relocated downstream. This release was reported to AEP on June 15, 2020. A written report was issued to AEP on June 19, 2020.                                                                                                       | Reportable-<br>Drainage<br>Operations           | 367673 |
| 17-Jun-20 | 9504-49 Street NW               | Potable water (approx. 100L) was released into the storm collection system from a City of Edmonton (COE) water truck. The results of a sample collected from the catch basin exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Total Chlorine at 0.50 mg/L. EPCOR Drainage Services contacted the COE vehicle operator and supervisor to educate them in regards to releases of potable water to the storm collection system. This release was reported to AEP on June 17, 2020. A written report was issued to AEP on June 23, 2020.                                                                                   | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367867 |
| 19-Jun-20 | 13851-127 Street NW             | Untreated wastewater (100-200L) was released into the storm collection system from a surcharging sanitary manhole located at Lucky Supermarket. EPCOR equipment was called in to release the blockage from the sanitary line. The property owner called in a 3rd party vacuum truck to clean and flush private storm manholes. A Notice to Comply was issued to the property owner to discontinue the release of restricted wastes into the sewerage system. This release was reported to AEP on June 19, 2020 by the property owner. A written report was not required by AEP.                                                                                                                    | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 367934 |
| 23-Jun-20 | 9504-49 Street NW               | Potable water (<20L) was released into the storm collection system from a City of Edmonton (COE) water truck. The results of a sample collected from the catch basin exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Total Chlorine at 1.05 mg/L EPCOR Drainage Services contacted the COE vehicle operator and supervisor to inform them that potable water could not be released into the storm collection system. This release was reported to AEP on June 23, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                             | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368077 |
| 27-Jun-20 | 99-Street & Jasper<br>Avenue NW | An EPCOR water main at this site was damaged during excavation work by PCL Construction and potable water (unknown volume) was released to the storm collection system. An EPCOR Water crew was contacted and completed repairs to the water main. The storm catch basins in this area are connected to the combined sewer system. There was no release of potable water to the storm collection system. This release was reported to AEP on June 27, 2020.                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368302 |
| 29-Jun-20 | 6222-Maynard Point<br>NW        | Laboratory results from a water sample collected at the Mactaggart Stormwater Management Facility #2 the sample results showed 6 mg/L for Oil & Grease and 125 mg/L for Chemical Oxygen Demand. Absorbent pads / booms were used to collect residue and sheen that had accumulated along the bank of the storm water management facility. Based on further testing / investigation it was determined that there was no release of hydrocarbons into the storm management facility. The sheen initially observed in the pond was determined to have been from naturally occurring biological activity. This release was reported to AEP on June 29, 2020. A written report was not required by AEP. | Reportable-<br>Drainage<br>Operations           | 368357 |
| 02-Jul-20 | 7516-152A Avenue<br>NW          | Used motor oil (approx. 20L) was released into the storm collection system from a private residence. EPCOR staff used absorbent booms to contain and absorb oil residue from the release. EPCOR equipment and a 3 <sup>rd</sup> party vacuum truck (GFL) were called to the site to clean oil contaminants from impacted storm lines and manholes. This release was reported to AEP on July 3, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                     | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368506 |
| 02-Jul-20 | 530-Hooke Road NW               | A plugged storm inlet pipe at Hermitage Park was identified by EPCOR as requiring maintenance to restore normal flow and limit impact to the surrounding area. This issue was forwarded into the AEP reporting system on the recommendation of Elise Neuman (AEP Land Management Specialist) to prevent significant delays in gaining approval for the required emergency maintenance work. This release was reported to AEP on July 2, 2020. A written report was not required by AEP.                                                                                                                                                                                                            | Reportable-<br>Drainage<br>Operations           | 368449 |
| 02-Jul-20 | 1801-Garnett Way NW             | During a routine inspection an EPCOR crew identified hydraulic oil (<5L) being released into the storm collection system from the bottom of a control gate (Gate#585) at the Glastonbury Storm Water Management Facility #2. An absorbent boom was used to contain and absorb any hydraulic oil residue. On July 3, 2020 a more detailed follow-up inspection was completed at the gate structure. The hydraulic fluid was determined to have been residue from and earlier repair. This release was reported to AEP on July 3, 2020. A written report was not required by AEP.                                                                                                                    | Reportable-<br>Drainage<br>Operations           | 368519 |
| 03-Jul-20 | 14402-114 Avenue<br>NW          | Sample results of the storm water discharge from the City of Edmonton (COE) NW district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B                                                                                                                                                                                                                                                                                                                                                                                                                            | Reportable-<br>3 <sup>rd</sup> Party            | 368528 |

| r         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |        |
|-----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
|           |                                               | Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 106 mg/L, Ammonia at 2.08 mg/L, Cadmium at 0.00078 mg/L and Selenium at 0.0199 mg/L. The original sample from the NW district yard was collected on June 24, 2020 by COE Environmental Technologists. This release was reported to AEP on July 3, 2020 by the City of Edmonton. A written report was issued to AEP on July 7, 2020.                                                                                                                                                                                                                                                                                                                                                                           | Release                                         |        |
| 03-Jul-20 | 13003-56 Street NW                            | Sample results of the storm water discharge from the City of Edmonton (COE) NE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 193 mg/L, Oil & Grease at 15.9 mg/L, Cadmium at 0.00052 mg/L and Phenols at 0.008 mg/L. The original sample from the NE district yard was collected on June 24, 2020 by COE Environmental Technologists. This release was reported to AEP on July 3, 2020 by the City of Edmonton. A written report was issued to AEP on July 7, 2020.                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368523 |
| 03-Jul-20 | 5404-59 Avenue NW                             | Sample results of the storm water discharge from the City of Edmonton (COE) SE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 198 mg/L, Ammonia at 3.21 mg/L and Cadmium at 0.00187 mg/L. The original sample from the SE district yard was collected on June 24, 2020 by COE Environmental Technologists. This release was reported to AEP on July 3, 2020 by the City of Edmonton. A written report was issued to AEP on July 7, 2020.                                                                                                                            | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368529 |
| 07-Jul-20 | 12512-Landsdowne<br>Drive NW                  | A concrete waste / slurry (unknown volume) was released by a private company (Canyon Springs Master Builder). EPCOR observed concrete residue along the road gutter and in nearby storm catch basins. A 3 <sup>rd</sup> party vacuum truck and the concrete company cleaned the concrete residue from the impacted storm catch basins and along the roadway. This release was reported to AEP on July 7, 2020 by the company.                                                                                                                                                                                                                                                                                                                                                          | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368669 |
| 09-Jul-20 |                                               | Sample results of the North storm water inlet at the Bearspaw Storm Water Management Facility were received and reviewed by EPCOR Drainage investigators. The concentrations of <i>E. coli</i> for these samples were 14,000 CFU/100ml (MH200786), 1100 CFU/100ml (MH200788), and 3100 CFU/100ml (MH200792). Based on further investigation, EPCOR does not believe that there was any release from a sanitary sewer into the storm water management facility. The investigation determined that the first sample was mistakenly taken from a sanitary line adjacent to the storm manhole. Follow up sampling of the storm inlet were consistent with urban stormwater quality. This release was reported to AEP on July 9, 2020. A written report was issued to AEP on July 16, 2020. | Reportable-<br>Drainage<br>Operations           | 368846 |
| 11-Jul-20 |                                               | A release of motor oil (0.5L) from a vehicle was reported by a private resident. The spill had occurred approximately two weeks earlier and recent rain events had likely released the motor oil into Whitemud Creek through Outfall #265. A Notice to Comply has been issued to the resident to discontinue the release of other than permitted matter (oil) into the sewerage system. The vehicle is no longer being stored at this location. This release was reported to AEP on July 11, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                           | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 368930 |
| 16-Jul-20 | 12422-29A Avenue /<br>94-Westbook Drive<br>NW | Untreated wastewater and storm water mixture (unknown volume) was released into the storm collection system from Pump Station #102 and Pump Station #104. An influx of storm water from a heavy rain event overwhelmed both stations which then reached overflow levels. An EPCOR Drainage crew attended both sites during the rain event to confirm that the pumps at both stations were running at full capacity and as per design. This release was reported to AEP on July 16, 2020. A written report was issued to AEP on July 21, 2020.                                                                                                                                                                                                                                          | Reportable-<br>Drainage<br>Operations           | 369135 |
| 17-Jul-20 |                                               | Gasoline (approx. 10L) was released into the storm collection system from a vehicle accident. The City of Edmonton – Fire Services was on site and had placed absorbent booms along the roadway and in a nearby storm catch basin (CB69617) to contain and absorb the fuel spill. The storm water from the catch basin enters into the Belle Rive Storm Water Management Facility #2 (157-Avenue & 89-Street NW). EPCOR Drainage investigators inspected this facility and did not observe any unusual odours or hydrocarbon sheen. This release was reported to AEP on July 18, 2020. A written report was not required by AEP.                                                                                                                                                       | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369194 |
| 20-Jul-20 | 10144-123 Street NW                           | Untreated wastewater (unknown volume) was released through a monitored interconnection. A blockage (fats and grease) occurred in a sanitary mainline (PIP49447) which then released untreated wastewater through the interconnection into the nearby storm line (PIP49362). The blockage was released by an EPCOR equipment. EPCOR completed additional inspections of nearby businesses to ensure compliance with EPCOR Drainage Bylaws 18100 and Bylaw 18093. This release was reported to AEP on July 20, 2020. A written report was issued to AEP on July 22, 2020.                                                                                                                                                                                                                | Reportable-<br>Drainage<br>Operations           | 369258 |
| 21-Jul-20 |                                               | Concrete waste and slurry (approx. 15L) was released by a contractor (Diamond Concrete Works). EPCOR responded to a citizen complaint and observed concrete residue along the road gutter and in a nearby storm catch basin (CB302481). A 3 <sup>rd</sup> party vacuum truck was called in to clean up the concrete residue from the roadway and the impacted storm catch basin. A Notice to Comply was issued to Diamond Concrete                                                                                                                                                                                                                                                                                                                                                     | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369325 |

|           |                                | Works to discontinue the release of prohibited waste (concrete slurry) into the sewerage system. This release was reported to AEP on July 21, 2020 by the contractor. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |        |
|-----------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 22-Jul-20 | 7411-51 Avenue NW              | Hydraulic oil (approx. 40L) was released by a private company (TransEd Design Build). Absorbent booms were used to contain and absorb the hydraulic oil spill. A 3 <sup>rd</sup> party vacuum truck was called in to clean hydraulic oil contaminants from the impacted storm collection system and surrounding area. This release was reported to AEP on July 22, 2020 by the company. A written report was issued to AEP on July 28, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369333 |
| 22-Jul-20 | Mill Creek & 76-<br>Avenue NW  | Laboratory results of a foam sample collected from Mill Creek were received and reviewed by EPCOR Drainage investigators. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for COD at 132 mg/L. The investigators did not identify a visible sheen or unusual odours in the water and the foam appeared to be from natural sources. Upstream investigation also showed no evidence of releases to the storm system. This release was reported to AEP on July 22, 2020. A written report was not required by AEP.                                                                                                                                                                                                                                                                                   | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369667 |
| 23-Jul-20 | 9059-167 Avenue NW             | Untreated wastewater (approx. 100L) was released into the storm collection system from a surcharging sanitary manhole (MH301924) located at Pump Station #160. An influx of storm water from a heavy rain event overwhelmed the sanitary line which resulted in untreated wastewater surcharging from the sanitary manhole and being released into a nearby storm catch basin. EPCOR equipment was called in to remove untreated wastewater that had pooled near the sanitary manhole and from the nearby storm catch basin. This release was reported to AEP on July 23, 2020. A written report was issued to AEP on July 28, 2020.                                                                                                                                                                                                                                                                 | Reportable-<br>Drainage<br>Operations           | 369408 |
| 30-Jul-20 | 1801-Garnet Way NW             | Hydraulic oil (approx. 5L) was observed in the chamber of Control Gate #585 (Glastonbury Storm Water Management Facility #2).  Absorbent booms and pads were installed to contain and absorb the hydraulic oil residue. On August 4, 2020 an additional inspection was completed by EPCOR on the gate structure to determine if there was an additional leak occurring and no issues were found. This inspection showed that there was hydraulic oil adhering to the chamber walls from previous repairs to the gate. On August 5, 2020 additional clean up actions were completed at the facility to further remove hydraulic oil contaminants. This release was reported to AEP on July 30, 2020.  A written report was issued to AEP on August 6, 2020.                                                                                                                                           | Reportable-<br>Drainage<br>Operations           | 369666 |
| 31-Jul-20 | 115-Avenue & 214-<br>Street NW | Sample results from a storm manhole (MH537954) were received and reviewed by EPCOR. The concentrations of <i>E. coli</i> for this sample was 260 CFU/100ml. This result is above the limit for <i>E. coli</i> that is in Appendix C of the EPCOR Drainage Services Bylaw 18100 and reported to AEP. This sample was collected on July 28, 2020 in response to a citizen complaint of wastewater being released by a 3 <sup>rd</sup> party vacuum truck into a manhole. Based on the information available EPCOR were unable to determine the identity of the vacuum truck company and what type of wastewater was released into the sewerage system. This release was reported to AEP on July 31, 2020. A written report was not required by AEP.                                                                                                                                                    | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369721 |
| 02-Aug-20 | 10550-116 Street NW            | Potable water and melted tire residue (unknown volume) was released into the storm collection system from a fire at Trail Tire. City of Edmonton - Fire Services responded and while putting out the fire a mixture of potable water and melted tire was released into a nearby private storm catch basin. The melted tire residue plugged the private catch basin and the downstream storm catch basin (CB259930). A 3 <sup>rd</sup> party vacuum truck (Supreme Hydrovac) was called into to clean out the impacted catch basins. This release was reported to AEP on August 2, 2020 by City of Edmonton – Fire and Rescue Services. A written report was not required by AEP.                                                                                                                                                                                                                     | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369768 |
| 03-Aug-20 | 483-Rooney Crescent<br>NW      | A SCADA overflow alarm was generated during a heavy rain event at Pump Station #140. Due to a false return from a sensor at the station EPCOR is unable to determine if an overflow actually occurred. Due to the discrepancy in the sensor readings EPCOR reported the event to the regulator. The pumps at the station were continuously monitored through the SCADA system during this rain event and were running at maximum capacity and as per design. This release was reported to AEP on August 4, 2020. A written report was issued to AEP on August 10, 2020.                                                                                                                                                                                                                                                                                                                              | Reportable-<br>Drainage<br>Operations           | 369855 |
| 03-Aug-20 | University Farm &              | EPCOR Drainage Services received notification of a potential release of untreated wastewater from a damaged sanitary pipe at Trestle Bridge #7. An EPCOR crew responded to this notification and confirmed that there was a release from the steel pipe running across the trestle bridge. Due to the unknown condition of the pipe / trestle structure it was not possible to safely access the trestle or area below the trestle to complete further assessments immediately after the incident occurred. EPCOR is evaluating long term options for repair of the pipe / trestle with an expected completion date in Q4 2021. EPCOR will also complete a thorough investigation of the event to determine the root causes of the failure and identify any additional corrective actions. The release was reported to AEP on August 3, 2020. A written report was issued to AEP on August 10, 2020. | Reportable-<br>Drainage<br>Operations           | 369801 |
| 05-Aug-20 | 19-Hamilton Crescent<br>NW     | EPCOR responded to a complaint of motor oil (approx. 4L) being released into the storm collection system from a private residence. EPCOR staff placed an absorbent boom in a nearby storm catch basin to collect any oil contaminants. EPCOR staff instructed the homeowner to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reportable-<br>3 <sup>rd</sup> Party            | 370029 |

|           |                               | clean up oil residue on their driveway and not to allow any oil to enter the storm collection system. On August 6 <sup>th</sup> EPCOR staff responded to a second complaint of oil being released into a storm catch basin from the same address. The catch basin was again contaminated with oil. A 3 <sup>rd</sup> party vacuum truck (GFL) was called in to clean out the impacted catch basin. This release was reported to AEP on August 7, 2020. A written report was not required by AEP.                                                                                                                                                                                         | Release                                         |        |
|-----------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 05-Aug-20 | 7411-51 Avenue NW             | Sediment (approx. 0.5Kg) was released into a storm catch basin (CB544029) from a broken sediment filter bag at a TransEd construction site. The sediment was contained in the catch basin sump and did not enter the storm collection system. The sediment that remained on the surface was cleaned up by the company. EPCOR completed additional inspections at this location to check for any sediment buildup in the catch basin and erosion sediment control is in place. This release was reported to AEP on August 5, 2020. A written report was not required by AEP.                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 369922 |
| 06-Aug-20 | 69-Avenue & 170-<br>Street NW | Untreated wastewater (unknown volume) was released into the storm collection system through a previously unidentified interconnection. The release was discovered by an EPCOR crew during an unrelated bypass pumping operation. A temporary plug has been installed at the interconnection which has stopped the release of untreated wastewater from sanitary manhole (MH221327) to the nearby storm manhole (MH221381). This release was reported to AEP on August 6, 2020. A written report was issued to AEP on August 13, 2020. And the interconnection has been permanently sealed to prevent future releases.                                                                    | Reportable-<br>Drainage<br>Operations           | 369968 |
| 10-Aug-20 | 3010-33 Avenue NW             | Hydraulic oil (approx. 5L) was released into the storm collection system from a City of Edmonton - Waste Management truck. EPCOR staff placed absorbent pads into a nearby storm catch basin and manhole to contain and absorb the release. This release was reported to AEP on August 10, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                       | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370128 |
| 11-Aug-20 | 1569-Hector Road NW           | Potable water (approx. 500L) was released into a storm catch basin (CB382842) from a concrete company (Edmonton Concrete Ltd).  EPCOR has issued a Notice to Comply to discontinue the release of chlorinated water to the storm collection system. This release was reported to AEP on August 11, 2020 by the company. A written report was issued to AEP on August 19, 2020.                                                                                                                                                                                                                                                                                                           | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370207 |
| 11-Aug-20 | 14402-114 Avenue<br>NW        | Sample results of the storm water discharge from the City of Edmonton (COE) NW district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Selenium at 0.0139 mg/L. The original sample from the NW district yard was collected on July 30, 2020 by COE Environmental Technologists. This release was reported to AEP on August 11, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370177 |
| 11-Aug-20 | 13003-56 Street NW            | Sample results of the storm water discharge from the City of Edmonton (COE) NE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Total Chlorine at 0.06 mg/L. The original sample from the NE district yard was collected on July 30, 2020 by COE Environmental Technologists. This release was reported to AEP on August 11, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                           | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370178 |
| 11-Aug-20 | 5404-59 Avenue NW             | Sample results of the storm water discharge from the City of Edmonton (COE) SE district yard were received and reviewed by the COE Enviso Coordinator for Parks and Road Services. The results of the sample exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Ammonia at 2.78 mg/L, Cadmium at 0.00137 mg/L & Selenium at 0.0273 mg/L. The original sample from the SE district yard was collected on July 30, 2020 by COE Environmental Technologists. This release was reported to AEP on August 11, 2020. A written report was not required by AEP.                                                       | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370173 |
| 12-Aug-20 | 17-Street & Aurum<br>Road NE  | A 900mm culvert crossing 17-Street NE was obstructed causing the upstream ravine to store water and flood 17-Street NE. Emergency pumping activity was initiated by EPCOR Drainage. An assessment of the pumping site has identified an area of erosion of the downstream bank on the west side of 17-Street NE. Due to the potential for the pumping to have contributed to the erosion, EPCOR has reported this event to the regulator. The obstruction in the culvert has been partially released and is running at 1/4 flow. The pumping activity has been discontinued. This release was reported to AEP on August 12, 2020. A written report was issued to AEP on August 19, 2020. | Reportable-<br>Drainage<br>Operations           | 370228 |
| 12-Aug-20 | 1485-37C Avenue NW            | Cooking oil (approx. 40L) was released into a storm catch basin (CB429083). An estimated 1L of the oil was released from the catch basin into the storm collection system. EPCOR was unable to determine the source of the cooking oil. The area of the release has been noted for follow up inspections and a letter was issued to all nearby residents indicating that no release or disposal of wastes is permitted into any storm catch basin or manhole. This release was reported to AEP on August 12, 2020. A written report was issued to AEP on August 17, 2020.                                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370284 |
| 12-Aug-20 | 3920-150 Street NW            | Concrete slurry (unknown volume) was released into a storm catch basin (CB208199) by Eiffel Construction. EPCOR observed staining on the roadway and around the storm catch basin. This location had received precipitation from when the concrete work was performed to                                                                                                                                                                                                                                                                                                                                                                                                                 | Reportable-<br>3 <sup>rd</sup> Party            | 370477 |


|           | 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5. 1                                            |        |
|-----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
|           |                                        | when it was reported to EPCOR. A Notice to Comply has been issued to discontinue the release of other than permitted matter (concrete slurry) to the EPCOR sewerage system. This release was reported to AEP on August 12, 2020 by the company. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                   | Release                                         |        |
| 18-Aug-20 | 99-Street & Whitemud<br>Drive NW       | Concrete slurry (unknown volume) was released into the storm collection system by CanWest Concrete. EPCOR determined that there were a number of storm catch basins in the area that were contaminated with concrete residue. A 3 <sup>rd</sup> party vacuum truck was called to the site to clean out contaminants from the impacted catch basins. A Notice to Comply was issued to the company to discontinue the release of other than permitted matter (concrete cutting slurry) into the EPCOR sewerage system. This release was reported to AEP on August 18, 2020 by the prime contractor (Standard General). A written report was issued to AEP on August 19, 2020. | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370490 |
| 24-Aug-20 | 11508-139 Street NW                    | EPCOR responded to an AEP report of a homeowner releasing the contents of two large containers into a storm catch basin (CB261278). EPCOR observed that there was no evidence of a release was present in the catch basin or surrounding area. A follow up inspection confirmed that the liquid release by the homeowner was rainwater. The AEP reference number (#370755) for this event was assigned by AEP.                                                                                                                                                                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370755 |
| 25-Aug-20 | Keswich Boulevard &<br>Kennedy Cove SW | Members of EPCOR Drainage Operations met with an Alberta Environment fisheries biologist and aquatic invasive species specialist at the Keswick storm water management facilities. Keswick 1, Keswick 2 and Outfall 115 were sampled to determine if goldfish may be present. The presence of goldfish at Keswick 2 has been confirmed. The Drainage Services - Environmental Manager has contacted AEP to discuss follow-up actions.                                                                                                                                                                                                                                       | Reportable-<br>Drainage<br>Operations           | N/A    |
| 26-Aug-20 | 9863-74 Avenue NW                      | Tack oil (unknown volume) was released into the storm collection system by a City of Edmonton contractor (Lafarge Construction). After placing tack oil onto the street precipitation washed tack oil into adjacent storm catch basins. A 3 <sup>rd</sup> party vacuum truck (GFL) and an EPCOR flushing unit cleaned out the impacted storm collection system. A Notice to Comply was issued to the City of Edmonton to discontinue the release of prohibited waste (tack oil/asphalt) to the sewerage system. This release was reported to AEP on August 26, 2020 by the City of Edmonton. A written report was issued to AEP on August 28, 2020.                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370846 |
| 26-Aug-20 | 4225-92 Avenue NW                      | Hydraulic oil (205L) was released into the sanitary collection system from IPEX Inc. EPCOR confirmed that the hydraulic oil was released into a floor drain at the IPEX facility. This release was reported to AEP on August 26, 2020 by the company. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                             | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370937 |
| 28-Aug-20 | 74-Fairway Drive NW                    | Natural gas (unknown volume) was released by an EPCOR Contractor (GS Construction). During the replacement of a sanitary main unstable ground conditions caused a leak to develop in a nearby gas line. ATCO Gas was called in to turn off the leaking gas line and complete repairs. These releases were reported to AEP on August 28, 2020 by the contractor. A written report was not required by AEP.                                                                                                                                                                                                                                                                   | Reportable-<br>EPCOR<br>Contractor              | 370918 |
| 01-Sep-20 | 6615-51 Avenue NW                      | Sediment (unknown volume) was released into the storm collection system by a private company (TransEd). Sediment from street sweeping equipment used by the company at a work site had entered into storm catch basins along the roadway and had caused sediment loading into Mill Creek. A 3 <sup>rd</sup> party vacuum truck was called in to clean out the impacted catch basins. A Notice to Comply was issued to TransEd to discontinue the release of other than permitted matter into the sewerage system. This release was reported to AEP on September 1, 2020 by the company. A written report was issued to AEP on September 1, 2020.                            | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 370982 |
| 03-Sep-20 | 125A-Avenue & 62-<br>Street NW         | EPCOR Drainage responded to a report from the City of Edmonton that motor oil (<5L) had been released from abandoned oil pails along a roadway. Absorbent material was used by City of Edmonton staff to clean up the spill site and the abandoned oil pails were taken away for disposal. There was no release of oil to the storm / sanitary sewer. This release was reported to AEP on September 3, 2020 by the City of Edmonton.                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371176 |
| 05-Sep-20 | 5150-99 Street NW                      | Hydraulic oil (5L) was released into a private storm catch basin from a company vehicle (Super Save Group) at a City of Edmonton – Eco Station. EPCOR staff observed that the hydraulic oil was contained in the catch basin sump and did not enter the storm collection system. A 3 <sup>rd</sup> party vacuum truck was called in to remove contaminants from the impacted catch basin. This release was reported to AEP on September 5, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                                                                                                          | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371248 |
| 09-Sep-20 | 129-Street & Stony<br>Plain Road NW    | Potable water (unknown volume) was released by an EPCOR contractor (PME Inc.). A water line service was damaged during excavation work resulting in water being released into an excavated trench. Dechlorination pucks were placed into the trench and the accumulated water was drained into a nearby catch basin (CB259809) that is connected to the combined sewer system. EPCOR Water responded to this event and turned off the water and completed repairs to the damaged line. This release was reported to AEP on September 9, 2020 by the contractor. A written report was not required by AEP.                                                                   | Reportable-<br>EPCOR<br>Contractor              | 371380 |

| 09-Sep-20 | 3751-139 Avenue NW                        | A sodium bisulfate solution (approx. 0.5L) was released into the sanitary collection system from the Clareview Recreation Center.  Absorbent pads were used to clean up the spill site. This release was reported to AEP on September 9, 2020 by the City of Edmonton. A written report was issued to AEP on September 10, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371398 |
|-----------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 10-Sep-20 | 149-Street & Summit<br>Drive NW           | Cement grout (approx. 2Kg) was released into the storm collection system by an EPCOR Contractor (Whitson Contracting) located at the MacKinnon Ravine storm trunk rehabilitation site. A sediment boom was placed downstream of the work site to contain the release. Any contaminants from the spill site that were not contained by the boom would have been discharged to the North Saskatchewan River thru Outfall #30 (SE of 135-Street and Ravine Drive NW). This release was reported to AEP on September 10, 2020 by the contractor. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                        | Reportable-<br>EPCOR<br>Contractor              | 371474 |
| 14-Sep-20 | 2619-49 Street NW                         | Hydraulic oil (175L) was released from a private contractor (GCS General Contracting Services) work site. EPCOR staff observed that hydraulic oil (approx. 10L) had been released into nearby storm catch basins but was contained in the catch basin sumps and did not enter the storm collection system. A 3 <sup>rd</sup> party vacuum truck was called in to clean out the impacted storm catch basins. This release was reported to AEP on September 14, 2020 by the contractor. A written report was issued to AEP on September 17, 2020.                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371529 |
| 18-Sep-20 | 6619-8 Street NW                          | Sample results of an untreated wastewater discharge (unknown volume) at Amar Trucking Ltd. were received and reviewed by EPCOR. The results of the sample exceeded Bylaw 18100 Appendix C for 4 parameters (8.5 mg/L Ammonia, 400mg/L COD, Total Phosphorus 6.57 mg/L and <i>E. coli</i> 16000 CFU/100ml). The wastewater was being pumped from the basement of the premises and was flowing across 8th street into a ditch and accumulating at the newly installed culverts tied to the Hurstwood Stormwater Pond that is currently under construction directly West of the premises. The stormwater pond will eventually be tied into the areas storm water system but the pond is not currently operational. The occupant of the property has been issued a Notice to Comply to discontinue the release. This release was reported to AEP on September 18, 2020. A written report was issued to AEP on September 25, 2020. | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371743 |
| 21-Sep-20 | 101-Avenue &<br>Goldstick Park Road<br>NW | Sample results of an unknown hydrocarbon discharge (<5L) at Gold Bar Creek were received and reviewed by EPCOR. The results of the sample exceeded Bylaw 18100 Appendix C for Oil & Grease at 109 mg/L. EPCOR staff placed a boom across Outfall #76 to prevent the further release of hydrocarbons into Gold Bark Creek. A number of upstream storm manholes were inspected to determine the source of the oil & grease contaminants, but there was no evidence of a release at these locations. EPCOR will continue to complete routine inspections of the contributing area of Outfall #76. This release was reported to AEP on September 21, 2020. A written report was issued to AEP on September 28, 2020.                                                                                                                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371887 |
| 22-Sep-20 | 7229-50 Street NW                         | Untreated wastewater was released into the storm collection system from a cross connection at a commercial building complex. The untreated wastewater was observed during a routine inspection of a stormwater trunkline (PIP338198) by EPCOR. EPCOR completed a dye test that has confirmed a private cross connection at this location. EPCOR Drainage will televise the sewer lines coming from the building complex to determine the exact location of the cross connection and location of the private service. This release was reported to AEP on September 23, 2020. A written report was issued to AEP on September 29, 2020.                                                                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371989 |
| 23-Sep-20 | 250-Aurum Road NE                         | EPCOR was notified by the City of Edmonton – Waste Management Center of a brownish discharge coming from Outfall #216. EPCOR reviewed data from a sample collected on September 14, 2020 by City of Edmonton – Waste Management. The results of the sample exceeded Bylaw 18100 Appendix C for Ammonia = 2.18 mg/L. The Waste Management Center has stopped the pumping of groundwater to Outfall #216, while they further investigate this release. A Notice to Comply was issued to the City of Edmonton – Waste Management Center to discontinue the release of restricted waste into the sewerage system. This release was reported to AEP on September 16, 2020 by the City of Edmonton. A written report was issued to AEP on September 23, 2020.                                                                                                                                                                       | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371688 |
| 23-Sep-20 | 16503-121A Avenue<br>NW                   | Concrete residue (unknown volume) was released into the storm collection system by Stel-Marr Concrete Ltd. EPCOR staff observed concrete residue leading out of the Stel-Marr Concrete facility and onto 121A Avenue. A pH test of a storm catch basin (CB272173) next to the Stel-Marr facility exceeded Bylaw 18100 Appendix C for pH = 13.5. A 3 <sup>rd</sup> party vacuum truck was called in to clean out the impacted catch basin. A Notice to Comply has been issued to Stel-Marr Concrete to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEP on September 23, 2020 by the company.                                                                                                                                                                                                                                                                            | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 371966 |
| 25-Sep-20 | 51-Avenue & 74-<br>Street NW              | A concrete slurry (approx. 10L) was released into a storm catch basin (CB543915) by TransEd. The concrete slurry was contained within the catch basin sump and had not entered the storm collection system. A 3rd party vacuum truck was called in to clean out the impacted catch basin. This release was reported to AEP on September 25, 2020 by the company. A written report was issued to AEP on September 29, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372075 |

| 20.0      | 18817-Stony Plain                             | Diesel fuel (approx. 100L) was released into the storm collection system from a vehicle accident (Professional Car Carriers Ltd.). A 3 <sup>rd</sup> party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reportable-                                     | 070000 |
|-----------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 26-Sep-20 | Road NW                                       | vacuum truck was called in to clean out the impacted storm catch basins / lines. This release was reported to AEP on September 26, 2020 by the City of Edmonton – Fire Services.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 <sup>rd</sup> Party<br>Release                | 372098 |
| 28-Sep-20 | 13150-205 Street NW                           | A BioMaxx chemical solution (<5L) was released into the storm collection system at Pump Station #213. The chemical was released from a storage container into a storm catch basin (MH492163) adjacent to the pump station. EPCOR crews used absorbent material to clean up the spill site. This release was reported to AEP on September 28, 2020. A written report was issued to AEP on October 7, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reportable-<br>Drainage<br>Operations           | 372280 |
| 01-Oct-20 | 3660-Claxton Place<br>SW                      | Cooking oil (approx. 1L) was released into the storm collection system at a residential neighborhood. A container of cooking oil was left out on the front street by a resident which was run over by a vehicle and released into a nearby storm catch basin (CB471701). The release was discovered by City of Edmonton – Waste Management. A 3 <sup>rd</sup> party vacuum truck (Peak Energy) was called in to clean up contaminants from the impacted catch basin and surrounding area. This release was reported to AEP on October 1, 2020 by City of Edmonton – Waste Management. A written report was not required by AEP                                                                                                                                                                                                                                                                                                                                           | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372338 |
| 03-Oct-20 | 17-Street & Maple<br>Ridge Drive NW           | Untreated wastewater (50-75 cubic meters) was released into the storm collection system from an obstructed private sanitary line located at a residential trailer park. EPCOR noted that the impacted storm collection system drains through a culvert and into a natural waterbody on the West side of 17 Street NW. EPCOR equipment was mobilized to release the blockage and clean up the impacted storm collection system. EPCOR recommended follow up activity from the property owners. Additional clean up or remediation for this release would be the responsibility of the property owner as the generator. A Notice to Comply was issued to the property manager to discontinue the release of prohibited / restricted waste to the storm sewerage system. This release was reported to AEP on October 3, 2020 by the property manager. A written report was issued to AEP on October 8, 2020.                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372412 |
| 03-Oct-20 | University Farm &<br>Whitemud Creek<br>Ravine | EPCOR responded to a report of untreated wastewater (unknown volume) being released from a damaged sanitary pipe at Trestle Bridge #7. An inspection by an EPCOR contractor on October 3 <sup>rd</sup> and 4 <sup>th</sup> confirmed that there were 3 holes in the trestle pipe. Repairs to the holes were completed on October 5 <sup>th</sup> . No further releases have occurred at this location. Prior to the release EPCOR had engaged a contractor to complete an intermediate repair of the trestle pipe pending rehabilitation of the trestle. On October 8 <sup>th</sup> EPCOR identified a void and related obstruction in a 1650mm combined line at 61 Avenue and 109 Street NW as the likely source of the surcharge at Trestle #7. EPCOR is in the process of completing an emergency repair at this location. This release was reported to AEP on October 3, 2020. A written report was issued to AEP on October 10, 2020.                               | Reportable-<br>Drainage<br>Operations           | 372420 |
| 12-Oct-20 | 130-Avenue & 109-<br>Street NW                | Untreated wastewater (approx. 1500L) was released into a storm catch basin (CB278184) by an EPCOR subcontractor (Rocor Fluid Transfer Services). During bypass pumping a hose clamp failed releasing untreated wastewater onto the road and into a nearby catch basin. This catch basin is connected to the combined sewer system. A 3 <sup>rd</sup> party vacuum truck was called in to clean up the untreated wastewater from the impacted catch basin and nearby roadway. This release was reported to AEP on October 12, 2020. A written report was issued to AEP on October 15, 2020.                                                                                                                                                                                                                                                                                                                                                                               | Reportable-<br>EPCOR<br>Contractor              | 372680 |
| 14-Oct-20 | 98A Avenue & 96A<br>Street NW                 | EPCOR responded to a report from City of Edmonton – Fire Services of an oily sheen near the Tawatina LRT bridge construction site.  EPCOR inspected the shore of the North Saskatchewan River, Mill Creek and the Mill Creek Oil Separator (8501-70 Avenue NW) but observed no sign of hydrocarbons. The Alberta Environment and Parks duty officer was contacted by EPCOR and informed that no hydrocarbon or oily substances were observed at any of the outfalls along Mill Creek. This event was reported to AEP on October 14, 2020 by the City of Edmonton – Fire Services. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                              | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372770 |
| 14-Oct-20 | 57-Avenue & 184-<br>Street NW                 | EPCOR received laboratory results from a sample that was collected on October 7 <sup>th</sup> from a storm manhole (CB219319). The results of the sample (42,000 CFU/100ml) indicated the presence of untreated wastewater (unknown volume) in the storm collection system and system tracing was initiated. On October 20 <sup>th</sup> the sanitary sewer line upstream of this location was identified as having structural issues. Untreated wastewater from the sanitary line was saturating the ground and entering the adjacent storm collection system. Emergency repairs to the sanitary line were undertaken by EPCOR. After the repairs are completed, follow up sampling of the stormwater system will be conducted to verify if the deficiencies in the sanitary line were the cause of the elevated <i>E. coli</i> in the nearby storm line. This release was reported to AEP on October 14, 2020. A written report was issued to AEP on October 21, 2020. | Reportable-<br>Drainage<br>Operations           | 372762 |
| 15-Oct-20 | 17424-129 Avenue<br>NW                        | An anti-scalant was released into the storm collection system from a damaged tote at Ryder MCC Logistics. It was determined that 1055 L of the anti-scalant was released onto a paved parking lot and approximately 350 L entered into a nearby private storm catch basin. EPCOR equipment and a 3 <sup>rd</sup> party vacuum truck (GFL) were called in to remove the anti-scalant from the impacted storm collection system. A Notice to Comply was issued to the company to discontinue the release of other than permitted matter to the storm sewerage system. This release was reported to AEP on October 15, 2020 by the company. A written report was issued to AEP on October 22, 2020.                                                                                                                                                                                                                                                                         | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372816 |

| 15-Oct-20 | 4661-Roper Road NW              | Contaminated wastewater (unknown volume) was released into the sanitary collection system from the EPCOR Technologies Pylypow Hydrovac Waste Transfer Station. Sample results were received and reviewed by EPCOR Drainage investigators on October 21, 2020 and indicated that the wastewater exceeded Drainage Bylaw 18100 Appendix B limits for TSS, As, Cu, Pb, Ni, and Zn. The wastewater also exceeded Alberta Environment and Parks limits (class 9.3 substances) for both Ni (5.5 mg/L) and Fe (4570 mg/L). A Notice to Comply was issued to EPCOR Technologies to discontinue the release of restricted waste into the sewerage system. This release was reported to AEP on October 21, 2020 by EPCOR Technologies. A written report was not required by AEP.                                                                                                                                                                                                                                                  | Reportable-<br>EPCOR<br>Technologies            | 373019 |
|-----------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 16-Oct-20 | 199-Street & Lessard<br>Road NW | Hydraulic oil (approx. 25L) was released into a private storm catch basin from a City of Edmonton sanding truck. A 3 <sup>rd</sup> party vacuum truck (Noralta Environmental Services) was called in to clean out hydraulic oil from two impacted catch basins and the nearby roadway. This release was reported to AEP on October 16, 2020 by the City of Edmonton. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372817 |
| 20-Oct-20 | 37A-Avenue & 9-<br>Street NW    | Fuel / hydrocarbon contaminants (unknown volume) were released into a storm catch basin (CB69119) from a vehicle accident. A 3 <sup>rd</sup> party vacuum truck (GFL) and EPCOR equipment were called in to remove the contaminants from the impacted storm collection system. This release was reported to AEP on October 20, 2020 by the City of Edmonton – Fire Services. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 372964 |
| 30-Oct-20 | 19023-70 Avenue NW              | An unknown substance (approx. 30L) was released into a storm catch basin located in a residential neighborhood. A citizen reported that a contractor had dumped a white liquid into a nearby catch basin (CB308178). EPCOR staff inspected the catch basin after a rain event and did not observe any contaminants. EPCOR was unable to determine the origin or identity of the substance. This release was reported to AEP on October 30, 2020. A written report was issued to AEP on November 6, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 373250 |
| 02-Nov-20 | 4344-99 Street NW               | Sample results from a sanitary discharge at Labatts Brewery were received and reviewed by EPCOR. The results of the sample exceeded Bylaw 18100 Appendix C for Total Kjeldahl Nitrogen at 1440 mg N/L and Total Phosphorus at 102 mg P/L. The discharge also exceeded Alberta Environment and Parks limits (class 9.3 substances) for Total Phosphorus. A Notice to Comply has been issued to the Labatts Brewing Company to discontinue the release of restricted / hazardous waste into the sewerage system. This release was reported to AEP on November 2, 2020 by the company. A written report was not required by AEP.                                                                                                                                                                                                                                                                                                                                                                                           | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 373344 |
| 17-Nov-20 | 183-Hyndman<br>Crescent NW      | Untreated wastewater (unknown volume) was released into the storm collection system (CB288184) from a sanitary manhole surcharge. EPCOR equipment was called in to release the blockage (rags, fats, oil and grease) and to remove contaminants from the storm collection system and nearby roadway. This release was reported to AEP on November 18, 2020. A written report was issued to AEP on November 24, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reportable-<br>Drainage<br>Operations           | 373764 |
| 19-Nov-20 | 77-Avenue & 89-<br>Street NW    | Untreated wastewater (unknown volume) was released into the storm collection system. A combined sewer line blockage caused a discharge of wastewater into an adjacent storm line through a monitored interconnection (PIP341651). EPCOR Drainage equipment released the blockage (toilet paper and grease) and removed contaminants from the storm collection system. This release was reported to AEP on November 19, 2020. A written report was issued to AEP on November 26, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reportable-<br>Drainage<br>Operations           | 373819 |
| 23-Nov-20 | 98-Avenue & 102<br>Street NW    | As part of a routine inspection an EPCOR Drainage crew was televising what they believed was a storm sewer line (PIP29672). During the inspection the crew observed a flow of untreated wastewater in the line. The potential release of untreated wastewater into the storm collection system was reported to AEP pending further investigation by EPCOR. Further investigation has determined that the records identifying the line as part of the storm collection system are incorrect and the line is actually part of the combined sewer system in that neighborhood. All sanitary / storm wastewater flowing thru the line (PIP29672) on November 23 <sup>rd</sup> would have been collected by the combined sewer system and there was no release into the storm collection system. EPCOR will update their electronic records to identify the line as being part of the combined sewer system. This release was reported to AEP on November 24, 2020. A written report was issued to AEP on November 30, 2020. | Reportable-<br>Drainage<br>Operations           | 373932 |
| 04-Dec-20 | 11140-68 Avenue NW              | Untreated wastewater (unknown volume) was released into the storm collection system (PIP75244) from a private sanitary manhole surcharge at a residential apartment / condominium building. EPCOR equipment cleared the blockage (rags, fats, oil and grease) and removed contaminants from the impacted storm collection system. This release was reported to AEP on December 4, 2020. A written report was issued to AEP on December 10, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 374231 |
| 05-Dec-20 | 12621-156 Street NW             | A diluted phenol formaldehyde resin (approx. 100-200L) was released into the storm collection system (PIP463659) from Hexion Canada. A buildup of sediment in the downstream storm lines prevented the release of resin into the nearby Mistatim SWMF #6. A 3 <sup>rd</sup> party vacuum truck (GFL) removed the contaminants from the impacted storm collection system. A Notice to Comply has been issued to Hexion Canada to discontinue the release of restricted / prohibited waste into the storm sewerage system. This release was reported to AEP on December 5, 2020 by Hexion Canada. A written report was issued to AEP on December 11, 2020.                                                                                                                                                                                                                                                                                                                                                                | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 374245 |

| 27-Dec-20 | 11410-104 Avenue  | Untreated wastewater (approx. 5000L) was released into a storm sewer manhole (MH390088) from a private sanitary manhole surcharge at a Canada Safeway store. EPCOR equipment cleared the blockage (fats, oil and grease) in the sanitary line and removed contaminants from the impacted storm collection system. EPCOR confirmed that the storm sewer lines from this property connects downstream to the combined sewer system and the release on December 27 <sup>th</sup> would have been directed to the Gold Bar WWTP for treatment. A Notice to Comply has been issued to Sobey's Inc. to clean and maintain the private sanitary manholes and grease interceptors at their facility. This release was reported to AEP on December 27, 2020. A written report was issued to AEP on December 30, 2020. | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 374789 |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| 31-Dec-20 | 16104-121A Avenue | Diesel fuel (approx. 100L) was released into a storm catch basin (CB272170) from a damaged commercial vehicle located near Loblaws Inc. The diesel fuel was contained within the catch basin sump and there was no release to the storm collection system. A 3 <sup>rd</sup> party vacuum truck (Riteways Vacuum Service) removed the diesel fuel from the impacted catch basin and surrounding area. This release was reported to AEP on December 31, 2020 by Loblaws Inc. A written report was not required by AEP.                                                                                                                                                                                                                                                                                        | Reportable-<br>3 <sup>rd</sup> Party<br>Release | 374837 |

